
Advanced Topics in Complexity Theory

Daniel Borchmann

October 4, 2016

http://lat.inf.tu-dresden.de/~borch


Contents
1 Approximation Complexity 3

1.1 Function Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Approximation and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Non-Approximability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Interactive Proofs 18
2.1 Interactive Proofs Systems with Deterministic Verifiers . . . . . . . . . . . . 18
2.2 Probabilistic Verifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Public Coin Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 IP = PSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Outlook: Multi-Prover Systems . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Counting Complexity 33
3.1 Counting problems and the class #P . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 #P-completeness and Valiant’s Theorem . . . . . . . . . . . . . . . . . . . . . 36

2



1 Approximation Complexity
Dealing with NP-complete problems in practice may sometimes be infeasible. On the other
hand, it is often enough to have approximate solutions to those problems, provided these
are not “too bad”. However, for this to make sense, it is no longer possible to only consider
decision problems.1

1.1 Function Problems
1.1 Example Let us consider the following “computation problem” associated to SAT: given
a propositional formula ϕ, return a satisfying assignment of ϕ if one exists, and “no” other-
wise. Let us call this problem FSAT (“F” for “function”; note however that for a satisfiable
formula ϕ there may be more than one satisfying assignment – the “functional” aspect thus
does not really correspond to the mathematical notion of a function).

It is clear that when we can solve FSAT in polynomial time, we can also solve SAT in
polynomial time. The converse is also true: if SAT ∈ P, then FSAT can be solved in polyno-
mial time as well. This can be done as follows: let x1, . . . , xn be the variables in ϕ. We first
check whether ϕ is satisfiable, and return “no” if it is not. Otherwise, we set x1 = true and
ask whether ϕ is still satisfiable. If it is, we fix x1 = true, and otherwise x1 = false. In any
case, we continue with x2, x3, . . . , xn. It is easy to see that when we have fixed xn, we have
obtained a satisfying assignment of ϕ. Moreover, the procedure runs in polynomial time in
|ϕ|, provided that we can solve SAT in polynomial time. ♦

Theprevious example illustrates a property of SAT that is called “self-reducibility”: we can
solve FSAT by considering instances of SAT of equal or smaller size. The same technique
also works for other problems.

1.2 Example Let us consider the traveling salesperson problem (TSP): given an undirected
(complete) graph G with non-negative edge weights, find a Hamiltonian cycle in G, called a
tour, with minimal total weight. We shall show that we can solve this optimization problem,
provided we have access to an oracle for the decision variant TSPD.

LetG = (V,E,w) be an edge-weighted graph and let n be the length of the encoding 〈G〉
ofG. The cost of a shortest tour onG is then between 0 and 2n. Using binary search, we can
find the cost C of the optimal tour with at most O(n) calls to TSPD.

Once C is fixed, we create instances of TSPD where the budget is fixed to be C , but where
the weights of the underlying graph G have been altered. More precisely, for all edges

1The content of this part of the lecture is based on: Christos H. Papadimitriou: Computational Complexity,
Addison-Wesley, 1995, Section 10.3 and Chapter 13, and: Sanjeev Arora and Boaz Barak: Computational
Complexity A Modern Approach, Cambridge University Press, 2009, Chapter 11.
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{ i, j } ∈ E we successively set its weight to C + 1. For each such modification we ask
whether G still has a tour of length C or less. If yes, the edge { i, j } is not part of some
optimal tour, and we can freeze its cost at C +1. Otherwise, we restore the weight of { i, j }
to the previous value. It is easy to see that after O(n2) calls to TSPD, the only edges with
weights below C + 1 form an optimal tour in G. ♦

Wecan formalize the relationship between decision and function problems in the following
way: let L ∈ NP. Then there exists a polynomial-time TMK and some polynomial p(n) such
that

L = {x ∈ Σ∗ | ∃y.|y| ≤ p(|x|) ∧ (x, y) ∈ K}.

The function problem associated toL, denoted FL, is then the following computation problem:

Given x, find y such that |y| ≤ p(|x|) and (x, y) ∈ K. If no such y exists, return
“no”.

We next provide a more formal definition of function problems.

1.3 Definition A function problem over Σ is a pair Q = (I, R), where I ⊆ Σ∗ is called the
set of instances of Q and R ⊆ Σ∗ ×Σ∗. Both I and R must be decidable in polynomial time.
For x ∈ I , define F (x) to be the set of feasible solutions of x, consisting of all y such that
(x, y) ∈ R. A TM M solves the function problem Q if it returns for each instances x ∈ I
some y ∈ F (x) if F (x) 6= ∅, and rejects x otherwise.

Call a function problem (I, R) polynomially balanced if there exists some polynomial p
such that (x, y) ∈ R implies |y| ≤ p(|x|). The class FNP consists of all polynomially balanced
function problems (I, R). The set FP is the subset of FNP consisting of all function problems
solvable in polynomial time. ♦

We have

• FSAT ∈ FNP, but is is neither known nor expected that FSAT ∈ FP.

• FHornSAT ∈ FP.

• Finding perfect matchings in bipartite graphs is in FP.

• FTSPD ∈ FNP.

Note that, on the other hand, it is not known whether TSP is in FNP. The reason is that a
given tour cannot be checked easily for being optimal (for all we know). Moreover, TSP is
complete for the class FPNP of all function problems computable in polynomial time with
access to an NP oracle. We shall discuss this in some future exercise.

Note that each problem in FNP can be solved in non-deterministic polynomial time. Con-
versely, for each function problem L = (I, R) that is solvable in non-deterministic polyno-
mial time, there exists a function problem L′ = (I, R′) ∈ FNP such that

• each solution to some instance of L′ is a solution for the same instance of L;
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• if some instance of L′ does not have a solution, neither has the same instance of L.

Indeed, if M is some polynomial-time NTM solving L, let p be some bounding polynomial
of the runtime ofM . Define R′

R′ = { (x, y) | |y| ≤ p(|x|) ∧ (x, y) ∈ R }.

Because of this, we can identify problems in FNP with function problems solvable in non-
deterministic polynomial time.

1.4 Definition Let A,B be two function problems. We say that A reduces toB (in logarith-
mic space) if and only if the following is true: there exist logspace-computable functions f
and g such that

1. if x is an instance of A, then f(x) is an instance of B;

2. if f(x) does not have a solution, then x does not have a solution;

3. if z is a solution for f(x), then g(z) is a solution for x.

The problem A is complete for a class FC of function problems if and only if A ∈ FC and all
problems in FC reduce to A. ♦

It is not hard to see that FP and FNP are closed under reductions (using the convention
for FP and FNP as discussed above), and that reductions compose. It is also not hard to
show that FSAT is FNP-complete. From Example 1.1 we know that FSAT can be solved in
polynomial time if and only if SAT can be. Thus we have obtained the following result.

1.5 Theorem FP = FNP if and only if P = NP.

Because of this close relationship between FNP/FP and NP/P, one could think that study-
ing function problems does not add any value. However, among the problems in FNP there
is a special class of function problems that are guaranteed to never say “no”, corresponding
to L = Σ∗.

1.6 Example Consider the problem Factoring: given N ∈ N, find its prime decomposition

N = pk11 . . . pkmm .

Since Primes ∈ P, checking whether a tuple (p1, k1, . . . , pm, km) denotes the prime decom-
position ofN can be done in polynomial time. Alternatively, one could also supply primality
certificates for p1, . . . , pm (such certificates of polynomial length exist; see exercises). ♦

It is not known whether Factoring can be solved in polynomial time. However, in contrast
to FSAT, Factoring never returns no on valid instances.

1.7 Definition A function problem Q = (I, R) is called total if and only if for each x ∈ I
there exists a y ∈ Σ∗ such that (x, y) ∈ R. The class of all total function problems in FNP is
denoted TFNP. ♦
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1.2 Approximation Algorithms
Function problems in TFNP are always guaranteed to have a solution. However, for practical
concerns, some of these solutions may be preferred over others, e.g., if they minimize costs.

1.8 Definition An optimization problem is a tuple (Q, cost, opt), whereQ is a total function
problem, cost(y) ∈ N\{ 0 } for each solution y ofQ, and opt ∈ {min,max }. For an instance
x of Q the optimal cost OPT(x) of x is defined as

OPT(x) = opts∈F (x) cost(s).

A Turing machines solves the optimization problem (Q, cost, opt) if for each instance x ofQ
the Turing machine accepts and returns a solution y ∈ F (x) such that OPT(x) = cost(y).

An optimization problem (Q, cost, opt) is called an NP-optimization problem ifQ ∈ TFNP
and cost is computable in polynomial time. The class of all NP-optimization problems is
denoted NPO. ♦

Examples of NP-optimization problems are not hard to find:

• MinVertexCover: given an undirected graph, find a minimal vertex cover;

• TSP (on complete graphs);

• Knapsack: given weights w1, . . . , wn ∈ N, a weight limit W ∈ N and v1, . . . , vn ∈ N,
find S ⊆ { 1, . . . , n } such that Σi∈Swi ≤ W and Σi∈Svi is maximal.

It is clear that solving optimization problems is at least as hard as solving the corresponding
decision problem: if A = (Q, cost, opt) is an optimization problem, then the corresponding
decision problem AD is

Input: An instance x of Q and some k ∈ N
Question: Does there exist a solution y ∈ F (x) such that cost(y) ≤ k (if

opt = min) or cost(y) ≥ k (if opt = max)?
Indeed, if A ∈ NPO, then AD ∈ NP. Furthermore, it is easy to see that if AD can be solved
in polynomial time, then OPT(x) can be computed in polynomial time for each instance x of
Q. In some cases (as in TSP), this allows to compute an optimal solution in polynomial time
as well.

An advantage of optimization problems is that we can ask for approximate solutions.

1.9 Definition Let (Q, cost, opt) be an optimization problem. Let M be a Turing machine
that for each instance x of Q returns a solution M(x) ∈ F (x). We say that M is an ε-
approximation algorithm for some ε ∈ [0, 1] if for all x ∈ I we have

|cost(M(x))− OPT(x)|
max(cost(M(x)),OPT(x))

≤ ε. ♦
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Note that since cost(M(x)) is positive, the fraction is well-defined for each instance x.
The intuition behind the above definition is that an ε-approximation algorithm always

returns a solution whose relative error is at most ε. Indeed, for maximization problems (opt =
max), a solution returned by an ε-approximation algorithm will never be smaller than (1 −
ε) · OPT(x). On the other hand, for minimization problems the returned solution will never
be larger than 1

1−ε
· OPT(x). In other words, if C is the cost of the returned solution, then

(1− ε) · C ≤ OPT(x).
Question: given anNP-optimization problem, what is the smallest ε forwhich a polynomial-

time ε-approximation algorithm for this problem exists?

1.10 Definition The approximation threshold for an optimization problemA is the infimum
over all ε ≥ 0 such that there exists a polynomial-time ε-approximation algorithm for A. ♦

Clear : if P = NP, then each NP-optimization problem has approximation threshold 0.
Furthermore, the approximation threshold of an optimization problem can be anywhere be-
tween 0 (arbitrary close approximation) and 1 (no approximation). We shall see examples of
problems that exhibit a wide range of different approximation thresholds.

1.11 Example A very simple algorithm for finding a vertex cover is the following: let G =
(V,E) be an undirected graph.

C = ∅
while E 6= ∅ do

choose { i, j } ∈ E
add i, j to C
delete i, j from G

It is clear that this returns a vertex cover of G. But how good is this cover in terms of
approximation?

Note thatC contains 1
2
|C| edges ofG, each two of them being disjoint (i.e.,C is amatching

in G). Every vertex cover (including the optimal one) must contain at least one vertex from
each edge of a matching. Therefore, OPT(G) ≥ 1

2
|C| and thus

|C| − OPT(G)
|C|

≤ 1

2
.

