
Artificial Intelligence, Computational Logic

PROBLEM SOLVING AND SEARCH
IN ARTIFICIAL INTELLIGENCE

Lecture 5 Answer-Set Programming Motivation and
Introduction∗

slides adapted from Torsten Schaub [Gebser et al.(2012)]

Sarah Gaggl

Dresden, 19th May 2015



Agenda
1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction (CSP)
7 Structural Decomposition Techniques (Tree/Hypertree Decompositions)
8 Evolutionary Algorithms/ Genetic Algorithms

TU Dresden, 19th May 2015 PSSAI slide 2 of 142



Outline
1 Motivation

– Declarative Problem Solving
– ASP in a Nutshell
– ASP Paradigm

2 Introduction
– Syntax
– Semantics
– Examples
– Language Constructs
– Modeling

TU Dresden, 19th May 2015 PSSAI slide 3 of 142



Informatics

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

TU Dresden, 19th May 2015 PSSAI slide 4 of 142



Informatics

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

TU Dresden, 19th May 2015 PSSAI slide 5 of 142



Traditional programming

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

TU Dresden, 19th May 2015 PSSAI slide 6 of 142



Traditional programming

“What is the problem?” versus “How to solve the problem?”

Problem

Program

Solution

Output
?

-

6

Programming Interpreting

Executing

TU Dresden, 19th May 2015 PSSAI slide 7 of 142



Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Interpreting

TU Dresden, 19th May 2015 PSSAI slide 8 of 142



Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Representation

Solution

Output
?

-

6

Modeling Interpreting

Solving

TU Dresden, 19th May 2015 PSSAI slide 9 of 142



Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Representation

Solution

Output
?

-

6

Modeling Interpreting

Solving

TU Dresden, 19th May 2015 PSSAI slide 10 of 142



Answer Set Programming
in a Nutshell

• ASP is an approach to declarative problem solving, combining
– a rich yet simple modeling language
– with high-performance solving capacities

• ASP has its roots in
– (deductive) databases
– logic programming (with negation)
– (logic-based) knowledge representation and (nonmonotonic)

reasoning
– constraint solving (in particular, SATisfiability testing)

• ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

• ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

• ASP embraces many emerging application areas

TU Dresden, 19th May 2015 PSSAI slide 11 of 142



Answer Set Programming
in a Nutshell

• ASP is an approach to declarative problem solving, combining
– a rich yet simple modeling language
– with high-performance solving capacities

• ASP has its roots in
– (deductive) databases
– logic programming (with negation)
– (logic-based) knowledge representation and (nonmonotonic)

reasoning
– constraint solving (in particular, SATisfiability testing)

• ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

• ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

• ASP embraces many emerging application areas

TU Dresden, 19th May 2015 PSSAI slide 12 of 142



Answer Set Programming
in a Nutshell

• ASP is an approach to declarative problem solving, combining
– a rich yet simple modeling language
– with high-performance solving capacities

• ASP has its roots in
– (deductive) databases
– logic programming (with negation)
– (logic-based) knowledge representation and (nonmonotonic)

reasoning
– constraint solving (in particular, SATisfiability testing)

• ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

• ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

• ASP embraces many emerging application areas

TU Dresden, 19th May 2015 PSSAI slide 13 of 142



Answer Set Programming
in a Nutshell

• ASP is an approach to declarative problem solving, combining
– a rich yet simple modeling language
– with high-performance solving capacities

• ASP has its roots in
– (deductive) databases
– logic programming (with negation)
– (logic-based) knowledge representation and (nonmonotonic)

reasoning
– constraint solving (in particular, SATisfiability testing)

• ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

• ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

• ASP embraces many emerging application areas

TU Dresden, 19th May 2015 PSSAI slide 14 of 142



Answer Set Programming
in a Nutshell

• ASP is an approach to declarative problem solving, combining
– a rich yet simple modeling language
– with high-performance solving capacities

• ASP has its roots in
– (deductive) databases
– logic programming (with negation)
– (logic-based) knowledge representation and (nonmonotonic)

reasoning
– constraint solving (in particular, SATisfiability testing)

• ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

• ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

• ASP embraces many emerging application areas

TU Dresden, 19th May 2015 PSSAI slide 15 of 142



Answer Set Programming
in a Hazelnutshell

• ASP is an approach to declarative problem solving, combining
– a rich yet simple modeling language
– with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

TU Dresden, 19th May 2015 PSSAI slide 16 of 142



Answer Set Programming
in a Hazelnutshell

• ASP is an approach to declarative problem solving, combining
– a rich yet simple modeling language
– with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

ASP = DB+LP+KR+SAT

TU Dresden, 19th May 2015 PSSAI slide 17 of 142



KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)
1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)
1 Provide a representation of the problem
2 A solution is given by a model of the representation

TU Dresden, 19th May 2015 PSSAI slide 18 of 142



KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)
1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)
1 Provide a representation of the problem
2 A solution is given by a model of the representation

TU Dresden, 19th May 2015 PSSAI slide 19 of 142



Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment
propositional horn theories smallest model
propositional theories models

SAT

propositional theories minimal models
propositional theories stable models
propositional programs minimal models
propositional programs supported models
propositional programs stable models
first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models
auto-epistemic theories expansions
default theories extensions

...
...

TU Dresden, 19th May 2015 PSSAI slide 20 of 142



Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment
propositional horn theories smallest model
propositional theories models

SAT

propositional theories minimal models
propositional theories stable models
propositional programs minimal models
propositional programs supported models
propositional programs stable models
first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models
auto-epistemic theories expansions
default theories extensions

...
...

