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Abstract. Horn-SHZQ has been identified as a fragment of the description logic
SHIQ for which inferencing is in Pie with respect to the size of the ABox.
This enables reasoning with larger ABoxes in situationsrevtiee TBox is static,
and represents one approach towards tractable descripgimreasoning.

In this paper, we show that reasoning in H®®#{7Q, in spite of its low data-
complexity, is &pTme-hard with respect to the overall size of the knowledge
base. While this result is not unexpected, the proof is noeeenmodification

of existing reductions since it has to account for the restms of Hornness.
We establish the result for HorALE, showing that Hornness does not simplify
TBox reasoning even for very restricted description logMereover, we derive

a context-free grammar that defines H&#£7Q in a simpler and more intuitive
way than existing characterisations.

1 Introduction

The development of description logics (DLs) has been dotadthhy the desire to ob-
tain powerful yet decidable formalisms for specifying knedge. High complexity of

reasoning was considered inevitable for obtaining praliyiaziseful logics, and highly

efficient algorithms were developed to still solve arising oz@sg problems. Accord-

ingly, the DL-based flavour®WL Liteand OWL DL of the Web Ontology Language
[1] are already krTime- and NEprTiMe-complete, respectively.

However, reasoning in those expressive logics remainadtable, and even mod-
ern, optimised algorithms are of limited scalability. This triggered the renewed in-
vestigation of description logics with tractable inferemqmroblems, and various such
fragments have been proposetypically, these logics aim at low complexity of rea-
soning with respect to the size of the entire knowledge btmedo-calleccombined
complexity, as in the case d.L** [2] and DL-Lite [3], which are both polynomial in
this sense. Alternatively, one can consider the complexity respect to the number of
simple assertions within the knowledge base, which is atewk as thelata complex-
ity. This has led to the investigation of HoS#*7Q as an expressive fragment of the
description logicSH 7 Q [4] that is known to be of polynomial data complexity [5].

Horn-SHIQ supports all logical operators $H7Q but syntactically restricts
their use in various ways. This leads to the aforementioneddata complexity, but
it also results in a rather involved description of the syntahich merely supplies a
criterion for verifying Hornness of some given knowledgsdzeExtending prior results

! See httg/owl-workshop.man.ac.yKractable.html for an overview.



Table 1.Concept constructors i8H 7 Q. Semantics refers to an interpretatibmvith domaind.

Name Syntax|Semantics
top T D

bottom 1 0

negation -C D\ C
conjunction CnD [CfnDf
disjunction Cub |[cfuD?

univ. restriction [YRC [{xe D | (x,y) € Rf impliesy € C’}

exist. restriction IRC [{x € D | for somey € D, (x,y) € Rf andy € C’}
qualified numbeik NnRC|{xe D | #y e D| (xy) € R andy € C'} < n}
restriction >nRClixe D|#ye D|(xYy) € R andy e C?} > n}

for Horn-ALCHIQ [6], we offer a new constructive definition describing the syntax
of Horn-SH 7Q with a simple context-free grammar.

But the main open problem that we address is the questioméocdambined com-
plexity of Horn description logics. SinG8H 7Q is in ExeTive [7], the same holds for
Horn-SHZQ, but it is not known whether this upper bound is tight. Weleéktis ques-
tion by showing that even small fragments of H&®# 7 Q are ExeTime-hard, and thus
demonstrate that Hornness often does not simplify the cexitglof TBox reasoning.
The presented complexity proof is not a mere corollary aftaxg results, but employs a
novel, self-contained reduction of the halting problemgolynomially space-bounded
alternating Turing machines. This makes it a simple alt@éredor showing known
ExpTimve-hardness results for logics likdLC or 8L with functional roles.

After a short introduction to the relevant description xgin Sect. 2, we present
a simple description of Hor$H 7 Q and other Horn-DLs in Sect. 3. Our main results
regarding the kpTime-complexity of Horn-DLs are shown in Sect. 4. In Sect. 5, we
discuss our results and open questions for future research.

2 Preliminaries

We briefly repeat some basic definitions of DLs and introdugenotation.

Definition 1. A knowledge base of the description logi#¢{7Q is based on a setir
of role namesa setN¢ of concept names&nd a selN, of individual namesThe set of
SHIQ (abstract) roless NrU {R™ | R € Nr}, and we seinv(R) = R~ andInv(R™) = R.
In the following, we leave this vocabulary implicit and assuthat A, B are concept
names, a, b are individual names, and R, S are abstract roles.