Hence the approximation ratio of MinVertexCover is at least 1
2
. Surprisingly, no better ap-

proximation algorithm is known, and there are results indicating that none exists. ♦

MinVertexCover is a problem that allows for non-trivial approximation algorithms. How-
ever, there are problems in NPO for which this is not the case, unless P = NP.

1.12 Theorem Unless P = NP, the approximation threshold for TSP is one.

Proof Assume that there exists a polynomial-time ε-approximation algorithm for TSP for
some ε < 1. We shall show that in this case HamiltonianCycle can be solved in polynomial
time. As this problem is NP-complete, we obtain P = NP.
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Let G = (V,E) be an undirected graph. We construct an instance of TSP as follows:
each vertex of G is considered as a city, and the distance between two cities i, j ∈ V is 1 if
{ i, j } ∈ E, and 1

1−ε
· |V | otherwise.

Then

• if there exists a tour of total cost |V |, then this tour will only visit unit edges and thus
constitutes a Hamiltonian cycle in G.

• if the shortest tour has length greater than |V |, then G does not have a Hamiltonian
cycle.

We can decide which of these cases is true by employing our approximation algorithm:

• if a tour of length |V | is returned, then G has a Hamiltonian cycle.

• if a tour is returned that contains an edge with weight 1
1−ε
· |V |, then the cost of the

overall tour is strictly greater than 1
1−ε
· |V |. Since our approximation algorithm is

guaranteed to return a solution y such that the optimum is at least (1 − ε) · cost(y),
we obtain that the optimal tour has length greater than |V |. Thus, G does not have a
Hamiltonian cycle. �

The other extreme is that a problem has ε-approximation algorithms for any ε > 0. This
is the case for Knapsack.

1.13 Theorem The approximation threshold for Knapsack is 0, i.e., for each ε > 0 there
exists a polynomial-time ε-approximation algorithm for Knapsack.

Indeed, approximating an optimization problem containing numbers suggest an immedi-
ate approach, namely to trade accuracy for speed : when ignoring the trailing b bits of some
of the numbers involved in the problem instance, we may obtain a problem that is easier to
solve. This is just what it happens in the case of Knapsack.

Proof Let an instance of Knapsack be given, that is some positive value v1, . . . , vn, some
non-negative values w1, . . . , wn, and some maximal weight W . We are then seeking a set
S ⊆ { 1, . . . , n } such that

∑n
i=1wi ≤ W and

∑n
i=1 vi is maximal.

From the introductory course on complexity theory we know that Knapsack can be solved
in pseudopolynomial time: if all the numbers in the instances of Knapsack are spelled out in
unary, then the problem is in P. To see this, one can give an algorithm based on dynamic
programming. We shall recall this algorithm here.

Let V = max{ v1, . . . , vn } and denote with W (i, v), for 1 ≤ i ≤ n and 1 ≤ v ≤ nV , the
minimal weight attainable when choosing among the first i items such that the overall value
is exactly v. We then have the following connection:

W (i+ 1, v) = min{W (i, v),W (i, v − vi+1) + wi+1 }.

Setting W (0, v) = ∞ and W (0, 0) = 0 for all feasible v we obtain an algorithm that solves
Knapsack in time O(n2V ): simply choose the maximal v such thatW (n, v) ≤ W .
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Now let us put the idea into practice of truncating b bits of the involved numbers. More
precisely, let us introduce for our instance (v1, . . . , vn,W,w1, . . . , wn) an approximate in-
stance (v′1, . . . , v′n,W,w1, . . . , wn) where v′i is the same value as vi with the last b bits set to
zero, i.e.,

v′i = 2b
⌊vi
2b

⌋
.

Then we can solve the approximate instance in time O(n2V /2b), because we can apply our
dynamic programming algorithm to the approximate instance where we just ignore the last
b bits, and re-adding them to the final solution.

Suppose we obtain an approximate solution S ′ in this way, and let S be an optimal solution
for the original instance. We then have the following chain of inequalities:∑

i∈S

vi ≥
∑
i∈S′

vi ≥
∑
i∈S′

v′i ≥
∑
i∈S

v′i ≥
∑
i∈S

(vi − 2b) ≥
∑
i∈S

vi − n2b.

The first inequality is true because S is optimal for the original instance, and the second one
is true because vi ≥ v′i. The next one is due to the optimality of S ′ for the approximate
instance. Finally, v′i ≥ vi − 2b and |S| ≤ n yield the last two inequalities. Therefore, the
difference between the optimal values of S ′ and S is at most n2b. Using the fact that V is a
lower bound on the optimal value of the original instance (assuming that wi ≤ W for all i)
we obtain, we obtain an approximation ratio of

ε =
n2b

V
.

Now given ε > 0 we can set b = blog2(εV /n)c to see that the above algorithm is an
ε-approximation algorithm that runs in time O(n2V /2b) = O(n3/ε), which is a polynomial
n. �

Note that each optimization problem with approximation threshold 0 has a sequence of
approximation algorithms such that the corresponding error ratios converge to 0. Indeed, in
the case of Knapsack, those approximation algorithms are very well behaved: it is just the
same algorithm supplied with different values of ε. Those algorithms are so nice, they get an
extra name.

1.14 Definition A polynomial-time ε-approximation scheme (PTAS) for an optimization prob-
lem A is an algorithm that returns for each ε > 0 and each instance x of A a solution of A
with relative error at most ε in time bounded by some polynomial pε(|x|) that only depends
on ε. Such an approximation scheme is called fully polynomial if pε(|x|) = p(|x|, 1

ε
) for some

fixed polynomial p. ♦

It can be shown that, unless P = NP, not every problem with a polynomial-time approxi-
mation scheme also has a fully polynomial-time approximation scheme.

It is also interesting to see that some closely related problems like MinVertexCover and
MaxIndependentSet can behave quite differently when it comes to approximation.
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1.15 Theorem If there is an ε0-approximation algorithm for MaxIndependentSet for any
ε0 < 1, then there is a polynomial-time approximation scheme for MaxIndependentSet. In
other words, the approximation threshold for MaxIndependentSet is either 0 or 1.

The proof makes use of the following product construction: letG = (V,E) be a graph. The
square of G is the graph G2 with vertex set V × V and edges

{ ((u, v), (u′, v′)) | (u = v ∧ (u′, v′) ∈ E) or (u, v) ∈ E }.

It is easy to see thatG has an independent set of size k if and only ifG2 has an independent
set of size k2. Indeed, if I ⊆ V is independent, then so is

{ (u, v) | u, v ∈ I }

in G2. Conversely, if I ′ ⊆ V × V is independent and |I ′| ≥ k, then both

I1 = {u | (u, v) ∈ I ′ },
I2 = { v | (u, v) ∈ I ′ }

are independent inG, and one of these setsmust have size at least
√
k, because |I1|·|I2| ≥ |I ′|.

Proof (Theorem 1.15) Assume that an O(nk)-time bounded ε0-approximation algorithm for
MaxIndependentSet exists. Let G be a graph with a maximal independent set of size r.

If we apply our hypothetical approximation algorithm to G2, then we obtain an indepen-
dent set of size at least (1− ε0) · r2. From this we can obtain an independent set of G of size√

(1− ε0) · r. We thus obtain an O(n2k)-time bounded ε1-approximation algorithm with
ε1 = 1−

√
1− ε0 < ε0.

For a given ε > 0 we can repeat the product construction

` =

⌊
log2

log2(1− ε0)
log2(1− ε)

⌋
many times to obtain an O(n2`k) = O(nk·log(1−ε0)/ log(1−ε))-time bounded ε-approximation
algorithm for MaxIndependentSet. This yields the desired approximation scheme. �

1.3 Approximation and Complexity
Given our lack of knowledge about the P = NP question, the best thing we can hope for an
NPO-problem is to obtain a polynomial-time approximation scheme for it. Again, answering
the questions of whether such a PTAS exists is hard. We therefore employ our usual approach
of “complete problem” to show that the existence of a PTAS for certain problems implies
the existence of PTAS for others. For this, however, we first need a suitable definition of a
reduction that preserves approximability.

1.16 Definition Let A,B be optimization problems. An L-reduction from A to B is a pair
(f, g) of logspace-computable functions such that
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• if x is an instance of A, then f(x) is an instance of B;

• if s is a solution for f(x), then g(s) is a solution for x; (i.e., (f, g) is a reduction of
function problems)

• there exists α > 0 such that if x is an instance of A, then

OPT(f(x)) ≤ α · OPT(x)

• there exists β > 0 such that for all s ∈ F (f(x)) we have

|OPT(x)− cost(g(s))| ≤ β · |OPT(f(x))− cost(s)|. ♦

Note that by the second property an L-reduction maps an optimal solution of f(x) to an
optimal solution of x. Moreover, g returns a solution of xwhich is only linearly further away
from the optimum then the approximate solution for f(x).

1.17 Example Let us consider MaxIndependentSet and MinVertexCover again. The trivial
reduction between these two problems replaces the bound k by |V | − k. However, this
reduction is not an L-reduction: the optimal minimal vertex cover may be arbitrarily larger
than the optimal independent set (consider G = Kn for this).

On the other hand, if we can restrict our attention to graphsG with maximal node degree
k, then this reduction indeed works: a maximal independent set in G has size at least |V |

k+1
,

and a minimal node cover has size at most |V |. Thus α = k + 1 works here. It is also easy
to see that β = 1 can be chosen, as the size difference between any cover C and a minimal
vertex cover, and between V \ C and a maximal independent set is the same. ♦

1.18 Proposition If (f, g) is an L-reduction fromA toB, and (f ′, g′) is an L-reduction from
B to C , then (f ′ ◦ f, g ◦ g′) is an L-reduction from A to C .

The main point of L-reductions is that they preserve approximability.

1.19 Proposition Let (f, g) be an L-reduction fromA toB with constants α and β. Suppose
that B admits a polynomial-time ε-approximation algorithm for some ε > 0. Then there
exists αβε

1−ε
-approximation algorithm for A.

The important observation is that αβε
1−ε

tends to zero when ε does. Thus, we can obtain the
following corollary.

1.20 Corollary If there is an L-reduction fromA toB andB has a PTAS, thenA has a PTAS
as well.

Proof (Proposition 1.19) The algorithm is simple: given an instance x of A, construct f(x).
Then apply the ε-approximation algorithm to f(x) to obtain a solution s. Finally, compute
g(s). We claim that this yields an αβε

1−ε
-approximation algorithm for A.

To see this, let us consider the ratio
|OPT(x)− cost(g(s))|

max(OPT(x), cost(g(s)))
.

Then we have
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• |OPT(x)− cost(g(s))| ≤ β · |OPT(f(x))− cost(s)|;

• OPT(f(x))
α

≤ OPT(x) ≤ max(OPT(x), cost(g(s))).

Because s has been obtained by an ε-approximation algorithm, we additionally obtain

OPT(f(x)) ≥ max(OPT(f(x)), cost(s)) · (1− ε).

We can thus conclude
|OPT(x)− cost(g(s))|

max(OPT(x), cost(g(s)))
≤ αβ

1− ε
· |OPT(f(x))− cost(s)|
max(OPT(f(x)), cost(s))︸ ︷︷ ︸

≤ε

≤ αβε

1− ε
. �

We next want to introduce a complexity class that has natural complete problems under
L-reductions. For this we shall first recall a famous result form descriptive complexity theory.