TU Dresden, 19th May 2015 PSSAI slide 21 of 142



Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment
propositional horn theories smallest model
propositional theories models SAT
propositional theories minimal models
propositional theories stable models
propositional programs minimal models
propositional programs supported models
propositional programs stable models
first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models
auto-epistemic theories expansions
default theories extensions

...
...

TU Dresden, 19th May 2015 PSSAI slide 22 of 142



LP-style playing with blocks

Prolog program
on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries
?- above(a,c).
true.

?- above(c,a).
no.

TU Dresden, 19th May 2015 PSSAI slide 23 of 142



LP-style playing with blocks

Prolog program
on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries
?- above(a,c).
true.

?- above(c,a).
no.

TU Dresden, 19th May 2015 PSSAI slide 24 of 142



LP-style playing with blocks

Prolog program
on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries
?- above(a,c).
true.

?- above(c,a).
no.

TU Dresden, 19th May 2015 PSSAI slide 25 of 142



LP-style playing with blocks

Prolog program
on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries (testing entailment)
?- above(a,c).
true.

?- above(c,a).
no.

TU Dresden, 19th May 2015 PSSAI slide 26 of 142



LP-style playing with blocks

Shuffled Prolog program
on(a,b).
on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).
above(X,Y) :- on(X,Y).

Prolog queries
?- above(a,c).

Fatal Error: local stack overflow.

TU Dresden, 19th May 2015 PSSAI slide 27 of 142



LP-style playing with blocks

Shuffled Prolog program
on(a,b).
on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).
above(X,Y) :- on(X,Y).

Prolog queries
?- above(a,c).

Fatal Error: local stack overflow.

TU Dresden, 19th May 2015 PSSAI slide 28 of 142



LP-style playing with blocks

Shuffled Prolog program
on(a,b).
on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).
above(X,Y) :- on(X,Y).

Prolog queries (answered via fixed execution)
?- above(a,c).

Fatal Error: local stack overflow.

TU Dresden, 19th May 2015 PSSAI slide 29 of 142



SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X, Y)→ above(X, Y))
∧ (on(X, Z) ∧ above(Z, Y)→ above(X, Y))

Herbrand model
{

on(a, b), on(b, c), on(a, c), on(b, b),
above(a, b), above(b, c), above(a, c), above(b, b), above(c, b)

}

TU Dresden, 19th May 2015 PSSAI slide 30 of 142



SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X, Y)→ above(X, Y))
∧ (on(X, Z) ∧ above(Z, Y)→ above(X, Y))

Herbrand model
{

on(a, b), on(b, c), on(a, c), on(b, b),
above(a, b), above(b, c), above(a, c), above(b, b), above(c, b)

}

TU Dresden, 19th May 2015 PSSAI slide 31 of 142



SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X, Y)→ above(X, Y))
∧ (on(X, Z) ∧ above(Z, Y)→ above(X, Y))

Herbrand model (among 426!)
{

on(a, b), on(b, c), on(a, c), on(b, b),
above(a, b), above(b, c), above(a, c), above(b, b), above(c, b)

}

TU Dresden, 19th May 2015 PSSAI slide 32 of 142



SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X, Y)→ above(X, Y))
∧ (on(X, Z) ∧ above(Z, Y)→ above(X, Y))

Herbrand model (among 426!)
{

on(a, b), on(b, c), on(a, c), on(b, b),
above(a, b), above(b, c), above(a, c), above(b, b), above(c, b)

}

TU Dresden, 19th May 2015 PSSAI slide 33 of 142



SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X, Y)→ above(X, Y))
∧ (on(X, Z) ∧ above(Z, Y)→ above(X, Y))

Herbrand model (among 426!)
{

on(a, b), on(b, c), on(a, c), on(b, b),
above(a, b), above(b, c), above(a, c), above(b, b), above(c, b)

}

TU Dresden, 19th May 2015 PSSAI slide 34 of 142



KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)
1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)
1 Provide a representation of the problem
2 A solution is given by a model of the representation

TU Dresden, 19th May 2015 PSSAI slide 35 of 142



KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)
1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)
1 Provide a representation of the problem
2 A solution is given by a model of the representation

å Answer Set Programming (ASP)

TU Dresden, 19th May 2015 PSSAI slide 36 of 142



Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment
propositional horn theories smallest model
propositional theories models
propositional theories minimal models
propositional theories stable models
propositional programs minimal models
propositional programs supported models
propositional programs stable models
first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models
auto-epistemic theories expansions
default theories extensions

...
...

TU Dresden, 19th May 2015 PSSAI slide 37 of 142



Answer Set Programming at large

Representation Solution

constraint satisfaction problem assignment

propositional horn theories smallest model
propositional theories models
propositional theories minimal models
propositional theories stable models
propositional programs minimal models
propositional programs supported models
propositional programs stable models
first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models
auto-epistemic theories expansions
default theories extensions

...
...

TU Dresden, 19th May 2015 PSSAI slide 38 of 142



Answer Set Programming commonly

Representation Solution

constraint satisfaction problem assignment
propositional horn theories smallest model
propositional theories models
propositional theories minimal models

propositional theories stable models

propositional programs minimal models
propositional programs supported models

propositional programs stable models

first-order theories models
first-order theories minimal models

first-order theories stable models

first-order theories Herbrand models
auto-epistemic theories expansions
default theories extensions

...
...

TU Dresden, 19th May 2015 PSSAI slide 39 of 142



Answer Set Programming in practice

Representation Solution

constraint satisfaction problem assignment
propositional horn theories smallest model
propositional theories models
propositional theories minimal models
propositional theories stable models
propositional programs minimal models
propositional programs supported models

propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models
auto-epistemic theories expansions
default theories extensions

...
...