A SHI1Q knowledge base consists of three finite sets of axioms thae#erred to
asRBox, TBox, andABox. A SHIQ RBox may contain axioms of the formcSR iff
it also containdnv(R) C Inv(S), and axioms of the forrirans(R) iff it also contains
Trans(Inv(R)). ByC* we denote the reflexive-transitive closurgoA role R istransitive
whenever there is arole S such tHans(S), RC* S and SC* R. R issimpleif it has
no transitive subroles, i.e., if §* R implies that S is not transitive. Roles that are not
simple are also calledomplex



Table 2. Definition of clos(X8B). NNF(C) denotes the negation normal form of some con€ept
For details see [8].

If C E D € KB, thenNNF(-C L D) € clos(KB),

If C(a) € K8, thenNNF(C) € clos(KB),

If C € clos(K8B) andD is a subconcept a&, thenD € clos(XB),

If <nRC e clos(KX8), thenNNF(=C) € clos(XB),

If VR.C € clos(KB), S C* R, and Trans$) € KB, then¥YS.C € clos(KB).

A SHI1Q TBox consists of axioms of the formC D, where C and D areon-
cept expressionsonstructed from concept names by the operators shown ile Tal
SHIQ ABox consists of axioms of the forney —A(a), R(a, b), =S(a, b), a = b, and
a# b, where S is a simple role.

The above definition is fairly standard, with some minor gtmms. First, we allow
for negated simple role assertions within ABoxes. This isvikn to not make the logic
more complex or even undecidable, see [8] for some disausSiecond, we restrict
ABox concept statements to possibly negated atomic cosc€pir ABoxes thus are
extensionally reducedbut it is known that this does not restrict the expressioftihe
logic since complex ABox statements can easily be movedimd@Box by introducing
auxiliary concept names. Third, we do not explicitly comsidonceptole equivalence
=, since it can be modelled via mutual congegt inclusions.

We adhere to the common model-theoretic semanticS¥é7 Q with general con-
cept inclusion, which we will not repeat here (see, e.g.f¢8etails). Table 1 recalls
the semantics of concept operatorsSik{ 7 Q.

We will consider various fragments &fH 7 Q below. ASH ZQ knowledge base is
in ALCHIQ if it contains no transitivity axioms. It is iFLE if the RBox is empty
and onlyY, 3, N, andT are used within the TBox. The fragment@&af& withoutd (V)
is called7Ly (EL).

3 A simple description of Horn-SHIQ

The data complexity of a description logic inference taskéscomplexity of inferenc-
ing with respect to the size of its (extensionally reduceBpA. In [5], Horn-SHIQ
was introduced as a particular fragment of the descriptigitlSH 7 Q that is distin-
guished by its low PiMe data complexityWhile the exposition in [5] involved various
recursively defined auxiliary functions, we present a sengkfinition that extends the
definition of HorncALCHIQ given in [6].

The original definition of HornSH 7Q involves a preprocessing step for eliminat-
ing transitivity axioms by transforming$/+ 7 Q knowledge base into an equisatisfiable
ALCHIQknowledge base. For showing that our following definitiotoin-SHIZQ
is correct, we first briefly repeat this transformation pahoe.

For a SHIQ knowledge basé(8B, a set of concept termdos(K8B) is defined
recursively as shown in Table 2. N8 is transformed into ari LCH 7 Q knowledge
baseQ(KB) by



— eliminating all transitivity axioms TranS{, and by
— adding the axionYR.C C VS.(VS.C), for every concep?R.C € clos(X'8) and role
S, such thatS C* Rand Transg) € K8.

It was shown in [8] thatK'B is satisfiableff Q(KB) is satisfiable. A similar reduc-
tion was already introduced in [7, Chapter 6], but we focushentransformation used
for defining HornSH 7 Q. Based on the prior definition of Hot£LCH I Q, a Horn-
SHIQ knowledge base in [5] was defined aS8&{ 7 Q knowledge bas& 8 for which
Q(KB) is in Horn<ALCHI Q. We are now ready to provide a simpler formulation.

Proposition 1. We say that aSHZQ axiom CC D is Hornif the concept expression
—-C u D has the fornC] as defined by the context-free grammar in Table 3.

A SHIQ knowledge base with an extensionally reduced ABox is in 8/ Q
iff all of its TBox axioms are Horn.