1.21 Definition Let G be a set of finite graphs (i.e., a decision problem about finite graphs).
We say that G is expressible in existential second-order logic (short: G is ∃SO) if there exists
an existential second-order sentence ∃P.ϕ(P ) such that

G = {G | G a finite graph and G |= ∃P.ϕ(P ) }. ♦

Examples for ∃SO graph problems are VertexCover and IndependentSet. It is easy to see
that all ∃SO graph problems are in NP. Surprisingly, the converse is also (somewhat) true.

1.22 Theorem (Fagin) NP is the class of all problems that are reducible in polynomial time
to ∃SO graph problems.

Using this connection, we can now come back to approximation complexity.

1.23 Definition The class SNP (for strict NP) is the class of all problems reducible to graph
problems expressible in the form of

{G | ∃S∀x1 . . . ∀xk.ϕ(S,G, x1, . . . , xk) },

where ϕ is a quantifier-free FOL formula. Thus, in contrast to full NP, only universal (and
no existential) first-order quantifiers are allowed.

We can obtain maximization problems by modifying the defining expression of SNP-
problems slightly. Let

ψ′ = ∃S∀x1 . . . ∀xk.ϕ(S,G1, . . . , Gm, x1, . . . , xk)

be as before, but where we now allow more than one input graph G1, . . . , Gm on the same
set of vertices. Define the corresponding maximization problem to be

max
S

∣∣{ (x1, . . . , xk) ∈ V k | ϕ(S,G1, . . . , Gm, x1, . . . , xk) }
∣∣ .

Define MaxSNP0 to be the set of all such optimization problems. Define MaxSNP to be
the class of all optimization problems that are reducible via L-reductions to problems in
MaxSNP0. ♦
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1.24 Example The problem Max2SAT is in MaxSNP0. For this to see, we represent a 2CNF-
formula ϕ by three relations G0, G1, G2 over the set of variables in ϕ with the following
intended meaning:

• G0(x, y) if and only if x ∨ y is a clause in ϕ;

• G1(x, y) if and only if ¬x ∨ y is a clause in ϕ;

• G2(x, y) if and only if ¬x ∨ ¬y is a clause in ϕ;

Then we can write Max2SAT as

max
S
|{ (x, y) | ψ(S,G0, G1, G2, x, y) }|,

where

ψ(S,G0, G1, G2, x, y) = (G0(x, y) ∧ (S(x) ∨ S(y)))
∨ (G1(x, y) ∧ (¬S(x) ∨ S(y)))
∨ (G2(x, y) ∧ (¬S(x) ∨ ¬S(y)))

Intuitively speaking, S is the set of true variables).
Similarly, it can be seen that Max3SAT is in MaxSNP0. ♦

A crucial property of problems in MaxSNP0 is that they all have ε-approximation algo-
rithms. To see this, we first need to investigate another optimization problem.

1.25 Example Let k ∈ N. The problem k-MaxGSAT (for maximum generalized satisfia-
bility) is defined as follows: let Φ = {ϕ1, . . . , ϕm } be a set of Boolean expressions in n
variables, where each ϕi is a general Boolean expression in at most k variables. We are seek-
ing an assignment of the n variables that maximizes the number of satisfied expressions in
Φ.

It can be shown (and we shall do so in the exercises) that the approximation ratio for
k-MaxGSAT is at most 1− 2−k. ♦

1.26 Theorem Let A ∈ MaxSNP0 and suppose A is of the form

max
S
|{ (x1, . . . , xn) | ϕ(S,G1, . . . , Gm, x1, . . . , xn) }|.

Then A has a polynomial-time (1− 2−kϕ)-approximation algorithm, where kϕ is the number
of atomic expressions in ϕ that involve S.

Proof Consider an instance of A over V . For each n-tuple v = (v1, . . . , vn) ∈ V n substitute
v1, . . . , vn for x1, . . . , xn in ϕ to obtain a formula ϕv . Then there are three kinds of atomic
expressions in ϕv: those involving aGi, those involving equality, and those involving S. The
first two can readily be evaluated to either true or false. We can therefore assume wlog that
ϕv is a Boolean combination of atomic expressions S(vi1, . . . , vir).

We can thus view each instance of A as a set of expressions ϕv for all v ∈ V n and we are
asked to assign truth values to S(vi1, . . . , vir) to make as many of these ϕv’s true. Obviously,
this is an instance of kϕ-MaxGSAT, and we know that this problem has a polynomial-time
(1− 2−kϕ)-approximation algorithm. �
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Thus all problems in MaxSNP0 share the positive property of having an approximation
ratio that is strictly less than one. However, it is not clear whether all problems in MaxSNP0
also have PTASs. This is indeed a very difficult question, and calls for considering complete
problems for MaxSNP.

1.27 Definition An optimization problem A is called MaxSNP-complete if A ∈ MaxSNP
and for each problem B ∈ MaxSNP there exists an L-reduction from B to A. ♦

Clearly, it is sufficient to only consider MaxSNP-complete problems that are actually in
MaxSNP0.

1.28 Theorem Max3SAT is MaxSNP-complete.

Proof It suffices to show that all problems in MaxSNP0 are reducible to Max3SAT. The pre-
vious proof shows that each such problem A defined by

max
S
|{ (x1, . . . , xk) | ϕ }|

can be reduced to `-MaxGSAT for some ` ∈ N. We shall show how we can extend this
reduction to obtain an instance of Max3SAT by providing an L-reduction (f, g).

Recall that the construction of the previous proof produced for each instance x of A a
set of Boolean expressions ϕv , where the variables in ϕv represent the fact whether certain
tuples belong to S or not. We can discard each ϕv that is not satisfiable (note that this can
be checked in polynomial time, since k is fixed!) All the remaining ϕv’s we can represent
as Boolean circuits. These circuits can be transformed into a 3SAT formula as we did when
reducingCircuitSAT to 3SAT: we replace each gate by a set of clauses stating the relationship
between the inputs and the output. Those clauses have at most three variables. In addition,
we add a clause (t) for the output gate. The resulting set of clauses is then the instance f(x)
of Max3SAT. Clearly, for any truth assignment T of this instance, we can immediately read
off a feasible solution S = g(T ) of x.

We are left to show that this reduction is indeed an L-reduction. Each ϕv is replaced by at
most c1 clauses, where c1 depends on the size of ϕ (essentially, c1 is four times the number of
Boolean connectives in ϕ). Let m ∈ N be the number of satisfiable ϕv’s. The optimal value
of x is at least some constant fraction of m, say OPT(x) ≥ c2 · m for some c2 > 0 (by the
previous theorem, we could choose c2 = 2−kf ). Clearly, OPT(f(x)) ≤ c1 ·m, and thus

OPT(f(x)) ≤ c1
c2
· OPT(x).

It is also easy to see that the second condition of L-reductions is satisfied with β = 1. �

1.4 Non-Approximability
The question whether MaxSNP-complete problems have polynomial-time approximation
schemes is very akin to the P = NP question: the former asks whether difficult optimization
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problems can be approximated efficiently to arbitrary precision, and the latter asks whether
search problems can be solved efficiently by a direct method. Indeed, using a deep result
from complexity theory, we shall show that these two questions are actually equivalent!

The result we shall be using is concerned with an alternative characterization of NP. We
have already seen that we can understand NP in terms of short certificates. It turns out that
this characterization can be relaxed to “probabilistic checkable certificates”. Here a proba-
bilistic verifier has random access to a certificate π and issues queries into this certificate.
We shall demand that those queries are non-adaptive, i.e., the outcome of one query does not
influence the choice of the next query (this restriction is mostly technical, and it turns out
the result we are after does not depend on this).

1.29 Definition Let L ⊆ Σ∗ and q, r : N → N. We say that L has an (r(n), q(n))-PCP
verifier if the following is true: there exists a polynomial-time probabilistic TM V such that
on inputs x ∈ { 0, 1 }n and given random access to a string π ∈ { 0, 1 }∗ of length at most
q(n)2r(n), called the proof, the machine uses at most r(n) random bits and makes at most
q(n) non-adaptive queries to locations in π. The output of V is either 1 for accept or 0 for
reject.

Denote with V π(x) the random variable representing the output of V on input x with
access to π. Then V must satisfy the following properties:

• V must be complete: if x ∈ L, then there exists a proof π ∈ { 0, 1 }∗ such that
Pr(V π(x) = 1) = 1. (In this case, π is called a correct proof for x).

• V must be sound : if x /∈ L, then for every π ∈ { 0, 1 }∗ we have Pr(V π(x) = 1) ≤ 1
2
.

We say that L is in PCP(r(n), q(n)) if there are c, d > 0 such that L has a (c · r(n), d · q(n))-
PCP verifier. ♦

Note that the restriction on the length of the proof to q · 2r bits is inconsequential, as the
verifier can look on at most this many locations during its run. Furthermore, the particular
choice of the parameter 1

2
in the definition of PCP-verifiers is not relevant: it can be replace

by any number in [0, 1) without changing the definition.

1.30 Example It is true thatGNI ∈ PCP(poly(n), 1), wherePCP(poly(n), 1) =
⋃

c≥1 PCP(nc, 1).
A PCP-verifier receives as input a pair (G0, G1) of two graphs on n nodes. The proof π is
expected to contain for each labeled graph H with n nodes a bit π(H) corresponding to
whether H ' G0 or H ' G1 (π(H) can be arbitrary if neither of theses cases is true). Note
that π is exponentially long.

Now the verifier picks at random some b ∈ { 0, 1 } and a permutation σ on the n nodes.
Then σ is applied to Gb, resulting in a graphH. The verifier accepts if and only if π(H) = b.

If G0 6' G1, then the verifier clearly always accepts with the correct proof. If G0 ' G1,
then the probability that π makes the verifier accept is at most 1

2
. ♦

The famous and deep result about NP is now the following.

1.31 Theorem (The PCP-Theorem) NP = PCP(logn, 1).
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It is easy to see that

PCP(r(n), q(n)) ⊆ NTime(2O(r(n)) · q(n)).

This is because an NTM can guess the proof inO(2O(r(n)) · q(n)) time and verify determinis-
tically for each of the 2O(r(n)) choices of the random bits whether the verifier accepts. If the
verifier accepts in all cases, the machine accepts. In particular,

PCP(logn, 1) ⊆ NTime(2O(logn)) = NP,

which establishes the easy direction of the PCP-Theorem.
There is also a “scaled-up” version of the PCP-theorem.

1.32 Theorem PCP(poly(n), 1) = NExpTime.

Surprisingly, the PCP-Theorem can be used to show that Max3SAT very likely does not
have a PTAS.

1.33 Theorem If there is a PTAS for Max3SAT, then P = NP.

Proof Let L ∈ NP and V be a PCP-verifier using c · logn random bits and d proof queries.
Suppose further that there is a PTAS for Max3SAT achieving an approximation ratio ε > 0
in time pε(n), a polynomial. We shall describe a polynomial-time algorithm for deciding L.

Consider some x ∈ Σ∗, |x| = n. Let r ∈ { 0, 1 }c·logn and consider the computation of V on
x using the random bits in r. Our goal is now to construct a Boolean expression representing
the fact that this computation accepts.

Observe that during the computation, V seeks d bits of the proof, say πi1(r), . . . , πid(r).
Except for these bits, all other aspects of the computation of V with random bits r are com-
pletely determined. Thus, the outcome is a Boolean function of d bits, and thus can be repre-
sented as a circuit Cr. The number of gates in Cr is a most K = d · 2d. Using again the idea
of the reduction from CircuitSAT to SAT, we can express Cr with 4K or fewer clauses. Note
that no matter how we set the input bits πi1(r), . . . , πid(r), all but one of the clauses can be
satisfied (i.e., the clause corresponding to the output gate may be unsatisfied). Only certain
settings of these input variables can satisfy also the last clause. Those settings correspond to
an accepting computation of V .