TU Dresden, 19th May 2015 PSSAI slide 40 of 142



Answer Set Programming in practice

Representation Solution

constraint satisfaction problem assignment
propositional horn theories smallest model
propositional theories models
propositional theories minimal models
propositional theories stable models
propositional programs minimal models
propositional programs supported models

propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models
auto-epistemic theories expansions
default theories extensions

first-order programs stable Herbrand models

TU Dresden, 19th May 2015 PSSAI slide 41 of 142



ASP-style playing with blocks

Logic program
on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) }

TU Dresden, 19th May 2015 PSSAI slide 42 of 142



ASP-style playing with blocks

Logic program
on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) }

TU Dresden, 19th May 2015 PSSAI slide 43 of 142



ASP-style playing with blocks

Logic program
on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model (and no others)

{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) }

TU Dresden, 19th May 2015 PSSAI slide 44 of 142



ASP-style playing with blocks

Logic program
on(a,b).
on(b,c).

above(X,Y) :- above(Z,Y), on(X,Z).
above(X,Y) :- on(X,Y).

Stable Herbrand model (and no others)

{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) }

TU Dresden, 19th May 2015 PSSAI slide 45 of 142



ASP versus LP

ASP Prolog

Model generation Query orientation
Bottom-up Top-down
Modeling language Programming language

Rule-based format
Instantiation Unification
Flat terms Nested terms

(Turing +) NP(NP) Turing

TU Dresden, 19th May 2015 PSSAI slide 46 of 142



ASP versus SAT

ASP SAT

Model generation
Bottom-up

Constructive Logic Classical Logic
Closed (and open) Open world reasoning

world reasoning
Modeling language —
Complex reasoning modes Satisfiability testing

Satisfiability Satisfiability
Enumeration/Projection —
Optimization —
Intersection/Union —

(Turing +) NP(NP) NP

TU Dresden, 19th May 2015 PSSAI slide 47 of 142



ASP solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

TU Dresden, 19th May 2015 PSSAI slide 48 of 142



SAT solving

Problem

Formula
(CNF) Solver Classical

Models

Solution

- -

?

6

Programming Interpreting

Solving

TU Dresden, 19th May 2015 PSSAI slide 49 of 142



Rooting ASP solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

TU Dresden, 19th May 2015 PSSAI slide 50 of 142



Rooting ASP solving

Problem

Logic
Program

LP

Grounder

DB

Solver

SAT

Stable
Models

DB+KR+LP

Solution

- - -

?

6

Modeling KR Interpreting

Solving

TU Dresden, 19th May 2015 PSSAI slide 51 of 142



Two sides of a coin

• ASP as High-level Language
– Express problem instance(s) as sets of facts
– Encode problem (class) as a set of rules
– Read off solutions from stable models of facts and rules

• ASP as Low-level Language
– Compile a problem into a logic program
– Solve the original problem by solving its compilation

TU Dresden, 19th May 2015 PSSAI slide 52 of 142



What is ASP good for?
• Combinatorial search problems in the realm of P, NP, and NPNP

(some with substantial amount of data), like

– Automated Planning
– Code Optimization
– Composition of Renaissance Music
– Database Integration
– Decision Support for NASA shuttle controllers
– Model Checking
– Product Configuration
– Robotics
– System Biology
– System Synthesis
– (industrial) Team-building
– and many many more

TU Dresden, 19th May 2015 PSSAI slide 53 of 142



What is ASP good for?
• Combinatorial search problems in the realm of P, NP, and NPNP

(some with substantial amount of data), like
– Automated Planning
– Code Optimization
– Composition of Renaissance Music
– Database Integration
– Decision Support for NASA shuttle controllers
– Model Checking
– Product Configuration
– Robotics
– System Biology
– System Synthesis
– (industrial) Team-building
– and many many more

TU Dresden, 19th May 2015 PSSAI slide 54 of 142



What does ASP offer?

• Integration of DB, KR, and SAT techniques

• Succinct, elaboration-tolerant problem representations
– Rapid application development tool

• Easy handling of dynamic, knowledge intensive applications
– including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SAT

TU Dresden, 19th May 2015 PSSAI slide 55 of 142



What does ASP offer?

• Integration of DB, KR, and SAT techniques

• Succinct, elaboration-tolerant problem representations
– Rapid application development tool

• Easy handling of dynamic, knowledge intensive applications
– including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SAT

TU Dresden, 19th May 2015 PSSAI slide 56 of 142



Agenda
1 Motivation

– Declarative Problem Solving
– ASP in a Nutshell
– ASP Paradigm

2 Introduction
– Syntax
– Semantics
– Examples
– Language Constructs
– Modeling

TU Dresden, 19th May 2015 PSSAI slide 57 of 142



Problem solving in ASP: Syntax

Problem

Logic Program

Solution

Stable Models

?
-

6

Modeling Interpreting

Solving

TU Dresden, 19th May 2015 PSSAI slide 58 of 142



Normal logic programs
• A (normal) logic program over a set A of atoms is a finite set of rules
• A (normal) rule, r, is of the form

a0 ← a1, . . . , am, not am+1, . . . , not an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

• Notation

head(r) = a0

body(r) = {a1, . . . , am, not am+1, . . . , not an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}

• A program is called positive if body(r)− = ∅ for all its rules

TU Dresden, 19th May 2015 PSSAI slide 59 of 142



Normal logic programs
• A (normal) logic program over a set A of atoms is a finite set of rules
• A (normal) rule, r, is of the form

a0 ← a1, . . . , am, not am+1, . . . , not an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