Proof. In [6] it was already shown that a knowledge base is in HBHCH 7 Q iff its
TBox consists ofALCH I Q-axioms that are Horn in the above sense. Here we only
show that the components with complex roles account for tititianal axioms that
can be constructed in Hoil8#{7Q. This is achieved by analysing the axioms that are
introduced by the above transformation. Indeed, axiomiefarmvYR.C C VS.(VS.C)
might fail to be Horn since they correspond to expressi@iRs-C LI YS.(VS.C). The
latter are generally not Horn, since disjunctionsdh must have the fornC{ L CJ.
SincedR.~C cannot be of the fornC{, this requires tha¥S.(vS.C) is in C{. But this

can only be the case € is in Cj as well. 3R—-C in this case also is iI€], since

C, € C; andC{ c C7. This can be shown by an easy induction over the structure of
C, which we omit here (the base cas@isthe mutual dependency betwe€h andC;

is not problematic during the induction steps).

We thus have described the axioms that can be introduceduwtifitoblems during
transitivity elimination. A closer look at the eliminatigmocedure reveals that the intro-
duction of axioms depends on the existence of formulae dfiame YR.C € clos(KB),
whereR has a transitive subrole, i.R is not simple. We must ensure thatis in Cf
in this case. The last two lines of Table 2 obviously cannadally contribute to the
inclusion of formulae/R.C in clos(KX'8) (unless another problematic axiom is already
present). Moreover, since we restrict to extensionallyiced ABoxes, the second line
is not relevant either. Consequently, a formiRC is in clos(KX8) iff it is a subconcept
of the negation normal form of some concej@ LI E with D C E € K'8.

Now consider &H 7 Q knowledge bas&'8 which has a TBox in HorrALCHIQ
when ignoring any transitivity axioms. From the above cdasations we conclud&’8
isin HornSHIQift, for every TBox axionD C E, every non-simple rol&, and every
subconcep?R.C of NNF(-D LI E), we find thatC is in C§. For subconcepts of positive
polarity, this is exactly captured by the distinction beew&S.C] andVR.C{ in the
definition of C}. Subconcepts of the for@; have negative polarity in the constructed
axiom, so the dual descriptiod$.C; and3R.C, characterise the required restrictions.
Clearly, no further restrictions are required, and the ginestrictions cannot be relaxed
without introducing non-Horn axioms during the eliminatiprocedure. O

The advantage of the above definition, besides its simplasid brevity, is that it
provides a local criterion for checking Hornness by invgeging the structure of single



Table 3. A grammar for defining HorrSHIQ. A, R, andS denote the sets of all concept names,
role names, and simple role names, respectively. The peggeEnis slightly simplified by ex-
ploiting associativity and commutativity of andv, and by omitting>1 R.C if AR.C is present.
The grammar for HortA LCH IQ [6] is obtained for the special case that all roles are simple

Ci == T|L|-C{ICinC|CsuC]|3IRC]|VSC]|VYR.CH|2nR.C]|<1R.C;|A
Cl == T|L1|-C]|C,nC]|CIuC]|3SC]|IRC,|VYR.C]|22R.C; | <nR.C] |A
Cy u= T|L1]-Cy|CinCyICLuUC]|VR.CE

Co == T|L]|-C{IC,NC, |CouCy|IRC A

axioms. The original definition hides this locality by redgion a transitivity elimina-
tion procedure that operates on the whole knowledge bas@addjet the definition of
Proposition 1 to characterise the Horn-version of fragmehtSH 7Q, such as Horn-
FLE, as well. Note that Hor®dH 7Q includes all of€ L, i.e. HornEL is justEL.

4 Complexity of Horn-SHIQ

To show that HornSHZQ is ExpTiMe-complete, note that inclusion inxETve is ob-

vious since it is a fragment a$HZQ which is also in EpTive [7]. To show hard-
ness of the satisfiability problem, we show that even the lemixthgment HornF£L&

is ExpTmve-hard. We establish a polynomial reduction of reasonindis bgic to the
halting problem of polynomially space-bounded alterrgfinring machines.