When repeating this construction for all 2c·logn = nc choices for r, we obtain 4Knc clauses.
The various groups of clauses may only share the inputs πij(r). We then have the following
situation:

• if x ∈ L, then there is a truth assignment (i.e., a proof π) that satisfies all clauses;

• if x /∈ L, any truth assignment must miss one clause in at least half of the groups: at
least a fraction of 1

2
· 1
4K

of the overall clauses must be left unsatisfied.

We now apply our PTAS for Max3SAT to the constructed set of clauses with ε = 1
9K

. The
running time will then be p 1

12K
(4Knc), a polynomial in n. If the PTAS returns an assign-

ment with more than 1 − 1
8K

satisfied clauses, then we know that x ∈ L. Otherwise, since
the returned assignment is guaranteed to be within 1

9K
of the optimum, we know that no

assignment can satisfy all clauses. Thus, x /∈ L.
This shows that L can be decided in polynomial time, i.e., L ∈ P. �

16



As Max3SAT is MaxSNP-complete, we obtain that no MaxSNP-complete problem can
have a PTAS unless P = NP.

1.34 Theorem Unless P = NP, none of the following problems has a PTAS: Max3SAT,
MaxNAESAT, 4-DegreeMaxIndependentSet, MinVertexCover, and MaxCut.

Proof (not really) It can be shown that all the mentioned problems are complete for MaxSNP,
by reducing Max3SAT to them (see Papadimitriou’s book). �

Combining this with our previous result about MaxIndependentSet, we obtain even worse
news.

1.35 Corollary Unless P = NP, the approximation threshold of MaxIndependentSet and
MaxClique is 1.
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2 Interactive Proofs
Convincing others of the truth of a mathematical statement can usually be done in only
one way: a proof has to be provided that everyone can check in “comparably” short time.
However, in particular in discussion between mathematicians, the more general method of
interaction is used: a prover wants to convince a verifier about the validity of a statement.
He does so by exchanging a certain number of explanations with the verifier until she is
convinced.1

This form of “proving” is also common in cryptographic protocols used for authentication:
by exchanging a certain number of messages, the prover wants to convince the verifier that
she posses a certain identity, usually represented by a secret. Proper cryptographic protocols
ensure that this can be done in short time if and only if the prover is indeed in possession
of the secret. In addition, those protocols shall also ensure that the verifier does not learn
anything about the secret of the prover.

Using interactive proofs also seems to be interesting from a complexity theory point of
view: the class NP can be understood as the class of all problemswhere a proof of polynomial
length exists that can be checked in polynomial time; this roughly corresponds to the notion
of “mathematical provability”. An obvious followup question is: are those all the problems
that are also solvable by interactive proofs, or are there more? For example, is it possible to
succinctly proof unsatisfiability of a Boolean formula? On the one hand, this is a problem
that is complete for coNP, and a short proof in the sense of NP is not expected. On the other
hand, and quite surprisingly, it can be shown that there do exist short interactive proofs for
unsatisfiability of Boolean formulas, and more generally for every problem that is solvable
in polynomial space. In this sense, polynomial space is equivalent to a polynomial number
of interactions each realizable in polynomial time. Understanding this remarkable result is
one of the goals of this part of the lecture.

2.1 Interactive Proofs Systems with Deterministic
Verifiers

It turns out that a crucial part for the computational power of interactive protocols is the
possibility that the verifier can make random choices and is allowed to make errors. To
illustrate this, we shall show that if the verifier is deterministic, interactive protocols do not
add any value.

1This part is based on Sanjeev Arora and Boaz Barak: Computational Complexity A Modern Approach, Cam-
bridge University Press, 2009, Chapter 8 and Michael Sipser: Introduction to the Theory of Computation,
3rd ed., Cengage Learning, 2013, Section 10.4
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2.1 Example We can solve 3SAT using a deterministic proof: for each clause, the prover
announces values for all variables in the clause. The verifier keeps track of all values and ac-
cepts if and only if all clauses were indeed satisfied and no conflicting values for two variables
were announced. ♦

Indeed, “interaction” in the previous examples is barely necessary: the prover could just
send thewhole assignment to the verifier in one step. As it turns out, this is not a coincidence:
if the verifier is deterministic, interaction does not add any computational power.

2.2 Definition Let f, g : Σ∗ → Σ∗ be two functions and let k : N→ N. A k-round interaction
of f and g on input x ∈ { 0, 1 }∗ is a sequence a1, . . . , am ∈ { 0, 1 }∗, wherem = k(|x|), such
that

a1 = f(x)

a2 = g(x, a1)

a3 = f(x, a1, a2)

...
a2i+1 = f(x, a1, . . . , a2i) (2i < m)

a2i+2 = g(x, a1, . . . , a2i+1) (2i+ 1 < m).

Let us write 〈f, g〉(x) = a1, . . . , am. The output of f at the end of the interaction is defined
as the last value am = f(x, a1, . . . , am−1). We assume that this value is always in { 0, 1 } and
shall we denote it by outf〈f, g〉(x). ♦

Based on interaction of deterministic functions, we can define what we mean by a deter-
ministic proof system.

2.3 Definition Let L ⊆ Σ∗. L is said to have a k-round deterministic interactive proof sys-
tem if there exists a deterministic Turing machine V that on input x, a1, . . . , ai runs in time
polynomial in |x| and has k-round interactions with any function P : { 0, 1 }∗ → { 0, 1 }∗
such that

x ∈ L =⇒ ∃P. outV 〈V, P 〉(x) = 1 (completeness)
x /∈ L =⇒ ∀P. outV 〈V, P 〉(x) = 0 (soundness)

Denote with dIP the class of all languages with a k-round deterministic interactive proof
system, where k(n) is a polynomial in n. ♦

Note that we place no limits on the power of the prover P . This is intentional: a false
assertion should not be provable no matter how powerful the prover is.

2.4 Proposition dIP = NP.
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Proof It is clear that NP ⊆ dIP. Let L ∈ dIP and let V be a verifier for L. We want to show
L ∈ NP. For this we provide a certificate for membership. Indeed, such a certificate is just an
interaction (a1, . . . , am) of V that has caused V to accept. To check this certificate, a verifier
V ′ only needs to check

V (x) = a1

V (x, a1, a2) = a3
...

V (x, a1, . . . , am) = 1.

Indeed, if such a tuple (a1, . . . , am) exists that causes V to accept, than we can define a prover
P by

P (x, a1) = a2

P (x, a1, a2, a3) = a4
...

Since outV 〈V, P 〉(x) = 1, we have x ∈ L. Conversely, if x ∈ L, then there exists a prover P
and an interaction (a1, . . . , am) = 〈V, P 〉(x) that makes V ′ accept.

Thus

L = {x | ∃a1, . . . , am.|a1, . . . , am| ≤ q(|x|) ∧ (x, a1, . . . , am) ∈ L(V ′) } ∈ NP,

for some polynomial q. Indeed, since a1, a3, . . . are outputs of V , they have to be polynomi-
ally bounded in |x|. Furthermore, the values a2, a4, . . . can be chosen to be short, because
V does not have enough time to read them completely if they are longer. Thus, if p is a
bounding polynomial for the runtime of V , then we can choose q(|x|) = p(|x|) · k(|x|). �

2.2 Probabilistic Verifiers
We have seen that deterministic verifiers do not add any expressive power to interactive
proofs. Indeed, to take advantage of of interaction it turns out that we need to use random-
ization. In particular, we shall allow the verifier to make “small” amounts of errors.

2.5 Example Marla wants to convince Arthur that she has two socks of different colors, red
and yellow, say. Regrettably, Arthur is color-blind. Marla can nevertheless achieve her goal
by means of the following protocol: Marla gives both socks to Arthur, telling him which one
is red and which one is yellow. She then turns her back to Arthur. He randomly decides to
swap the socks in his hand (e.g., by tossing a coin). He then asks Marla to tell him in which
hand the red sock is.

Clearly, if the socks have different colors, Marla can tell Arthur with certainty. If, on the
other hand, the socks would have identical colors, Marla could only guess with probability
1/2 the correct answer (assuming there are no other means to distinguish the socks). Thus,
by repeating the procedure, Arthur can convince himself with arbitrarily high probability
that the socks are indeed of different color. ♦
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The idea behind this protocol is actually quite general: we have already seen (and will
see again) how it can be used to decide graph-nonisomorphism (GNI). It can also be used to
decide quadratic non-residuosity of number in Zn (see exercises).

Let us now extend the definition of interaction between two functions f, g to make f a
probabilistic function. For this we shall add another argument to f that represents some
random choice in { 0, 1 }m for somem ∈ N. On the other hand, the function g is left as it is,
as we do not want g to see the random choice made by f . Then, 〈f, g〉(x) and outf〈f, g〉(x)
are not just plain values anymore, but random variables depending on the choice r.

2.6 Definition Let k : N → N. The class IP[k] of all interactive proofs of length k con-
sists of all languages L ⊆ Σ∗ satisfying the following condition: there exists a polynomial-
time probabilistic Turing machine V that can have a k-round interaction with functions
P : { 0, 1 }∗ → { 0, 1 }∗ such that

• V is complete: if x ∈ L, then there exists some mapping P such that

Pr(outV 〈V, P 〉(x) = 1) ≥ 2

3
.

• V is sound : if x /∈ L, then for all mappings P we have

Pr(outV 〈V, P 〉(x) = 0) ≤ 1

3
.

Finally define
IP =

⋃
c≥1

IP[nc]. ♦

As in the definition of BPP, the particular choice of 1/3 in the above definition is not
crucial.

2.7 Lemma The class IP is unchanged if we replace the completeness parameter 2/3 by
1− 2−ns and the soundness parameter 1/3 by 2−ns for any fixed s ∈ N.

Proof Use repetition and take the majority of the outcomes. Use Chernoff’s Bounds to show
that this yields the desired parameters. (See exercises for more details) �

Indeed, replacing the completeness parameter 2/3 by 1 also not change the definition of
IP. This is rather difficult to prove from the definition alone, but can be done using the
characterization IP = PSpace. On the other hand, replacing 1/3 by 0 yields the class NP
again, as shown in the previous section (and it is believed that NP 6= IP).

In the definition of IP, the prover g is allowed to have unbounded computational resources.
It turns out that this is not necessary: restricting the prover to only polynomial space does
not change the definition of IP.

2.8 Theorem IP ⊆ PSpace.
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Proof Let L ∈ IP and let V be a verifier for L. Then

x ∈ L ⇐⇒ max
P

Pr(outV 〈V, P 〉(w) = 1) ≥ 2

3
,

x /∈ L ⇐⇒ max
P

Pr(outV 〈V, P 〉(w) = 1) ≤ 1

3
.

We shall now show how we can compute this maximum in polynomial space.
Let w ∈ Σ∗ and n := |w|. Assume that on inputs of length n exactly p = p(n) messages

are exchanged. Denote with Mj = (m1, . . . ,mj) a tuple of messages of length j ≤ p. Let
us denote with outV 〈V, P 〉(w, r,Mj) the value (if it exists) of the interaction between V and
P on input w, using random string r, and starting on message historyMj . In particular, we
have

outV 〈V, P 〉(w, r,Mj) = 1 (2.1)

if and only if we can extendMj with messagesmj+1, . . . ,mp such that

1. V (w, r,m1, . . . ,mi) = mi+1 if i is even;

2. P (w, r,m1, . . . ,mi) = mi+1 if i is odd;

3. mp = 1.

Note that then the message historyMj must be consistent with the output of V . When (2.1)
is true, we shall say that V accepts w starting atMj with random choice r.

Now write

Pr(outV 〈V, P 〉(w,Mj) = 1) = Prr(outV 〈V, P 〉(w, r,Mj) = 1),

where we choose r uniformly from { 0, 1 }m′ , where m′ is the length of the random string
for inputs of length |w|, and where r is consistent with the current message history Mj . If
no such r exists, we set the overall value to 0.