• Notation

head(r) = a0

body(r) = {a1, . . . , am, not am+1, . . . , not an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}

• A program is called positive if body(r)− = ∅ for all its rules

TU Dresden, 19th May 2015 PSSAI slide 60 of 142



Normal logic programs
• A (normal) logic program over a set A of atoms is a finite set of rules
• A (normal) rule, r, is of the form

a0 ← a1, . . . , am, not am+1, . . . , not an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

• Notation

head(r) = a0

body(r) = {a1, . . . , am, not am+1, . . . , not an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}

• A program is called positive if body(r)− = ∅ for all its rules

TU Dresden, 19th May 2015 PSSAI slide 61 of 142



Rough notational convention

We sometimes use the following notation interchangeably
in order to stress the respective view:

default classical
true, false if and or iff negation negation

source code :- , | not -
logic program ← , ; not ¬
formula ⊥,> → ∧ ∨ ↔ ∼ ¬

TU Dresden, 19th May 2015 PSSAI slide 62 of 142



Problem solving in ASP: Semantics

Problem

Logic Program

Solution

Stable Models

?
-

6

Modeling Interpreting

Solving

TU Dresden, 19th May 2015 PSSAI slide 63 of 142



Formal Definition
Stable models of positive programs

• A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

– X corresponds to a model of P (seen as a formula)

• The smallest set of atoms which is closed under a positive program P is
denoted by Cn(P)

– Cn(P) corresponds to the ⊆-smallest model of P (ditto)

• The set Cn(P) of atoms is the stable model of a positive program P

TU Dresden, 19th May 2015 PSSAI slide 64 of 142



Formal Definition
Stable models of positive programs

• A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

– X corresponds to a model of P (seen as a formula)

• The smallest set of atoms which is closed under a positive program P is
denoted by Cn(P)

– Cn(P) corresponds to the ⊆-smallest model of P (ditto)

• The set Cn(P) of atoms is the stable model of a positive program P

TU Dresden, 19th May 2015 PSSAI slide 65 of 142



Formal Definition
Stable models of positive programs

• A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

– X corresponds to a model of P (seen as a formula)

• The smallest set of atoms which is closed under a positive program P is
denoted by Cn(P)

– Cn(P) corresponds to the ⊆-smallest model of P (ditto)

• The set Cn(P) of atoms is the stable model of a positive program P

TU Dresden, 19th May 2015 PSSAI slide 66 of 142



Some “logical” remarks
• Positive rules are also referred to as definite clauses

– Definite clauses are disjunctions with exactly one positive atom:

a0 ∨ ¬a1 ∨ · · · ∨ ¬am

– A set of definite clauses has a (unique) smallest model

• Horn clauses are clauses with at most one positive atom
– Every definite clause is a Horn clause but not vice versa
– Non-definite Horn clauses can be regarded as integrity constraints

– A set of Horn clauses has a smallest model or none

• This smallest model is the intended semantics of such sets of clauses
– Given a positive program P, Cn(P) corresponds to the smallest

model of the set of definite clauses corresponding to P

TU Dresden, 19th May 2015 PSSAI slide 67 of 142



Some “logical” remarks
• Positive rules are also referred to as definite clauses

– Definite clauses are disjunctions with exactly one positive atom:

a0 ∨ ¬a1 ∨ · · · ∨ ¬am

– A set of definite clauses has a (unique) smallest model

• Horn clauses are clauses with at most one positive atom
– Every definite clause is a Horn clause but not vice versa
– Non-definite Horn clauses can be regarded as integrity constraints

– A set of Horn clauses has a smallest model or none

• This smallest model is the intended semantics of such sets of clauses
– Given a positive program P, Cn(P) corresponds to the smallest

model of the set of definite clauses corresponding to P

TU Dresden, 19th May 2015 PSSAI slide 68 of 142



Some “logical” remarks
• Positive rules are also referred to as definite clauses

– Definite clauses are disjunctions with exactly one positive atom:

a0 ∨ ¬a1 ∨ · · · ∨ ¬am

– A set of definite clauses has a (unique) smallest model

• Horn clauses are clauses with at most one positive atom
– Every definite clause is a Horn clause but not vice versa
– Non-definite Horn clauses can be regarded as integrity constraints

– A set of Horn clauses has a smallest model or none

• This smallest model is the intended semantics of such sets of clauses
– Given a positive program P, Cn(P) corresponds to the smallest

model of the set of definite clauses corresponding to P

TU Dresden, 19th May 2015 PSSAI slide 69 of 142



Basic idea
Consider the logical formula Φ and its three
(classical) models:

HH
HHH

HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r→ p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, not r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

TU Dresden, 19th May 2015 PSSAI slide 70 of 142



Basic idea
Consider the logical formula Φ and its three
(classical) models:

HH
HHH

HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r→ p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, not r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

TU Dresden, 19th May 2015 PSSAI slide 71 of 142



Basic idea
Consider the logical formula Φ and its three
(classical) models:

HH
HHH

HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r→ p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, not r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

TU Dresden, 19th May 2015 PSSAI slide 72 of 142



Basic idea
Consider the logical formula Φ and its three
(classical) models:

HH
HHH

HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r→ p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, not r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

TU Dresden, 19th May 2015 PSSAI slide 73 of 142



Basic idea
Consider the logical formula Φ and its three
(classical) models:

HH
HHH

HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r→ p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, not r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

TU Dresden, 19th May 2015 PSSAI slide 74 of 142



Basic idea
Consider the logical formula Φ and its three
(classical) models:

HH
HHH

HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r→ p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, not r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

TU Dresden, 19th May 2015 PSSAI slide 75 of 142



Basic idea
Consider the logical formula Φ and its three
(classical) models:

HH
HHH

HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r→ p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, not r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

TU Dresden, 19th May 2015 PSSAI slide 76 of 142



Basic idea

Consider the logical formula Φ and its three
(classical) models:

HH
HHH

HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r→ p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, not r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

TU Dresden, 19th May 2015 PSSAI slide 77 of 142



Formal Definition
Stable model of normal programs

• The Gelfond-Lifschitz Reduct[Gelfond and Lifschitz(1991)], PX , of a
program P relative to a set X of atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

• A set X of atoms is a stable model of a program P, if Cn(PX) = X

• Note: Cn(PX) is the ⊆–smallest (classical) model of PX

• Note: Every atom in X is justified by an “applying rule from P”

TU Dresden, 19th May 2015 PSSAI slide 78 of 142



Formal Definition
Stable model of normal programs

• The Gelfond-Lifschitz Reduct[Gelfond and Lifschitz(1991)], PX , of a
program P relative to a set X of atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

• A set X of atoms is a stable model of a program P, if Cn(PX) = X

• Note: Cn(PX) is the ⊆–smallest (classical) model of PX

• Note: Every atom in X is justified by an “applying rule from P”

TU Dresden, 19th May 2015 PSSAI slide 79 of 142



Formal Definition
Stable model of normal programs

• The Gelfond-Lifschitz Reduct[Gelfond and Lifschitz(1991)], PX , of a
program P relative to a set X of atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

• A set X of atoms is a stable model of a program P, if Cn(PX) = X

• Note: Cn(PX) is the ⊆–smallest (classical) model of PX

• Note: Every atom in X is justified by an “applying rule from P”

TU Dresden, 19th May 2015 PSSAI slide 80 of 142



A closer look at PX

• In other words, given a set X of atoms from P,

PX is obtained from P by deleting
1 each rule having not a in its body with a ∈ X

and then
2 all negative atoms of the form not a

in the bodies of the remaining rules

• Note: Only negative body literals are evaluated w.r.t. X

TU Dresden, 19th May 2015 PSSAI slide 81 of 142



A closer look at PX

• In other words, given a set X of atoms from P,

PX is obtained from P by deleting
1 each rule having not a in its body with a ∈ X