4.1 Alternating Turing machines
Definition 2. Analternating Turing machin@ATM) M is a tuple(Q, 2, 4, go) where

— Q= U U E is the disjoint union of a finite set afiversal stateb) and a finite set
of existential statek,

— 2'is a finitealphabethat includes a@lanksymbola,

—4C(Qx2)x(QxXx{l,r}) is atransition relationand

— (o € Qs theinitial state

A (universgkxistential)configurationof M is a worda € 2*QX* (2*UX*/2*EX"). A
configuratione’ is a successoof a configurationy if one of the following holds:

1. a =wWQqooW, @ =wWo'q oW, and(q, o, d, 07, ) € 4,
2. a =wWQgo, @ =wo’'qo, and(q, o, q,0”,r) € 4,
3. @ =WoGoWw, @’ = wiq'oio’'W, and(qg, o, q', 07, 1) € 4,

where ge Q ando, o, oy, o € X as well as ww, € 2*. Given some natural number s,
the possibléransitions in space are defined by additionally requiring thiat| < s+ 1.

The set ofaccepting configurationis the least set which satisfies the following
conditions. A configuration is acceptingff

— «ais a universal configuration and all its successor configiamras are accepting, or



— a is an existential configuration and at least one of its suseesonfigurations is
accepting.

Note that universal configurations without any successers play the role of accept-
ing final configurations, and thus form the basis for the retwe definition above.

M acceptsa given word we 2* (in space s)ff the configuration gw is accepting
(when restricting to transitions in space s).

This definition is inspired by the complexity classes NP amdN®, which are char-
acterised by non-deterministic Turing machines that acaegnput if either at least
one or all possible runs lead to an accepting state. An ATMswétch between these
two modes and indeed turns out to be more powerful than clsEiring machines of
either kind. In particular, ATMs can solvexeTiMe problems in polynomial space [9].

Definition 3. Alanguage L is accepted by a polynomially space-boundedifTivkre
is a polynomial p such that, for every wordev2™, w € L iff w is accepted in space

p(Iw).

Fact 1. The complexity clas8PSeace of languages accepted by polynomially space-
bounded ATMs coincides with the complexity clBssT ME.

We thus can showeTmve-hardness of Hor&H 7Q by polynomially reducing the
halting problem of ATMs with a polynomially bounded storegpace to inferencing in
Horn-SHIQ. In the following, we exclusively deal with polynomially ape-bounded
ATMs, and so we omit additions such as “in spatwhen clear from the context.

4.2 Simulating ATMs in Horn-¥L£E

In the following, we consider a fixed ATM denoted as in Definition 2, and a polyno-
mial p that defines a bound for the required space. For any woed>™, we construct
a Horn¥ZLE& knowledge bas& »(,v and show that acceptancewby the ATM M can
be decided by inferencing over this knowledge base.

In detail, Ky depends oM and p(wl), and has an empty ABokAcceptance of
w by the ATM is reduced to checking concept subsumption, whaeeof the involved
concepts directly depends on Intuitively, the elements of an interpretation domain of
Kumw represent possible configurations™f encoded by the following concept names:

— Aqforgqe Q: the ATM is in staten,

— Hifori=0,..., p(w) - 1: the ATM is at positioni on the storage tape,

— Cyj with o € X andi = 0,..., p(w|]) — 1: positioni on the storage tape contains
symbolo,

— A: the ATM accepts this configuration.

This approach is pretty standard, and it is not too hard toraatise a successor
relation S and appropriate acceptance conditionsALC (see, e.g., [10]). But this
reduction is not applicable in Hor89{7Q, and it is not trivial to modify it accordingly.

2 The RBox is empty fofLE anyway.



Table 4. Knowledge bas& ,,, simulating a polynomially space-bounded ATM. The rules are
instantiated for alt, g €Q, 0,0’ €ZX, i, j€{0,..., p(w]) — 1}, andé € 4.

(1) Leftand right transition rules:
A HNCyj E 3Ss.(Ay MHi.aMCyrj) Withd = (9,00 ,07,1),i < p(w) - 1
A HNC, T 3S5.(Ay NHi-1MCyj) withd =(g,0,9,07,1),i >0

(2) Memory: (3) Existential acceptance:
HimC,i C VS;Chi i#] Aqn3S;, AC A forallge E
(4) Universal acceptance:
AqmHiNCy N[5i(3Ss.A)E A geU,xefr|i<p(w)-211u{l|i>0}

Ad={(qoq,0, X € 4)