For 0 ≤ j ≤ p and Mj a message history, we now introduce values NMj
as follows. For

j = p we set NMp = 1 if V accepts w starting at Mp for some choice of r. This amounts to
checking thatMp is consistent for V and some random choice r and the interaction accepts.
Otherwise, set NMp = 0.

For j < p and some message historyMj define NMj
recursively by

NMj
:=

{
maxmj+1

N(Mj,mj+1) for j odd
wt-avgmj+1

N(Mj,mj+1) for j even,

where (Mj,mj+1) shall denote the message historyMj extended by the new messagemj+1,
and

wt-avgmj+1
N(Mj,mj+1) =

∑
mj+1

Prr(V (w, r,Mj) = mj+1) ·N(Mj,mj+1).

We shall now show that

NMj
= max

P
Pr(outV 〈V, P 〉(w,Mj) = 1).
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We do this by induction over j, starting with j = p.
Base Case (j = p). We know thatmp is either 0 or 1. Ifmp = 1 andMp is consistent for V

for some random choice r, then NMp = 1 = maxP Pr(outV 〈V, P 〉(w,Mp) = 1). Otherwise,
NMp = 0 = maxP Pr(outV 〈V, P 〉(w,Mp) = 1).

Step Case: We assume the claim is true for j + 1 ≤ p and any message history Mj+1 of
length j +1. The goal is to show that the claims is true for j and any message historyMj of
length j. We distinguish two cases.

If j is even, thenmj+1 is a message from V to P . Then

NMj
= wt-avgmj+1

N(Mj,mj+1)

=
∑
mj+1

Prr(V (w, r,Mj) = mj+1) ·N(Mj,mj+1)

=
∑
mj+1

Prr(V (w, r,Mj) = mj+1) ·max
P

Pr(outV 〈V, P 〉(w,Mj) = 1)

= max
P

Pr(outV 〈V, P 〉(w,Mj) = 1),

where the first two equalities are by definition, and the third follows from the induction
hypothesis. The last equation is easy to see and will be discussed in the exercises.

If j is odd, thenmj+1 is a message from P to V . In this case we have

NMj
= max

mj+1

N(Mj,mj+1)

= max
mj+1

max
P

Pr(outV 〈V, P 〉(w, (Mj,mj+1)) = 1)

= max
P

Pr(outV 〈V, P 〉(w,Mj) = 1),

where the last equation will again be discussed in the exercises.
Thus, to know whether maxP Pr(outV 〈V, P 〉(w) = 1) ≥ 2/3 it is enough to compute

NM0 , whereM0 is the empty message history. But this is easy, since the only problem is to
compute the wt-avg expression. To compute this, we go through all choices r of length m′

and eliminate those that are inconsistent withMj . If no r remains, the wt-avg-expression is
0. Otherwise, determine the fraction of strings r that cause V to outputmj+1 by simulating
V in polynomial time (and thus polynomial space). Then compute N(Mj,mj+1). Since the
depth of the recursion is p (a polynomial), only polynomial space is needed. �

2.3 Public Coin Protocols
It seems as if in the protocols we have seen so far, keeping the random choices of the verifier
secret was crucial for the protocols to work. A natural question emerging from this conjec-
ture is to ask which problems can be solved if the random choices are made public to the
prover. This is formalized using so-called public-coin protocols.

2.9 Definition Let k : N → N. The class AM[k] is the class of all languages that have a
polynomial-time probabilistic verifier V that is only allowed to send messages of random
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V

1 0 1 1 0 1 0 0

for most of
these choices
there exists a suitable
response for the prover
that causes the verifier
to accept

Figure 2.1: Decision tree of an AM[2]-interaction

bits and these are all the random bits V can use. An interactive proof with such a verifier is
called a public-coin proof or an Arthur-Merlin proof. In contrast, interactive proofs that are
not necessarily public-coin protocols are called private-coin protocols. ♦

Note that in this type of protocol, the prover does not get to see all of the random choices
of the verifier immediately. Indeed, for a k-round interaction, the verifier chooses ` = dk/2e
random strings r1, . . . , r` and the ith message is then simply ri. Then after the last message,
the verifier applies a deterministic procedure to the transcript of the interaction to decide
about acceptance.

Clearly, public-coin protocols are a special case of interactive proofs, i.e. AM[k] ⊆ IP[k].
It can also be shown that AM[k] = AM[2] for all constant k. Because of this, we define
AM = AM[2].

Similarly, one can define the class MA of public coin interactive protocols where the prover
sends the first message. In this type of interaction, the verifier receives this message, makes
some random choices, and then applies a deterministic procedure to decide acceptance.

Note that the class AM is quite similar to Πp
2, where the first ∀-quantifiers are replaced by

probabilistic choices. See Figure 2.1.
Question: Are public-coin protocols strictly weaker than private-coin protocols?
Expectation: The protocol ofGNI crucially depends on private randomness, so “maybe yes”.
Answer : No.

2.10 Theorem (Goldwasser, Sipser, 1987) For k : N → N computable in polynomial time
it is true that

IP[k] ⊆ AM[k + 2].

The proof is rather involved, and we shall not discuss it here in detail. Instead, we shall
illustrate its main idea by sketching GNI ∈ AM[2].

2.11 Theorem GNI ∈ AM[2].

Themain strategy of the proof is as follows: letG1, G2 be two graphs onn vertices. Assume
first that both G1 and G2 have exactly n! equivalence classes: every permutation π ∈ Sn

yields different graphs π(G1) and π(G2). Define

S = {H | H ' G1 ∨H ' G2 }.
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Then
if G1 ' G2, then |S| = n!

if G1 6' G2, then |S| = 2n!

}
(2.2)

Thus, to decide whetherG1 6' G2, the prover needs to convince the verifier that |S| = 2n!.
We shall shortly see how this can be done.

In the general case, we cannot assume thatG1 andG2 have exactly n! equivalence classes.
To also handle this case, we recall that an automorphism of a graphG is a permutation π ∈ Sn

such that G = π(G). Denote with Aut(G) the subgroup of Sn of all automorphism of G. If
we then change the definition of S to

S = { (H, π) | (H ' G1 ∨H ' G2) ∧ π ∈ Aut(H) },

then (2.2) still holds true (Exercise!).
We now want to describe a protocol in which the prover can convince the verifier that a

certain set S has cardinality 2n! instead of n!. For this we assume that S is known to both the
prover and the verifier, in the sense that membership in S can be certified easily: if x ∈ S,
the prover can provide a certificate to the verifier to this effect.

In the following we shall describe what is called the set lower-bound protocol that allows
the prover to certify the approximate size of S to the verifier.

Let K = |S|. The prover can compute this value and announce it to the verifier. The
problem is then to convince the verifier about the correctness of this claim. For this, the set
lower-bound protocol makes the verifier accept with high probability ifK = |S|, and makes
the verifier reject with high probability if |S| ≤ K/2.

Before describing the protocol in detail, let us first introduce a technical notion.

2.12 Definition Let Hn,k be a set of functions from { 0, 1 }n to { 0, 1 }k. We say that Hn,k

is a set of pairwise independent hash-functions if for all x, x′ ∈ { 0, 1 }n, x 6= x′, and y, y′ ∈
{ 0, 1 }k we have

Pr(h(x) = y ∧ h(x′) = y′) = 2−2k,

where h ∈ Hn,k is chosen uniformly at random. ♦

Clearly, Hn,k is pairwise independent iff when fixing two distinct string x, x′ ∈ { 0, 1 }n
the random variable

h 7→ (h(x), h(x′))

is uniformly distributed on { 0, 1 }k × { 0, 1 }k.
It can be shown that sets of efficiently computable pairwise-independent hash-functions

exist for all k, n ∈ N \ { 0 } (see exercises).
We are now ready to describe the set lower-bound protocol.

2.13 Protocol (Set Lower-Bound Protocol) Let S ⊆ { 0, 1 }n such that membership in S
can be efficiently verified with high probability. LetK ∈ N and assume that both the prover
and the verifier know K . The prover wants to convince the verifier that |S| ≥ K , and the
verifier should reject with high probability if |S| ≤ K/2.

Let k ∈ N such that 2k−2 < K ≤ 2k−1 and let Hn,k be a set of pairwise independent
hash-functions.
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1. The verifier chooses uniformly at random some h ∈ Hn,k and some y ∈ { 0, 1 }k and
sends both to the prover.

2. The prover finds x ∈ S such that h(x) = y. If such an x exists, it is sent to the verifier
together with a certificate that x ∈ S. Otherwise, an arbitrary x ∈ S is sent.

3. The verifier checks that h(x) = y and that the certificate for x ∈ S is valid. If this is
the case, the verifier accepts, and rejects otherwise. ♦

Let p = K/2k. If |S| ≤ K/2, then |h(S)| ≤ p/2 · 2k and thus the verifier will accept with
probability at most p/2. Conversely, if |S| ≥ K , we can show that the acceptance probabil-
ity is considerably larger than p/2. Using repetition, we can amplify these probabilities as
desired.2

2.14 Lemma Let S ⊆ { 0, 1 }n such that |S| ≤ 2k/2. Then

Pr(∃x ∈ S.h(x) = y) ≥ 3

4

|S|
2k

for randomly chosen y ∈ { 0, 1 }k and h ∈ Hn,k.

In particular, if |S| = K , then

Pr(∃x ∈ S.h(x) = y) ≥ 3

4
p.

Proof Let y ∈ { 0, 1 }∗. We shall show that

Pr(∃x ∈ S.h(x) = y) ≥ 3

4

|S|
2k
,

where h is chosen randomly.
Define for x ∈ S the event Ex by

Ex = {h ∈ Hn,k | h(x) = y }.

Then
Pr(∃x ∈ S.h(x) = y) = Pr(

⋃
x∈S

Ex) (2.3)

By the Inclusion-Exclusion Principle we obtain that this is at least∑
x∈S

Pr(Ex)−
1

2

∑
x,x′∈S
x 6=x′

Pr(Ex ∩ Ex′).

However, from pairwise independence we get Pr(Ex) = 2−k (exercise!) and Pr(Ex ∩Ex′) =
2−2k. Thus, (2.3) is at least

|S|
2k
− 1

2
· |S|

2

22k
=
|S|
2k
·
(
1− |S|

2k+1

)
≥ 3

4
· |S|
2k

as required. �
2The following lemma is Claim 8.13.1 in Sanjeev Arora and Boaz Barak: Computational Complexity: A Modern
Approach – Internet Draft, 2007, url: http://theory.cs.princeton.edu/complexity/book.pdf.
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Proof (Theorem 2.11, Sketch) The public-coin protocol for GNI now proceeds by repeating the
set lower-bound protocol for a certain number of steps. The verifier accepts if at least 5/8 ·
K/2k iterations succeed (note that 5/8 = (3/4+ 1/2)/2). Using Chernoff’s bound, it can be
shown that a fixed number of iterations is sufficient to reach completeness 2/3 and soundness
1/3. This shows GNI ∈ AM[`] for some constant `.

Finally, we can conduct all those repetitions in parallel and obtain GNI ∈ AM[2]. �

Note that the resulting public-coin protocol for GNI, in contrast to the private-coin pro-
tocol for GNI, does not have perfect completeness (i.e., completeness 1). However, it can be
shown that a public-coin protocol for set lower-bound with perfect completeness can be
constructed. Indeed, every private-coin protocol can be transformed into a public-coin pro-
tocol with perfect completeness and a similar number of rounds – even if it wasn’t perfectly
complete in the beginning!