and then
2 all negative atoms of the form not a

in the bodies of the remaining rules

• Note: Only negative body literals are evaluated w.r.t. X

TU Dresden, 19th May 2015 PSSAI slide 82 of 142



A first example

P = {p← p, q← not p}

X

PX

Cn(PX)
∅

p ← p
q ←

{q} 8

{p}

p ← p ∅ 8

{q}

p ← p
q ←

{q} 4

{p, q}

p ← p ∅ 8

TU Dresden, 19th May 2015 PSSAI slide 83 of 142



A first example

P = {p← p, q← not p}

X

PX

Cn(PX)
∅

p ← p
q ←

{q} 8

{p}

p ← p ∅ 8

{q}

p ← p
q ←

{q} 4

{p, q}

p ← p ∅ 8

TU Dresden, 19th May 2015 PSSAI slide 84 of 142



A first example

P = {p← p, q← not p}

X PX Cn(PX)
∅ p ← p

q ←
{q}

8

{p} p ← p ∅

8

{q} p ← p
q ←

{q}

4

{p, q} p ← p ∅

8

TU Dresden, 19th May 2015 PSSAI slide 85 of 142



A first example

P = {p← p, q← not p}

X PX Cn(PX)
∅ p ← p

q ←
{q} 8

{p} p ← p ∅

8

{q} p ← p
q ←

{q}

4

{p, q} p ← p ∅

8

TU Dresden, 19th May 2015 PSSAI slide 86 of 142



A first example

P = {p← p, q← not p}

X PX Cn(PX)
∅ p ← p

q ←
{q} 8

{p} p ← p ∅ 8

{q} p ← p
q ←

{q}

4

{p, q} p ← p ∅

8

TU Dresden, 19th May 2015 PSSAI slide 87 of 142



A first example

P = {p← p, q← not p}

X PX Cn(PX)
∅ p ← p

q ←
{q} 8

{p} p ← p ∅ 8

{q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

8

TU Dresden, 19th May 2015 PSSAI slide 88 of 142



A first example

P = {p← p, q← not p}

X PX Cn(PX)
∅ p ← p

q ←
{q} 8

{p} p ← p ∅ 8

{q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

TU Dresden, 19th May 2015 PSSAI slide 89 of 142



A second example

P = {p← not q, q← not p}

X PX Cn(PX)
∅ p ←

q ←
{p, q}

8

{p} p ← {p}

4

{q}
q ←

{q}

4

{p, q} ∅

8

TU Dresden, 19th May 2015 PSSAI slide 90 of 142



A second example

P = {p← not q, q← not p}

X PX Cn(PX)
∅ p ←

q ←
{p, q}

8

{p} p ← {p}

4

{q}
q ←

{q}

4

{p, q} ∅

8

TU Dresden, 19th May 2015 PSSAI slide 91 of 142



A second example

P = {p← not q, q← not p}

X PX Cn(PX)
∅ p ←

q ←
{p, q} 8

{p} p ← {p}

4

{q}
q ←

{q}

4

{p, q} ∅

8

TU Dresden, 19th May 2015 PSSAI slide 92 of 142



A second example

P = {p← not q, q← not p}

X PX Cn(PX)
∅ p ←

q ←
{p, q} 8

{p} p ← {p} 4

{q}
q ←

{q}

4

{p, q} ∅

8

TU Dresden, 19th May 2015 PSSAI slide 93 of 142



A second example

P = {p← not q, q← not p}

X PX Cn(PX)
∅ p ←

q ←
{p, q} 8

{p} p ← {p} 4

{q}
q ←

{q} 4

{p, q} ∅

8

TU Dresden, 19th May 2015 PSSAI slide 94 of 142



A second example

P = {p← not q, q← not p}

X PX Cn(PX)
∅ p ←

q ←
{p, q} 8

{p} p ← {p} 4

{q}
q ←

{q} 4

{p, q} ∅ 8

TU Dresden, 19th May 2015 PSSAI slide 95 of 142



A third example

P = {p← not p}

X PX Cn(PX)
∅ p ← {p}

8

{p} ∅

8

TU Dresden, 19th May 2015 PSSAI slide 96 of 142



A third example

P = {p← not p}

X PX Cn(PX)
∅ p ← {p}

8

{p} ∅

8

TU Dresden, 19th May 2015 PSSAI slide 97 of 142



A third example

P = {p← not p}

X PX Cn(PX)
∅ p ← {p} 8

{p} ∅

8

TU Dresden, 19th May 2015 PSSAI slide 98 of 142



A third example

P = {p← not p}

X PX Cn(PX)
∅ p ← {p} 8

{p} ∅ 8

TU Dresden, 19th May 2015 PSSAI slide 99 of 142



Some properties

• A logic program may have zero, one, or multiple stable models!

• If X is an stable model of a logic program P,
then X is a model of P (seen as a formula)

• If X and Y are stable models of a normal program P,
then X 6⊂ Y

TU Dresden, 19th May 2015 PSSAI slide 100 of 142



Some properties

• A logic program may have zero, one, or multiple stable models!
• If X is an stable model of a logic program P,

then X is a model of P (seen as a formula)
• If X and Y are stable models of a normal program P,

then X 6⊂ Y

TU Dresden, 19th May 2015 PSSAI slide 101 of 142



Programs with Variables

Let P be a logic program
• Let T be a set of (variable-free) terms

(also called Herbrand universe)

• Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)
• Ground Instances of r ∈ P: Set of variable-free rules obtained by

replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T , var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r;
θ is a (ground) substitution

• Ground Instantiation of P: ground(P) =
⋃

r∈Pground(r)

TU Dresden, 19th May 2015 PSSAI slide 102 of 142



Programs with Variables

Let P be a logic program
• Let T be a set of

(

variable-free

)

terms (also called Herbrand universe)
• Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

• Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T , var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r;
θ is a (ground) substitution

• Ground Instantiation of P: ground(P) =
⋃

r∈Pground(r)

TU Dresden, 19th May 2015 PSSAI slide 103 of 142



Programs with Variables

Let P be a logic program
• Let T be a set of (variable-free) terms

(also called Herbrand universe)

• Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

• Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T , var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r;
θ is a (ground) substitution

• Ground Instantiation of P: ground(P) =
⋃

r∈Pground(r)

TU Dresden, 19th May 2015 PSSAI slide 104 of 142



Programs with Variables

Let P be a logic program
• Let T be a set of (variable-free) terms

(also called Herbrand universe)

• Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

• Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T , var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r;
θ is a (ground) substitution

• Ground Instantiation of P: ground(P) =
⋃

r∈Pground(r)

TU Dresden, 19th May 2015 PSSAI slide 105 of 142



An example

P = { r(a, b)←, r(b, c)←, t(X, Y)← r(X, Y) }

T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c, a) ← r(c, a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c, b) ← r(c, b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c, c) ← r(c, c)



• Intelligent Grounding aims at reducing the ground instantiation

TU Dresden, 19th May 2015 PSSAI slide 106 of 142



An example

P = { r(a, b)←, r(b, c)←, t(X, Y)← r(X, Y) }

T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c, a) ← r(c, a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c, b) ← r(c, b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c, c) ← r(c, c)



• Intelligent Grounding aims at reducing the ground instantiation

TU Dresden, 19th May 2015 PSSAI slide 107 of 142



An example

P = { r(a, b)←, r(b, c)←, t(X, Y)← r(X, Y) }

T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,

t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c, a) ← r(c, a),

t(a, b) ←

r(a, b)

,

t(b, b) ← r(b, b), t(c, b) ← r(c, b),
t(a, c) ← r(a, c),

t(b, c) ←

r(b, c), t(c, c) ← r(c, c)


• Intelligent Grounding aims at reducing the ground instantiation

TU Dresden, 19th May 2015 PSSAI slide 108 of 142



Stable models of programs with Variables

Let P be a normal logic program with variables

• A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X) = X

TU Dresden, 19th May 2015 PSSAI slide 109 of 142



Stable models of programs with Variables

Let P be a normal logic program with variables

• A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X) = X

TU Dresden, 19th May 2015 PSSAI slide 110 of 142



Problem solving in ASP: Extended Syntax

Problem

Logic Program

Solution

Stable Models

?
-

6

Modeling Interpreting

Solving

TU Dresden, 19th May 2015 PSSAI slide 111 of 142



Language Constructs

• Variables (over the Herbrand Universe)
– p(X) :- q(X) over constants {a,b,c} stands for

p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

• Conditional Literals
– p :- q(X) : r(X) given r(a), r(b), r(c) stands for

p :- q(a), q(b), q(c)

• Disjunction
– p(X) | q(X) :- r(X)

• Integrity Constraints
– :- q(X), p(X)

• Choice
– 2 { p(X,Y) : q(X) } 7 :- r(Y)

• Aggregates
– s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7
– also: #sum, #avg, #min, #max, #even, #odd

TU Dresden, 19th May 2015 PSSAI slide 112 of 142



Language Constructs
• Variables (over the Herbrand Universe)