One problem that we encounter is that the acceptance conditiexitential states
is a (non-Horn) disjunction over possible successor cordigpns. To overcome this,
we encode individual transitions by using a distinguishectessor relation for each
translation in4. This allows us to explicitly state which conditions mustichéor a
particular successor without requiring disjunction. Hee facceptance condition, we
use a recursive formulation as employed in Definition 2. lis thay, acceptance is
propagated backwards from the final accepting configuration

In the case ofALC, acceptance of the ATM is reduced to concept satisfiability,
i.e. one checks whether an accepting initial configuratam exist. This requires that
acceptance is faithfully propagated to successor staidbas any model of the initial
concept encodes a valid traces of the ATM. Axiomatising teguires many exclusive
disjunctions, such as “The ATM always iséxactlyone of its statesl;.” Since it is not
clear how to model this in a Horn-DL, we take a dual approagtitcing acceptance to
concept subsumption, we require the initial state to begouoginall possible models.
We therefore may focus on the task of propagating propedissiccessor configura-
tions, while not taking care of disallowing additional staients to hold. Our encoding
ensures that, whenever the inital configuration is not aougpthere is at least one
“minimal” model that reflects this.

After this informal introduction, consider the knowledgaskK(w given in Ta-
ble 4. The roles;, § € 4, describe a configuration’s successors using the traoisidti
The initial configuration for wordv is described by the concept expressign

lw=Ag MHoMCryomM...MCsy 1 w-1 M Cop M ... 1 Cpq pgwi)-1,
where o denotes the symbol at théh position ofw. We will show that checking
whether the initial configuration is accepting is equivalencheking whethet, C A
follows from K »(w. The following is obvious from the characterisation giveTable 3.

Lemma 1. Ky and |, T A are in HorngLE.

Next we need to investigate the relationship between el&srdran interpretation
that satisfies 51w and configurations oM. Given an interpretatiodi of Ky, we say
that an elemen of the domain off represents configurationr; ...oi_1qoj . ..o if
ec Af,ee H/, and, foreveryj € {0,..., p(W) - 1}, e€ Cij whenever

j <mando = o or j > mando = 0.



Note that we do not require uniqueness of the above, so thiaglke £lement might
in fact represent more than one configuration. As we will sdevy, this does notféect
our results. Ife represents a configuration as above, we will also sayethas state,
positioni, symbolo; at positionj etc.

Lemma 2. Consider some interpretatioh that satisfies K. If some element e df
represents a configuratiom and some transitiod is applicable toe, then e has an
Sg-successor that represents the (unique) result of applyiogr.

Proof. Consider an elemet statea, and transitiors as in the claim. Then one of the
axioms (1) applies, anelmust also have aﬁg—successor. This successor represents the
correct state, position, and symbol at positiaf e, again by the axioms (1). By axiom
(2), symbols at all other positions are also represented lﬁg’asuccessors o O

Lemma 3. A word w is accepted by iff |, C A is a consequence ofyiy.

Proof. Consider an arbitrary interpretatidnthat satisfied< . We first show that, if
any elemene of I represents an accepting configuratigihene € AZ.

We use an inductive argument along the recursive definitiacoeptance. & is
a universal configuration then all successora @fre accepting, too. By Lemma 2, for
anyds-successott’ of a there is a correspondir@—successoe’ of e. By the induction
hypothesis for’, € isin A”. Since this holds for ali-successors af, axiom (4) implies
e e Al. Especially, this argument covers the base case whbiges no successors.

If @ is an existential configuration, then there is some accgptisuccesson’ of
a. Again by Lemma 2, there is a$1§—successoef of ethat represents’, ande’ € A?
by the induction hypothesis. Hence axiom (3) applies anol@#cludes € AL,

Since all elements i, represent the initial configuration of the ATM, this shows
thatl c AZ whenever the initial configuration is accepting.

It remains to show the converse: if the initial configuratismot accepting, there
is some interpretatiod such thatil, ¢ A’. To this end, we define a canonical inter-
pretationM of Ky, as follows. The domain dl is the set of all configurations o¥1
that have sizep((wj) + 1 (i.e. that encode a tape of lengttiw|), possibly with trailing
blanks). The interpretations for the concepts Hi, andC,; are defined as expected
so that every configuration represents itself but no othafigoration. Especiallyl
is the singleton set containing the initial configurationed two configurations and
«’, and a transitiod, we define &, a’) € S(’,Y' iff there is a transitiod from o to /. AM
is defined to be the set of accepting configurations.