2.4 IP = PSpace
It was long open whether there exists a meaningful characterization of IP in terms of known
complexity classes. What we have already seen is NP ⊆ IP ⊆ PSpace, and since we al-
ready know GNI ∈ IP it seems that the first inclusion is strict. There were also persuasive
arguments for the second inclusion to be strict, namely

• without randomization, IP = NP, and

• randomization does not seem to add more computational power; indeed, it is conjec-
tured that BPP = P.

Thus the following result came as a surprise when it was shown in 1990.

2.15 Theorem (Shamir, Lund, Fortnow, Karloff, Nisan, 1990) IP = PSpace.

For the proof, we shall show that TQBF has a public-coin protocol with perfect com-
pleteness. Before we do so, however, we shall show that another hard problem also has
polynomial-round interactive proof systems.

2.16 Theorem Let

#SATD := { 〈ϕ, k〉 | ϕ a 3CNF formula with exactly k satisfying assignments }.

Then #SATD ∈ IP.

Clearly SAT can be reduced to #SATD in polynomial time. An easy corollary of this result
is that coNP ⊆ IP. Furthermore, it is not hard to see that #SATD is complete for the class #P
of all counting problems of non-deterministic polynomial-time Turing machines (see next
chapter). Thus, all problems in #P are also contained in IP.

The interactive protocol we shall devise for #SATD will be an n-round protocol, where n
is the number of variables in ϕ. The main idea is to use a technique called arithmetization.
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Let ϕ be a 3CNF-formula and consider the field F2 of two elements. Letm be the number
of clauses in ϕ and denote with x1, . . . , xn the variables in ϕ. We can transform logical
connectives into polynomials over X1, . . . , Xn by means of a mapping τ as follows:

τ(xi) = Xi,

τ(¬ψ) = (1− τ(ψ)),
τ(ψ1 ∧ ψ2) = τ(ψ1) · τ(ψ2),

where ψ, ψ1, ψ2 are Boolean formulas. In particular (and up to equivalence),

τ(ψ1 ∨ ψ2 ∨ ψ3) = 1− (1− τ(ψ1))(1− τ(ψ2))(1− τ(ψ3)).

Denote with PC(X1, . . . , Xn) the polynomial τ(C) of the clause C of ϕ. Then PC depends
on at most three variables. Thus, the polynomial

Pϕ(X1, . . . , Xn) :=
∏

C clause of ϕ

PC(X1, . . . , Xn)

is a polynomial of degree at most 3m. Note that we represent Pϕ as this product without
expanding the individual factors. In this way, Pϕ has a representation of size O(m).

Each satisfying assignment of ϕ is an assignment of the variables X1, . . . , Xn to values
b1, . . . , bn such that Pϕ(b1, . . . , bn) = 1. Conversely, if an assignment for the variables
x1, . . . , xn does not satisfy ϕ, then Pϕ(b1, . . . , bn) = 0. Indeed, the number #ϕ of satisfy-
ing assignment of ϕ is

#ϕ =
∑

b1∈{ 0,1 }

· · ·
∑

bn∈{ 0,1 }

Pϕ(b1, . . . , bn).

In order to show #SATD ∈ IP, it thus suffices to show that there is an interactive proof
system deciding whether a given polynomial has exactly k non-roots over F2.

Let us consider the problem from a more abstract point of view. Let g(X1, . . . , Xn) be a
polynomial of degree d that can be evaluated in polynomial time in the number of variables.
Let k ∈ { 0, . . . , 2n }. We want to find an interactive proof for the fact that

k =
∑

b1∈{ 0,1 }

· · ·
∑

bn∈{ 0,1 }

g(b1, . . . , bn). (2.4)

Choose p ∈ { 2n+1, . . . , 22n } prime. Then (2.4) is true if and only if it is true in Fp. Thus,
from now on, we shall perform all our computations in Fp.

To describe the protocol, we introduce another univariate polynomial h(X) by

h(X) :=
∑

b2∈{ 0,1 }

· · ·
∑

bn∈{ 0,1 }

g(X, b2, . . . , bn).

Note that (2.4) is true if and only if h(1) + h(0) = k. The following protocol makes use of
this idea to provide the desired interactive proof system.
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2.17 Protocol (Sum-Check Protocol) Let g(X1, . . . , Xn) be a polynomial of degree d that
can be evaluated in polynomial time, and let k ∈ N. Assume both the prover and the verifier
have agreed on some prime number p ∈ { 2n + 1, . . . , 22n }.

1. The verifier does the following:

• If n = 1, check whether g(0) + g(1) = k. If so, accept, otherwise reject.

• If n > 1, ask the prover to send h(X).

2. The prover sends some polynomial s(X) of degree at most d.

3. The verifier checks if s(0) + s(1) = k, and rejects if this is not true. Otherwise, the
verifier picks a ∈ Fp uniformly at random. It then recursively asks the verifier to proof

s(a) =
∑

b2∈{ 0,1 }

· · ·
∑

bn∈{ 0,1 }

g(a, b2, . . . , bn). ♦

It is clear that if (2.4) is true, the prover can make the verifier accept. In the case (2.4) does
not hold, we have the following result.

2.18 Proposition Let V be the verifier as described in the Sum-Check Protocol. If (2.4) is
not true, then V rejects with probability at least

(
1− d

p

)n

.

Proof We prove the claim by induction over n. The base case n = 1 is clear: V checks the
claim directly and rejects with probability 1.

For the case n > 1, if the prover returns the correct polynomial h in the first step, then
h(0)+h(1) 6= k and the verifier rejects again with probability 1. Thus assume that the prover
returns some polynomial s(X) 6= h(X). Since s(X)− h(X) has degree at most d, there are
at most d elements a in Fp such that s(a) = h(a). Thus, the probability to choose a ∈ Fp

such that s(a) 6= h(a) is at least 1− d
p
. In this case, the prover is left with showing the false

claim s(a) = h(a). By induction hypothesis, this prove is rejected with probability at least(
1− d

p

)n−1

. Thus, the probability that the verifier rejects is at least

(
1− d

p

)
·
(
1− d

p

)n−1

=

(
1− d

p

)n

. �

From the Sum-Check Protocol we can take some inspiration to show the main claim of
this section, namely that TQBF has interactive proofs.

2.19 Theorem TQBF ∈ IP.

Proof We showcase the proof using the formula

Ψ = ∀x1∃x2∀x3 . . . ∃xn.ϕ(x1, . . . , xn)
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(the general proof works in the same way, but with substantially more notational overhead).
Let us extend out arithmetization approach to Ψ by defining

τ(∀Xi.p(X1, . . . , Xn)) = p(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn)

· p(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn),

τ(∃Xi.p(X1, . . . , Xn)) = p(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn)

+ p(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn).

Then the problem of deciding whether Ψ is satisfiable amounts to showing that

τ(Ψ) =
∏

b1∈{ 0,1 }

∑
b2∈{ 0,1 }

∏
b3∈{ 0,1 }

· · ·
∑

bn∈{ 0,1 }

Pϕ(b1, . . . , bn) 6= 0. (2.5)

A first idea would be to use the Sum-Check Protocol and for each ∀ check s(0) · s(1) = k
instead. However, the problem with this approach is that the polynomial h as defined before
may have exponentially large degree. Then, the prover could not send the polynomial to the
verifier in polynomial time.

To solve this issue, we observe that we only evaluate the polynomials for values in x ∈
{ 0, 1 }, and then the overall degree does not matter, because xk = x. In this way, we can turn
each polynomial p(X1, . . . , Xn) into a polynomial q(X1, . . . , Xn) such that each variable has
degree at most one, such that

p(x1, . . . , xn) = q(x1, . . . , xn)

for all x1, . . . , xn ∈ { 0, 1 }.
To achieve this transformation, we introduce the following linearization operators LXi:

LXi.p(X1, . . . , Xn) = Xi · p(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn)

+ (1−Xi) · p(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn).

Then LXi.p is linear in Xi and agrees with p for all choices of Xi in { 0, 1 }. In particular,

LX1.LX2. . . . LXn.p(X1, . . . , Xn)

is a linear polynomial that agrees with p on all points in { 0, 1 }n. Thus (2.5) is equivalent to

∀X1.LX1.∃X2.LX1.LX2. . . . ∃Xn.LX1 . . . LXn.Pϕ(X1, . . . , Xn) 6= 0 (2.6)

The size of this expression is polynomial in n.
We now describe a recursive interactive protocol to check (2.6). Suppose for this that we

are given a polynomial
U(X1, . . . , X`) = Tg(X1, . . . , Xk),

where T ∈ {∃Xi,∀Xi, LXi | 1 ≤ i ≤ n }. The prover wants to convince the verifier that

U(a1, . . . , a`) = C ′

for some given number C ′ and a1, . . . , a` ∈ { 0, 1 }. For this they interact as follows:
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• if T = ∃Xi, then the verifier asks the prover to provide a polynomial s(Xi) that is
supposed to be g(a1, . . . , Xi, . . . , ak). The verifier checks if s(0) + s(1) = C ′ and
rejects if not. Otherwise, the verifier picks uniformly at random some a ∈ Fp and asks
the prover to show s(a) = g(a1, . . . , ai−1, a, ai+1, . . . , ak).

• if T = ∀Xi, then the verifier proceeds in the same way, but checks s(0) · s(1) = C ′

instead.

• ifT = LXi, the verifier asks the prover to send some polynomial s(Xi) that is supposed
to be g(a1, . . . , Xi, . . . , ak). The verifier checks that U is linear inXi and that ais(1)+
(1 − ai)s(0) = C ′, and rejects if this fails. Otherwise, it picks some a ∈ Fp and asks
the prover to show s(a) = g(a1, . . . , ai−1, a, ai+1, . . . , ak).

The correctness of this protocol is shown as in the case of the Sum-Check Protocol, but
this time the induction is over the number of operators. More precisely, assuming that this
protocol can convince the verifier of g(a1, . . . , ak) = k1 with completeness 1 and soundness
ε, it is easy to see that the verifier can be convinced of U(a1, . . . , a`) = k2 with completeness
1 and soundness at most ε+ d

p
. �

An interesting curiosity that immediately follows from IP = PSpace is the following result.

2.20 Corollary If PSpace ⊆ P/poly, then PSpace = MA.

Proof If PSpace ⊆ P/poly, we can replace the prover by a circuit family (Cn | n ∈ N)
of polynomial size. This can be done because the computational power of the prover is ef-
fectively bounded above by PSpace. In an MA protocol for TQBF, for inputs of length n
the first (and only) thing the prover does is to provide the verifier with the circuit Cn. From
then on, the verifier can interact with the circuit as described in the interactive protocol for
TQBF. Therefore, no more interaction between the prover and the verifier is necessary.

Note that if the circuit provided by the prover is notCn, then the correctness of the protocol
for TQBF still ensures that the result of the verifier interacting with this other circuit leads
to a correct result. �

Another curiosity of IP = PSpace is that it is a natural counterexample to the random
oracle hypothesis3: call an oracle O random if for every new input x it tosses a fair coin to
decide whether x ∈ O or not. Then the random oracle hypothesis asserts that if C1 and C2
are “acceptable” complexity classes, then CO1 = CO2 with probability 1 for random oracles O
if and only if C1 = C2.

The validity of the random oracle hypothesis would immediately imply P 6= NP, because it
has been shown that PO ( NPO with probability 1 for random oracles O. However, it turns
out that the random oracle hypothesis is not true, and an “acceptable” counterexample are
the classes IP and PSpace: IP = PSpace, but for random oracles O we have IPO ( PSpaceO
with probability one.4

3Charles Bennett and John Gill: “Relative to a Random Oracle A, P != NP != co-NP with Probability 1”, in:
SIAM Journal of Computation 10 (1 1981), pp. 96–113.

