

Artificial Intelligence, Computational Logic

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

Lecture 5 Answer-Set Programming Motivation and Introduction

slides adapted from Torsten Schaub [Gebser et al.(2012)]

Sarah Gaggl

Dresden, 19th May 2015

Agenda

Introduction

- Uninformed Search versus Informed Search (Best First Search, A* Search, Heuristics)
- Local Search, Stochastic Hill Climbing, Simulated Annealing
- Tabu Search
- Answer-set Programming (ASP)
- 6 Constraint Satisfaction (CSP)
- Structural Decomposition Techniques (Tree/Hypertree Decompositions)
- 8 Evolutionary Algorithms/ Genetic Algorithms

Outline

1 Motivation

- Declarative Problem Solving
- ASP in a Nutshell
- ASP Paradigm

- 2 Introduction
 - Syntax
 - Semantics
 - Examples
 - Language Constructs
 - Modeling

Informatics

Informatics

Traditional programming

Traditional programming

Declarative problem solving

Declarative problem solving

Declarative problem solving

- ASP is an approach to declarative problem solving, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities

- ASP is an approach to declarative problem solving, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities
- ASP has its roots in
 - (deductive) databases
 - logic programming (with negation)
 - (logic-based) knowledge representation and (nonmonotonic) reasoning
 - constraint solving (in particular, SATisfiability testing)

- ASP is an approach to declarative problem solving, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities
- ASP has its roots in
 - (deductive) databases
 - logic programming (with negation)
 - (logic-based) knowledge representation and (nonmonotonic) reasoning
 - constraint solving (in particular, SATisfiability testing)
- ASP allows for solving all search problems in *NP* (and *NP^{NP}*) in a uniform way

- ASP is an approach to declarative problem solving, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities
- ASP has its roots in
 - (deductive) databases
 - logic programming (with negation)
 - (logic-based) knowledge representation and (nonmonotonic) reasoning
 - constraint solving (in particular, SATisfiability testing)
- ASP allows for solving all search problems in *NP* (and *NP^{NP}*) in a uniform way
- ASP is versatile as reflected by the ASP solver clasp, winning first places at ASP, CASC, MISC, PB, and SAT competitions

- ASP is an approach to declarative problem solving, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities
- ASP has its roots in
 - (deductive) databases
 - logic programming (with negation)
 - (logic-based) knowledge representation and (nonmonotonic) reasoning
 - constraint solving (in particular, SATisfiability testing)
- ASP allows for solving all search problems in *NP* (and *NP^{NP}*) in a uniform way
- ASP is versatile as reflected by the ASP solver clasp, winning first places at ASP, CASC, MISC, PB, and SAT competitions
- ASP embraces many emerging application areas

in a Hazelnutshell

- ASP is an approach to declarative problem solving, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

in a Hazelnutshell

- ASP is an approach to declarative problem solving, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

ASP = DB+LP+KR+SAT

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

- Provide a representation of the problem
 A solution is given by a derivation of a query

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem

A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem

A solution is given by a model of the representation

Model Generation based Problem Solving

Representation	Solution
constraint satisfaction problem	assignment
propositional horn theories	smallest model
propositional theories	models
propositional theories	minimal models
propositional theories	stable models
propositional programs	minimal models
propositional programs	supported models
propositional programs	stable models
first-order theories	models
first-order theories	minimal models
first-order theories	stable models
first-order theories	Herbrand models
auto-epistemic theories	expansions
default theories	extensions
	:

Model Generation based Problem Solving

Representation	Solution
constraint satisfaction problem	assignment
propositional horn theories	smallest model
propositional theories	models
propositional theories	minimal models
propositional theories	stable models
propositional programs	minimal models
propositional programs	supported models
propositional programs	stable models
first-order theories	models
first-order theories	minimal models
first-order theories	stable models
first-order theories	Herbrand models
auto-epistemic theories	expansions
default theories	extensions
:	:

Model Generation based Problem Solving

Representation	Solution	
constraint satisfaction problem	assignment	
propositional horn theories	smallest model	
propositional theories	models	SAT
propositional theories	minimal models	
propositional theories	stable models	
propositional programs	minimal models	
propositional programs	supported models	
propositional programs	stable models	
first-order theories	models	
first-order theories	minimal models	
first-order theories	stable models	
first-order theories	Herbrand models	
auto-epistemic theories	expansions	
default theories	extensions	
:	:	
	:	

Prolog program

```
on (a, b).
on (b, c).
above (X, Y) :- on (X, Y).
above (X, Y) :- on (X, Z), above (Z, Y).
```

Prolog program

on(a,b). on(b,c).

above(X,Y) :- on(X,Y). above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).
true.

Prolog program

```
on(a,b).
on(b,c).
above(X,Y) := on(X,Y).
above(X,Y) := on(X,Z), above(Z,Y).
```

Prolog queries

```
?- above(a,c).
true.
```

```
?- above(c,a).
no.
```

Prolog program

```
on (a, b).
on (b, c).
above (X,Y) :- on (X,Y).
above (X,Y) :- on (X,Z), above (Z,Y).
```

Prolog queries (testing entailment)

```
?- above(a,c).
true.
```

```
?- above(c,a).
no.
```

Shuffled Prolog program

```
on(a,b).
on(b,c).
above(X,Y) :- above(X,Z), on(Z,Y).
above(X,Y) :- on(X,Y).
```

Shuffled Prolog program

```
on(a,b).
on(b,c).
above(X,Y) :- above(X,Z), on(Z,Y).
above(X,Y) :- on(X,Y).
```

Prolog queries

?- above(a,c).