By checking the individual axioms of Table 4, it is easy to$eg#M satisfieK (.
Now if the initial configuration is not accepting)! ¢ AM by construction. Thus is a
counterexample foly, C A which thus is not a logical consequence. O

We can summarise our results as follows.
Theorem 1. Checking concept subsumption in HoRA:E is ExeTime-complete.

Proof. Inclusion is obvious as HorfiZ& is a fragment ofALC, which is in ExpTiME.
Regarding hardness, Lemma 3 shows that the word problemofgnmially space-
bounded ATMs can be reduced to checking concept subsuniptiofn . By Lemma 1,



Kmw is in Horn¥ZLE. The reduction is polynomially bounded due to the restdicte
number of axioms: there are at mosk2Q| x p(w]) x |X| x |4| axioms of type (1),

p(wi)? x |21 x |4] of type (2),1QI x |21 of type (3), andQ| x p(jwl) x |Z] of type (4). O

It is worth to discuss this result. The logfeLy which admits onlyT, r, andV is
known to be kpTiMe-complete already [2]. Since we additionally ukeét might appear
that Theorem 1 is trivial. However, the condition of Hornmesverely restricts the use
of ¥, and indeed we conjecture that Hofi¥y actually is in P.

On the other hand, checking concept subsumption in theigéserlogicE.L which
allows T, M, and3d is in P [11]. This shows that the axioms (2) in Table 4 are yeall
necessary. Without them, inferencing for this knowledgeeb&ould merely be polyno-
mial 3 This observation makes the axioms (2) particularly intémggor further study.
Especially, we obtain the following corollary.

Theorem 2. Let E£5! denote& £ extended with number restrictions of the forhR. T.
Horn-££=! is ExeTiMe-complete.

Proof. Indeed, we can replace the axioms (2) in Table 4 with theiafig statements:

TLC<1S;.T Hj MCyiMASs. T E3Ss.Cri 1 # ]
It is easy to see that this formulation allows us to estaldisbsult as in Lemma 2,
which is the only place where the original axioms (2) had breguired. O

ExpTmve-completeness af £=! was shown in [2], but the above theorem sharpens
this result to the Horn case, and provides a more direct pidedorems 1 and 2 thus
can be viewed as sharpenings of the hardness results orsiextenfE L.

5 Discussion and outlook

We have provided simple, self-contained characterisatdioth the syntax and com-
plexity of Horn-SHIQ, and we believe that both contribute to an improved under-
standing of Horn-fragments in description logics. Our hssshow that, in spite of its
positive dfect on data complexity, Hornness in many cases cannot atéethie high
complexity of TBox reasoning.

The direct proofs of our results yield further insights nelyag the source of the
arising complexity. Existential role restrictions gerigrhave the potential to increase
the size of the admissible models beyond the number of éftpligven individuals. But
as&L illustrates, existential restrictions alone do noffiee to enforce an exponential
number of additional individuals. Indeed, for elementsdduced by existential restric-
tions, one can only conclude logical properties that areatly imposed by the axiom
introducing the new element. In contrast, successor elesagising in the above proofs
represent arbitrary combinations of certain logical prtapse (e.g. tape configurations)
without having an axiom for each such combination.

The key is that multiple axioms candependentlpropagate properties to the same
successor element, and in this way enable an exponentidieuof combinations of

3 This also holds for instance classification and satisfighbdhecking which are decided by
checking concept subsumtiondL**, which is still tractable [2].



such properties. In Theorem 1, independent propagatiarhieeed by universal quan-
tification. In Theorem 2, restricting the number of overatsessors allows us to com-
bine properties within one successor. We conjecture tlainterplay between existen-
tial and universghumber restrictions is still needed, and that H&tAy is in P.

Another question is whether unqualified existential restns3.T still increase
complexity, i.e. whether Horg=£™ [12] is ExeTime-hard or not. A positive answer
would subsume both the above Theorem 1 and a similar resutt.Oms presented in
[12, Theorem 3.27]. Sincé&l L provides atomic negation and universal restrictions, but
only unqualified existential restrictions, none of the tweults implies the other and it
is not obvious how to adjust either of the proofs accordingly

Finally, though most extensions 8f£** increase the complexity [2], it is still con-
ceivable that this can be prevented in some cases by resirict Horn-logic. A first
candidate for this investigation would be Hofa=%/, which adds (Horn) disjunctions
to EL. In general, we think that further research in Horn DLs cantigbute to the
development of practically meaningful inferencing thadtifl tractable.
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