4Richard Chang et al.: “The Random Oracle Hypothesis is False”, in: Journal of Computer and System Sciences
49 (1 1994), pp. 24–39.

31



2.5 Outlook: Multi-Prover Systems
It is possible to extend the notion of interactive proofs to protocolswithmore than one prover.
The class of all languages decidable by multi-prover interactive proofs is call MIP. The main
point about having more than one prover is that these provers are not allowed to commu-
nicate during the interaction with the verifier. They are allowed, though, to communicate
before the interaction starts, for example to agree on a common answering strategy.

The analogy here is a police interrogation of two (or more) criminals in separate rooms:
although the criminals may agree on a common strategy in before, a thorough interrogation
will eventually reveal inconsistencies in their answers.

Indeed, having multiple provers allows the verifier to force non-adaptivity of her queries:
to make sure the answer to some query q to one prover does not depend on the answers of
the previous queries to the same prover, the verifier can just send q to the other prover and
check whether its answer coincides with the one of the first prover.

It turns out that having just another prover is already enough: it can be shown that having
polynomially many provers is as good as having just two. Furthermore, elaborating on the
technique of forcing non-adaptivity, it is possible to give a characterization of MIP similar to
the one of IP.

2.21 Theorem MIP = NExpTime.
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3 Counting Complexity
In some cases, instead of seeking to answer whether some solution for a given problem exists,
it is more important to know what the number of solutions is. The corresponding notion of
a counting problem as well as its complexity theoretic investigation are the topics of the last
part of this lecture.1

3.1 Counting problems and the class #P
3.1 Example Let G be a graph with nodes { 1, . . . , n }. We want to consider the graph
reliability problem: assuming that each edge of G can fail with probability 1/2, what is the
probability that there still exists a path from 1 to n?

Clearly, under this failure assumption each subgraph on all n nodes is equally likely to
occur. Thus, the probability that a path from 1 to n exists is given by

1

2|E| ·
(
number of subgraphs of G containing a path from 1 to n

)
. ♦

In general, we can consider counting versions of classical decision problems:

#SAT: compute for some given propositional formula ϕ the number of satisfying assign-
ments.

#Cycle: given a directed graph G, count the number of simple cycles in G.

Clearly, #SAT and #Cycle are at least as difficult as their corresponding decision versions.
In the case of SAT this immediately implies that #SAT is hard. On the other hand, finding
a simple cycle in a directed graph can be done easily (in linear time) and thus #Cycle could
also be an easy problem. Surprisingly, this is not the case.

3.2 Theorem If #Cycle ∈ FP, then P = NP.

This shows that counting version for some easy decision problems can be hard. On the
other hand, not all counting versions of decision problems are of this form. For example,
counting spanning trees of arbitrary graphs can be done in polynomial time, c.f. Kirchhoff’s
Theorem.

1This part is based on Christos H. Papadimitriou: Computational Complexity, Addison-Wesley, 1995, Chap-
ter 18, Sanjeev Arora and Boaz Barak: Computational Complexity AModern Approach, Cambridge University
Press, 2009, Chapter 17, and Sanjeev Arora and Boaz Barak: Computational Complexity: A Modern Approach
– Internet Draft, 2007, url: http://theory.cs.princeton.edu/complexity/book.pdf, Chapter 9.
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u

1 2 3

…

…
m− 1 m

v

Figure 3.1: Edge from u to v in G′

Proof Suppose #Cycle ∈ FP, i.e., counting the number of simple cycles in a directed graph can
be done in deterministic polynomial time. We shall show that in this caseDirectedHamiltonianCycle
can be solved in polynomial time as well, implying P = NP.

LetG be a directed graphwith n nodes. We shall construct another graphG′ of polynomial
size such that G has a Hamiltonian cycle if and only if G′ has at least nn2 simple cycles.

Let (u, v) be some edge in G. The corresponding edge in G′ is shown in Figure 3.1, where
m = dn log2 ne. Then each simple cycle in G of length ` corresponds to (2m)` simple cycles
in G′.

Thus, if G has a Hamiltonian cycle, then G′ has at least

(2m)n = (2n logn)n = (2lognn

)n = (nn)n = nn2

many cycles. Conversely, if G does not have a Hamiltonian cycle, then the longest cycle in
G has length at most n− 1. Hence there are at most

(2m)n−1 · nn−1 = nn(n−1) · nn−1 = n(n+1)(n−1) = nn2−1

many cycles in G′. This concludes the proof. �

The goal of our investigation now is to distinguish between easy and hard counting prob-
lems. For this we introduce a new complexity class.

3.3 Definition Let I ⊆ Σ∗ and let R ⊆ Σ∗ × Σ∗ be a binary relation. The counting problem
associatedwith (I, R) is: given x ∈ I , what is the number of elements y such that (x, y) ∈ R?
We write #R(x) for this number. The set of all counting problems associated with polynomi-
ally balanced polynomially decidable binary relations is called #P (pronounced “number P ”
or “sharp P ”). ♦

If clear from the context, we shall omit the explicit reference to the set I of instances of a
counting problem (I, R). Examples for problems in #P are #SAT, #Cycle, graph reliability,
counting spanning trees, and counting the number of Hamiltonian paths.

Indeed, another way of looking at #P is as the set of counting problems associated to
decision problems in NP. From this we immediately obtain that a problem R is in #P if and
only if there exists a non-deterministic polynomial-time Turing machineM such that

#R(x) = number of accepting paths ofM on input x.
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The main question now is whether all problems in #P can be solved in polynomial time,
i.e., whether #P ⊆ FP. Here we interpret counting problems (I, R) as computation problems
of the form

R′ = { (x, #R(x)) | x ∈ I }.

Clearly, R′ is a polynomially balanced binary relation.
As always, the question #P ⊆ FP is open. Indeed, since computing the number of certifi-

cates is at least as hard as checking the existence of one certificate, #P ⊆ FP readily implies
P = NP. However, it is unknown whether the converse is also true. What is clear is that
P = PSpace implies #P ⊆ FP, because counting the number of polynomially long certificates
can be done in polynomial space.

We thus do not completely understand which impact the relationship between P and NP
has on the relationship between #P and FP. But for another class very akin to NP more can
be said.

Recall that the class PP consists of all languages for which a polynomial-time probabilistic
Turing machine can guess more often right than wrong. Put more formally, L ∈ PP if
and only if there exists some polynomial-time deterministic Turing machine M and some
polynomial p such that

x ∈ L ⇐⇒
∣∣{ y ∈ { 0, 1 }p(|x|) | (x, y) ∈ L(M) }

∣∣ ≥ 1

2
· 2p(|x|). (3.1)

Intuitively, PP corresponds to computing the most significant bit of the result of some #P-
problem. We can put this idea into use by showing the following result (recall NP ⊆ PP ⊆
PSpace).

3.4 Theorem P = PP if and only if #P ⊆ FP.

Proof If #P ⊆ FP, we can compute the right-hand value in (3.1) in polynomial time. This
immediately implies P = PP.

Suppose conversely that P = PP. Let (I, R) ∈ #P and let p be a polynomial such that
(x, y) ∈ R implies |y| < p(|x|). Then 0 ≤ #R(x) < 2p(|x|) for all x ∈ I . We shall construct a
polynomial-time probabilistic Turing machine KN,R for each N ∈ { 0, . . . , 2p(|x|) } such that

#KN,R
(x) = N + #R(x),

where
#KN,R

(x) :=
∣∣{ y ∈ { 0, 1 }p(|x|)+1 | (x, y) ∈ L(KN,R) }

∣∣
Since P = PP, we can compute in polynomial time whether

N + #R(x) = #KN,R
(x) ≥ 1

2
· 2p(|x|)+1 = 2p(|x|),

and using binary search we can thus compute in polynomial time the value N ′ such that
N ′ + #R(x) = 2p(|x|). In particular, the value #R(x) = 2p(|x|) − N ′ can be computed in
polynomial time.

Now, obtaining the machine KN,R is not very difficult:
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KN,R(x, y0y1 . . . yp(|x|))→
if y0 = 0 then

if [y1y2 . . . yp(|x|)]2 < N then
accept

else
reject

else
return (x, y1y2 . . . yp(|x|)) ∈ R

Clearly, KN,R runs in polynomial time and #KN,R
(x) = N + #R(x) as required. �

The class #P cannot be put directly into relation with other classical complexity classes,
because it does not consist of decision problems. However, there is a famous result that re-
lates the polynomial hierarchy to decision problems solvable in polynomial time with oracle
access to #P.

3.5 Theorem (Toda, 1989) PH ⊆ P#P.

The proof is quite long and involved, and contains interesting applications of ideas not
discussed in this lecture. For example, in the proof a complexity class ⊕P (“parity-P ”) is
introduced that consists of all counting problems for which it can be determined in polyno-
mial time whether the number of solutions is even. In other words, for the counting problems
in ⊕P the last bit of the solution can be computed in polynomial time. This class naturally
complements the class PP as the class of counting problems for which the first bit of the
solution can be computed in polynomial time.

3.2 #P-completeness and Valiant’s Theorem
We have again the usual situation: while some problems in #P seem to be computationally
hard (like #SAT), we are not able to show they cannot be solved in polynomial time. We
therefore apply our usual idea of completeness to #P to be able to at least identify the “most
complicated” problems in #P.

For this approach to make sense, we first need to specify the reduction to use. Since count-
ing problems are very akin to function problems, we just adapt the corresponding reduction
notion.

3.6 Definition Let A and B be two counting problems. A reduction from A to B is a pair
(f, g) of logspace-computable functions such that

#A(x) = g(#B(f(x)))

for all x ∈ I . A problem (I, R) ∈ #P is called complete for #P if for all S ∈ #P there exists a
reduction from S to R. ♦

Reductions between function problems can easily be obtained from special kinds of poly-
time reductions between decisions problems.
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3.7 Definition Let L1, L2 ∈ NP be represented as

L1 = {x ∈ Σ∗ | ∃y.|y| ≤ p1(|x|) ∧ (x, y) ∈ L(K1) }
L2 = {x ∈ Σ∗ | ∃y.|y| ≤ p2(|x|) ∧ (x, y) ∈ L(K2) }

for polynomials p1, p2 and deterministic Turing machines K1,K2. A polytime reduction f
fromL1 toL2 is called parsimonious if for all x ∈ Σ∗ the number of y such that (x, y) ∈ L(K1)
is equal to the number of y′ such that (f(x), y′) ∈ L(K2). ♦

Parsimonious reductions turn up very frequently in proofs of NP-completeness. Indeed,
when showing NP-completeness for various classical problems, usually (actually: almost
always) parsimonious reductions are employed. In particular, the reduction from the proof
of the Cook-Levin Theorem from the halting problem of non-deterministic polytime Turing
machines to satisfiability of propositional formulas is parsimonious. Using this fact, one can
easily obtain the following result.

3.8 Theorem #SAT is #P-complete.

Note that instead of requiring for parsimonious reductions the number of certificates to
be the same, it is also sufficient to require the number of certificates for each instance x of
L1 is easily computable from the number of certificates of the instance f(x) of L2.

Because of the plenitude of parsimonious reductions, many counting problems corre-
sponding to NP-complete decision problems are naturally #P-complete. However, there are
also #P-complete problems that arise as counting variants of problems that are actually in P.
A prominent example for this is finding perfect matchings in bipartite graphs. The resulting
counting problem is to compute the permanent of binary matrices, i.e., matrices that only
contain entries 0 or 1.

Let G = (V,E) be an undirected graph. Recall that G is called bipartite if there exist
disjoint U1, U2 6= ∅ such that U1 ∪ U2 = V and E ⊆ {{ u1, u2 } | u1 ∈ U1, u2 ∈ U2 }. If G is
bipartite, we shall also denote it by G = (U1, U2, E).