– p(X) :- q(X) over constants {a,b,c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

• Conditional Literals
– p :- q(X) : r(X) given r(a), r(b), r(c) stands for

p :- q(a), q(b), q(c)

• Disjunction
– p(X) | q(X) :- r(X)

• Integrity Constraints
– :- q(X), p(X)

• Choice
– 2 { p(X,Y) : q(X) } 7 :- r(Y)

• Aggregates
– s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7
– also: #sum, #avg, #min, #max, #even, #odd

TU Dresden, 19th May 2015 PSSAI slide 113 of 142



Language Constructs

• Variables (over the Herbrand Universe)
– p(X) :- q(X) over constants {a,b,c} stands for

p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

• Conditional Literals
– p :- q(X) : r(X) given r(a), r(b), r(c) stands for

p :- q(a), q(b), q(c)

• Disjunction
– p(X) | q(X) :- r(X)

• Integrity Constraints
– :- q(X), p(X)

• Choice
– 2 { p(X,Y) : q(X) } 7 :- r(Y)

• Aggregates
– s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7
– also: #sum, #avg, #min, #max, #even, #odd

TU Dresden, 19th May 2015 PSSAI slide 114 of 142



Language Constructs

• Variables (over the Herbrand Universe)
– p(X) :- q(X) over constants {a,b,c} stands for

p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

• Conditional Literals
– p :- q(X) : r(X) given r(a), r(b), r(c) stands for

p :- q(a), q(b), q(c)

• Disjunction
– p(X) | q(X) :- r(X)

• Integrity Constraints
– :- q(X), p(X)

• Choice
– 2 { p(X,Y) : q(X) } 7 :- r(Y)

• Aggregates
– s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7
– also: #sum, #avg, #min, #max, #even, #odd

TU Dresden, 19th May 2015 PSSAI slide 115 of 142



Language Constructs

• Variables (over the Herbrand Universe)
– p(X) :- q(X) over constants {a,b,c} stands for

p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

• Conditional Literals
– p :- q(X) : r(X) given r(a), r(b), r(c) stands for

p :- q(a), q(b), q(c)

• Disjunction
– p(X) | q(X) :- r(X)

• Integrity Constraints
– :- q(X), p(X)

• Choice
– 2 { p(X,Y) : q(X) } 7 :- r(Y)

• Aggregates
– s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7
– also: #sum, #avg, #min, #max, #even, #odd

TU Dresden, 19th May 2015 PSSAI slide 116 of 142



Language Constructs

• Variables (over the Herbrand Universe)
– p(X) :- q(X) over constants {a,b,c} stands for

p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

• Conditional Literals
– p :- q(X) : r(X) given r(a), r(b), r(c) stands for

p :- q(a), q(b), q(c)

• Disjunction
– p(X) | q(X) :- r(X)

• Integrity Constraints
– :- q(X), p(X)

• Choice
– 2 { p(X,Y) : q(X) } 7 :- r(Y)

• Aggregates
– s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7
– also: #sum, #avg, #min, #max, #even, #odd

TU Dresden, 19th May 2015 PSSAI slide 117 of 142



Language Constructs

• Variables (over the Herbrand Universe)
– p(X) :- q(X) over constants {a,b,c} stands for

p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

• Conditional Literals
– p :- q(X) : r(X) given r(a), r(b), r(c) stands for

p :- q(a), q(b), q(c)

• Disjunction
– p(X) | q(X) :- r(X)

• Integrity Constraints
– :- q(X), p(X)

• Choice
– 2 { p(X,Y) : q(X) } 7 :- r(Y)

• Aggregates
– s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7
– also: #sum, #avg, #min, #max, #even, #odd

TU Dresden, 19th May 2015 PSSAI slide 118 of 142



Language Constructs
• Variables (over the Herbrand Universe)

– p(X) :- q(X) over constants {a,b,c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

• Conditional Literals
– p :- q(X) : r(X) given r(a), r(b), r(c) stands for

p :- q(a), q(b), q(c)

• Disjunction
– p(X) | q(X) :- r(X)

• Integrity Constraints
– :- q(X), p(X)

• Choice
– 2 { p(X,Y) : q(X) } 7 :- r(Y)

• Aggregates
– s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7
– also: #sum, #avg, #min, #max, #even, #odd

TU Dresden, 19th May 2015 PSSAI slide 119 of 142



Modeling
• For solving a problem class C for a problem instance I,

encode
1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

• PI is (still) called problem instance
• PC is often called the problem encoding

• An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts

TU Dresden, 19th May 2015 PSSAI slide 120 of 142



Modeling
• For solving a problem class C for a problem instance I,

encode
1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

• PI is (still) called problem instance
• PC is often called the problem encoding

• An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts

TU Dresden, 19th May 2015 PSSAI slide 121 of 142



Modeling
• For solving a problem class C for a problem instance I,

encode
1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

• PI is (still) called problem instance
• PC is often called the problem encoding

• An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts

TU Dresden, 19th May 2015 PSSAI slide 122 of 142



Example 3-Colorability

• Vertices are represented with predicates vertex(X);
• Edges are represented with predicates edge(X, Y).

Question: Is there a valid assignment of three colors for an input graph G such
that no two adjacent vertices have the same color?