A matching in the graph G is a subset M ⊆ E such that each two distinct edges in M
are disjoint. The matching M is called perfect if every node in V occurs in some (and thus
exactly one) edge in M ; in other words,

⋃
M = V . Computing some perfect matching of

G, if it exists, can be done in polynomial time. For counting perfect matchings, however, no
fast algorithm is known.

Perfect matchings in G can be characterized algebraically. Let |U1| = |U2| = n and let
U1 = {u1, . . . , un }, U2 = { v1, . . . , vn }. Define the n× n-matrix AG ∈ { 0, 1 }n×n by

AG(i, j) :=

{
1 if {ui, vj } ∈ E,
0 otherwise.

A perfect matchingM inG then correspond to a bijective mapping σ from U1 to U2 by virtue
of σ(ui) = vj if {ui, vj } ∈ E. Such a mapping σ can be considered as a permutation σ ∈ Sn

by defining σ(i) = j. In this case,
n∏

i=1

AG(i, σ(i)) = 1.
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Conversely, if some τ ∈ Sn does not define a perfect matching in the way just described,
then

n∏
i=1

AG(i, τ(i)) = 0.

Thus, the number of perfect matchings in G is precisely∑
σ∈Sn

n∏
i=1

AG(i, σ(i)) = permAG.

Note the similarity of permAG to the determinant of AG:

detAG :=
∑
σ∈Sn

sgn(σ) ·
n∏

i=1

AG(i, σ(i)).

In other words, the determinant of AG differs in the occurrence of the extra factor sgn(σ)
in the sum. This change, appearing negligible, has severe consequences: the determinant
can be computed in polynomial time, while computing the permanent is a problem that is
#P-complete.

Permanents of binary matrices allow for an alternative graph-theoretic interpretation in
terms of cycle covers. For this let us consider the matrix AG as the adjacency matrix of a
graph G′ on n vertices {w1, . . . , wn }. Then {wi, wj } ∈ E if and only if AG(i, j) = 1. A
cycle cover in G′ is a set of node-disjoint cycles that cover all nodes. It is easy to see that
a perfect matching in G corresponds to a cycle cover in G′ and vice versa. Consequently,
perm(AG) is the number of cycle covers in G′.

Let us illustrate this correspondence by means of a small example. We leave the formal
description as an exercise.

3.9 Example Let us consider the following bipartite graph G and the perfect matching
marked by the red edges

The matrix AG of this graph is (up to simultaneous reordering of the rows and columns)

AG =


1 0 1 1
0 1 0 1
1 0 1 1
0 0 1 0


and the graph G′ as described before is
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and the cycle cover corresponding to the perfect matching in G is again marked by red
edges. ♦

It is not hard to see that this correspondence can be generalized to bipartite multigraphs
with weighted edges, where the weights are taken from Z. Let G be such a graph. Define
the matrix AG to have at position (i, j) the sum of the weights of the edges from vi to wj ,
and let G′ be the edge-weighted graph with AG as adjacency matrix. Define the weight of a
cycle cover in G′ to be the product of the weights of the edges contained in this cycle cover.
Then the permanent perm(AG) is just the sum of the weights of the cycle covers in G′.

(Note: the graph does not need to be a proper multigraph: two edges between nodes v and
w can be replaced by one edge with weight the sum of the weights of the original edges.)

We are now ready to prove the main result of this section.

3.10 Theorem (Valiant, 1979) Computing the permanent of a binarymatrix is #P-complete.

The proof consists of two steps.

3.11 Proposition For each 3CNF-formula ϕ there exists a matrix A ∈ {−1, 0, 1, 2, 3 }n×n

such that
perm(A) = 4m · #ϕ,

where m is the number of literals in ϕ. Furthermore, the matrix A can be computed in
logarithmic space.

3.12 Proposition For each matrix A ∈ Zn×n with entries in {−1, 0, 1, 2, 3 } there exists a
binary matrix B and a number N ∈ N such that

perm(A) = perm(B) mod N,

where to modulo operator uses representatives in {−n!, . . . , n! }. Both the matrixB and the
number N can be computed in logarithmic space.

Proof (Theorem 3.10) We reduce #SAT to computing the permanent of 0-1-matrices. Let ϕ
be a 3CNF-formula with m literals. By Proposition 3.11 there exists a matrix A such that
perm(A) = 4m ·#ϕ. Furthermore, all entries inA are in {−1, 0, 1, 2, 3 }. By Proposition 3.12
there exists a matrix B and some N ∈ N such that perm(A) = perm(B) mod N , and B has
only entries 0 or 1.

We nowdefine the reduction (f, g) from #SAT to computing the permanent of 0-1-matrices
as follows:

f(ϕ) = B, g(s) = (s mod N)/4m.
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Then f and g are computable in logarithmic space. Furthermore,

g(perm(f(ϕ))) = g(perm(B))

= (perm(B) mod N)/4m

= perm(A)/4m

= #ϕ · 4m/4m

= #ϕ

and the proof is complete. �

Before we are going to prove Proposition 3.11, let us first consider an example.

3.13 Example Let us consider the graph H consisting of these two subgraphs

G
+1

−1

+1

−1

+1

−1

Then each cycle cover of H consists of a cycle cover of G and one cycle cover in the smaller
graph. In particular, for each cycle cover of G of weight w, there exists exactly two cycle
covers of G′ of weights w and −w. Thus, the sum of all cycle covers of G′ is zero, and thus
perm(AH) = 0 for AH being the adjacency matrix of H . ♦

For what follows, we shall adopt the following convention: all graphs are complete graphs
with weighted edges. Edges not shown have weights 0, and edges without labels have weight
1.

Proof (Proposition 3.11) Let ϕ be a 3CNF-formula with n variables and ` clauses. We shall
construct the graphG such that there are two types of cycle covers: those that correspond to
satisfying assignments of ϕ and those that don’t. For the latter, we shall use the trick of the
previous example to ensure that these do not add to the permanent of (the adjacency matrix
of) G.

We first introduce the following two types of gadgets.
Variable gadget : for each variable occurring in ϕ we introduce the following subgraph:

…

…

← “true” nodes

← “false” nodes

`+ 1 nodes
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This subgraph has exactly two cycle covers: one for setting the variable to true (using the
upper cycle) and one for setting it to false (using the lower cycle).

Variable gadgets have two types of edges: internal edges (depicted as solid lines) and ex-
ternal edges (depicted as dashed lines). The internal edges will not be connected to any other
gadget. The external edges will be connected to clause gadgets (to be introduced shortly)
corresponding to whether the variable appears positively or negatively in that clause.

We shall depict variable gadgets schematically as follows:
…

…

Clause gadget : for each clause in ϕ introduce the following subgraph:

Again, the external edges (shown as dashed edges) are the only ones that are connected to
other edges. We shall depict the clause gadget schematically by

The crucial property of the clause gadget is now the following: all cycle covers of this
subgraph have to omit at least one external edge. Furthermore, for each proper subset A of
the set of external edges, there exists exactly one cycle cover in this subgraph that traverses
all the edges in A and omits all other external edges.

The idea of the proof is now as follows. Suppose we have a means to express that in a
cycle cover of a graphH, exactly one of two edges (u, u′) and (v, v′) is used. More precisely,
we want to ensure that all other cycle covers (either using both these edges or none) do not
add to the final count of the overall weight of all cycle covers. This will be done by ensuring
that these covers contribute an overall weight of zero.

Let us express the fact that of the edges (u, u′) and (v, v′) exactly one is used schematically
as follows:

⊕

Let us call this gadget XOR-gadget.
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Using this new gadget, we transform the formula ϕ into the following graph Gϕ: for each
clause C in ϕ we identify each variable x occurring in C with an external edge of the corre-
sponding clause gadget of C . We then connect the external edge of the clause gadget of C
with an unused external edge of the variable gadget of x using the XOR gadget. We choose
a “true” external edge of the variable gadget of x if x appears positively in C , and a “false”
external edge otherwise.

For example, the clause C = (x1 ∨ ¬x2 ∨ x3) is transformed into the following graph GC :

C

x1

x3

x2

⊕

⊕

⊕

To count the cycle covers of GC (or, equivalently, to compute the permanent of its adjacency
matrix) it is sufficient to count only those cycle covers that respect the XOR gadgets. All such
cycle covers traverse the clause gadget forC and thus omit at least one external edge. Setting
the variable corresponding to this omitted edge to the value given by the connection to the
variable gadget yields a satisfying assignment of C . Conversely, each satisfying assignment
of C corresponds to exactly one cycle cover in GC that respects the XOR gadgets.

It can be seen easily that if more than one clause is given the overall construction of the
variable gadgets will ensure that each cycle cover assigns exactly one value to each variable.
Furthermore, some literal in each clause is assigned true. Therefore, each cycle cover of Gϕ
corresponds one-to-one to a satisfying assignment of ϕ.

We shall now show how to implement the XOR gadget. In the resulting construction, all
cycle covers that do not obey this gadget will sum up to a weight of zero. All other cycle
covers, however, will be multiplied by a constant factor of 4. Therefore, the resulting graph
will have a permanent of 4m · #ϕ, since allm XOR gadgets need to be traversed.

XOR gadget : suppose we are given two edges (u, u′) and (v, v′) in a graphH and we want
to ensure that all cycle covers that contribute to the final permanent contain exactly one of
them. For this we replace the two edges by the following gadget.

⊕
u

v′

u′

v
 

u

v′

u′

v

-1
-1

-1

2
3
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This gadget has the following remarkable property: if this gadget is embedded into the
original graphH instead of the two edges (u, u′), (v, v′) to obtain a new graphH′, then each
cycle cover inH of weight w that uses exactly one of the original two edges results in a cycle
cover inH′ of weight 4w. Moreover, every other cycle cover inH results in a cycle cover in
H′ of weight zero.

We can illustrate this as follows: suppose we represent the “rest ofH” by a single node g.
Then the graphH looks as follows:

g

a

b

c

d-1
-1

-1

2
3

D =


0 1 −1 −1
1 −1 1 1
0 1 1 2
0 1 3 0



The matrix D denotes the adjacency matrix ofH with the node g deleted.
Then
• the permanent ofH is 8;

• a weight of 4 comes from traversing edges (g, d) and (a, g): if we delete the first row
(corresponding to node a) and the last column (node d) of D, then the permanent of
the resulting matrix is 4;

• a weight of 4 comes from traversing edges (d, g) and (g, a): deleting the first column
and last row of D results in a permanent of 4;

• all other cycle covers contribute weight 0:
– using the loop at g results in a cycle cover of weight zero, because perm(D) = 0;
– using the cycles (a, g), (g, a) or (g, d), (d, g) results in a permanent of zero.

Therefore, the proposed gadget is as required and the proof is finished. �

Proof (Proposition 3.12) Let us represent thematrixA as an edge-labeled directed graph. Each
edge labeled with 2 or 3 can be replace by the following subgraphs:

 

 

2

3
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It is easy to see that the permanent of A is invariant under these replacements. Because of
this we can assume without loss of generality that A has only entries from {−1, 0, 1 }. In
this case, perm(A) ∈ {−n!, . . . , n! }. Therefore,

perm(A) = perm(A) mod N

for all N > n!.
Let N = 2n

2
+ 1; then N > n!. Calculating modulo N , we can replace the weights −1 by

2n
2 . Those weights can in turn be replaced by unit edges as follows.

 

…

2n
2 n2 cycles

Let B be the adjacency matrix of the resulting graph. This matrix can be computed in poly-
nomial time in the size of the original matrix A. Moreover,

perm(A) = perm(B) mod N,

and the proof is done. �
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