TU Dresden, 19th May 2015 PSSAI slide 123 of 142



Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

}
Problem
encoding

TU Dresden, 19th May 2015 PSSAI slide 124 of 142



Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

}
Problem
encoding

TU Dresden, 19th May 2015 PSSAI slide 125 of 142



Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

}
Problem
encoding

TU Dresden, 19th May 2015 PSSAI slide 126 of 142



Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

}
Problem
encoding

TU Dresden, 19th May 2015 PSSAI slide 127 of 142



Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

}
Problem
encoding

TU Dresden, 19th May 2015 PSSAI slide 128 of 142



Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

}
Problem
encoding

TU Dresden, 19th May 2015 PSSAI slide 129 of 142



Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

}
Problem
encoding

TU Dresden, 19th May 2015 PSSAI slide 130 of 142



Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

}
Problem
encoding

TU Dresden, 19th May 2015 PSSAI slide 131 of 142



Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

}
Problem
encoding

TU Dresden, 19th May 2015 PSSAI slide 132 of 142



color.lp

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

}
Problem
encoding

TU Dresden, 19th May 2015 PSSAI slide 133 of 142



ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

TU Dresden, 19th May 2015 PSSAI slide 134 of 142



Graph coloring: Grounding

$ gringo --text color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).
edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(1,g)} 1.
1 {color(2,r), color(2,b), color(2,g)} 1.
1 {color(3,r), color(3,b), color(3,g)} 1.
1 {color(4,r), color(4,b), color(4,g)} 1.
1 {color(5,r), color(5,b), color(5,g)} 1.
1 {color(6,r), color(6,b), color(6,g)} 1.

:- color(1,r), color(2,r). :- color(2,g), color(5,g). ... :- color(6,r), color(2,r).
:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).
:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).
:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).
:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).
:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).
:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).
:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).
:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).
:- color(2,r), color(4,r). :- color(3,g), color(4,g).
:- color(2,b), color(4,b). :- color(3,r), color(5,r).
:- color(2,g), color(4,g). :- color(3,b), color(5,b).
:- color(2,r), color(5,r). :- color(3,g), color(5,g).
:- color(2,b), color(5,b). :- color(4,r), color(1,r).

TU Dresden, 19th May 2015 PSSAI slide 135 of 142



Graph coloring: Grounding

$ gringo --text color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).
edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(1,g)} 1.
1 {color(2,r), color(2,b), color(2,g)} 1.
1 {color(3,r), color(3,b), color(3,g)} 1.
1 {color(4,r), color(4,b), color(4,g)} 1.
1 {color(5,r), color(5,b), color(5,g)} 1.
1 {color(6,r), color(6,b), color(6,g)} 1.

:- color(1,r), color(2,r). :- color(2,g), color(5,g). ... :- color(6,r), color(2,r).
:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).
:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).
:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).
:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).
:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).
:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).
:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).
:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).
:- color(2,r), color(4,r). :- color(3,g), color(4,g).
:- color(2,b), color(4,b). :- color(3,r), color(5,r).
:- color(2,g), color(4,g). :- color(3,b), color(5,b).
:- color(2,r), color(5,r). :- color(3,g), color(5,g).
:- color(2,b), color(5,b). :- color(4,r), color(1,r).

TU Dresden, 19th May 2015 PSSAI slide 136 of 142



ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

TU Dresden, 19th May 2015 PSSAI slide 137 of 142



Graph coloring: Solving

$ gringo color.lp | clasp 0

clasp version 2.1.0
Reading from stdin
Solving...
Answer: 1
edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,g) color(4,b) color(3,r) color(2,r) color(1,g)
Answer: 2
edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,g) color(4,r) color(3,b) color(2,b) color(1,g)
Answer: 3
edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,b) color(4,g) color(3,r) color(2,r) color(1,b)
Answer: 4
edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,b) color(4,r) color(3,g) color(2,g) color(1,b)
Answer: 5
edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,r) color(4,g) color(3,b) color(2,b) color(1,r)
Answer: 6
edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)
SATISFIABLE

Models : 6
Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

TU Dresden, 19th May 2015 PSSAI slide 138 of 142



Graph coloring: Solving

$ gringo color.lp | clasp 0

clasp version 2.1.0
Reading from stdin
Solving...
Answer: 1
edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,g) color(4,b) color(3,r) color(2,r) color(1,g)
Answer: 2
edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,g) color(4,r) color(3,b) color(2,b) color(1,g)
Answer: 3
edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,b) color(4,g) color(3,r) color(2,r) color(1,b)
Answer: 4
edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,b) color(4,r) color(3,g) color(2,g) color(1,b)
Answer: 5
edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,r) color(4,g) color(3,b) color(2,b) color(1,r)
Answer: 6
edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)
SATISFIABLE

Models : 6
Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

TU Dresden, 19th May 2015 PSSAI slide 139 of 142



Problem solving in ASP: Reasoning Modes

Problem

Logic Program

Solution

Stable Models

?
-

6

Modeling Interpreting

Solving

TU Dresden, 19th May 2015 PSSAI slide 140 of 142



Reasoning Modes

• Satisfiability
• Enumeration†

• Projection†

• Intersection‡

• Union‡

• Optimization

• and combinations of them

† without solution recording
‡ without solution enumeration

TU Dresden, 19th May 2015 PSSAI slide 141 of 142



References

Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten
Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.
doi=10.2200/S00457ED1V01Y201211AIM019.

Michael Gelfond and Vladimir Lifschitz.
Classical negation in logic programs and disjunctive databases.
New Generation Comput., 9(3–4):365–386, 1991.

• See also: http://potassco.sourceforge.net

TU Dresden, 19th May 2015 PSSAI slide 142 of 142

http://potassco.sourceforge.net

	Motivation
	Motivation
	Nutshell
	Shifting paradigms
	Rooting ASP
	ASP solving
	Using ASP
	Syntax
	Semantics
	Examples
	Variables
	Language constructs
	Modeling
	Reasoning modes