Shuffled Prolog program

```
on (a, b).
on (b, c).
above (X, Y) :- above (X, Z), on (Z, Y).
above (X, Y) :- on (X, Y).
```

Prolog queries (answered via fixed execution)

?- above(a,c).

Fatal Error: local stack overflow.

Formula

on(a,b)

- $\wedge \quad on(b,c)$
- $\land \quad (on(X,Y) \to above(X,Y))$
- $\land \quad (on(X,Z) \land above(Z,Y) \to above(X,Y))$

Formula

on(a,b)

- $\wedge on(b,c)$
- $\land \quad (on(X,Y) \to above(X,Y))$
- $\land \quad (on(X,Z) \land above(Z,Y) \to above(X,Y))$

Herbrand model

 $\left\{ \begin{array}{ll} on(a,b), & on(b,c), & on(a,c), & on(b,b), \\ above(a,b), & above(b,c), & above(a,c), & above(b,b), & above(c,b) \end{array} \right\}$

Formula

on(a,b)

- $\wedge \quad on(b,c) \\ \wedge \quad (cn(X,Y)) \rightarrow cn(x,y)$
- $\land \quad (on(X,Y) \to above(X,Y))$
- $\land \quad (on(X,Z) \land above(Z,Y) \to above(X,Y))$

Herbrand model (among 426!)

 $\left[\begin{array}{ccc} on(a,b), & on(b,c), & on(a,c), & on(b,b), \\ above(a,b), & above(b,c), & above(a,c), & above(b,b), & above(c,b) \end{array}\right]$

Formula

on(a,b)

- $\wedge \quad on(b,c) \\ \wedge \quad (on(X,Y)) \rightarrow a$
- $\land \quad (on(X,Y) \to above(X,Y))$
- $\land \quad (on(X,Z) \land above(Z,Y) \to above(X,Y))$

Herbrand model (among 426!)

 $\left\{\begin{array}{ccc} on(a,b), & on(b,c), & on(a,c), & on(b,b), \\ above(a,b), & above(b,c), & above(a,c), & above(b,b), & above(c,b) \end{array}\right\}$

Formula

on(a,b)

- $\land \quad on(b,c) \\ \land \quad (on(X,Y)) \land ch$
- $\land \quad (on(X,Y) \to above(X,Y))$
- $\land \quad (on(X,Z) \land above(Z,Y) \to above(X,Y))$

Herbrand model (among 426!)

 $\left\{\begin{array}{ccc} on(a,b), & on(b,c), & on(a,c), & on(b,b), \\ above(a,b), & above(b,c), & above(a,c), & above(b,b), & above(c,b) \end{array}\right\}$

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem

A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem

A solution is given by a model of the representation

KR's shift of paradigm

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem A solution is given by a model of the representation

Answer Set Programming (ASP)
Model Generation based Problem Solving

	Representation	Solution		
-	constraint satisfaction problem	assignment		
	propositional horn theories	smallest model		
	propositional theories	models		
	propositional theories	minimal models		
	propositional theories	stable models		
	propositional programs	minimal models		
	propositional programs	supported models		
	propositional programs	stable models		
	first-order theories	models		
	first-order theories	minimal models		
	first-order theories	stable models		
	first-order theories	Herbrand models		
	auto-epistemic theories	expansions		
	default theories	extensions		
	:			

Answer Set Programming at large

Representation	Solution		
propositional horn theories	smallest model		
propositional theories	models		
propositional theories	minimal models		
propositional theories	stable models		
propositional programs	minimal models		
propositional programs	supported models		
propositional programs	stable models		
first-order theories	models		
first-order theories	minimal models		
first-order theories	stable models		
first-order theories	Herbrand models		
auto-epistemic theories	expansions		
default theories	extensions		
	:		

Answer Set Programming commonly

Representation	Solution		
propositional theories	stable models		
propositional programs	stable models		
first-order theories	stable models		
:	:		

Answer Set Programming in practice

Representation	Solution
propositional programs	stable models
÷	÷

Answer Set Programming in practice

Representation	Solution		
propositional programs	stable models		
first-order programs	stable Herbrand models		

Logic program

on (a, b) .
on (b, c) .
above (X, Y) :- on (X, Y) .
above (X, Y) :- on (X, Z), above (Z, Y) .

Logic program

on(a,b). on(b,c).

above(X,Y) :- on(X,Y). above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

 $\{ \text{ on}(a,b), \text{ on}(b,c), \text{ above}(b,c), \text{ above}(a,b), \text{ above}(a,c) \}$

Logic program

on(a,b). on(b,c).

above(X,Y) :- on(X,Y). above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model (and no others)

 $\{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) \}$

Logic program

on(a,b). on(b,c).

above(X,Y) :- above(Z,Y), on(X,Z). above(X,Y) :- on(X,Y).

Stable Herbrand model (and no others)

 $\{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) \}$

ASP versus LP

ASP	Prolog		
Model generation	Query orientation		
Bottom-up	Top-down		
Modeling language	Programming language		
Rule-based format			
Instantiation	Unification		
Flat terms	Nested terms		
(Turing +) NP(^{NP})	Turing		

ASP versus SAT

ASP	SAT		
Model generation			
Bottom	-up		
Constructive Logic	Classical Logic		
Closed (and open) world reasoning	Open world reasoning		
Modeling language	—		
Complex reasoning modes	Satisfiability testing		
Satisfiability	Satisfiability		
Enumeration/Projection	—		
Intersection/Union			
(Turing +) NP(^{NP})	NP		

Rooting ASP solving

Rooting ASP solving

Two sides of a coin

- ASP as High-level Language
 - Express problem instance(s) as sets of facts
 - Encode problem (class) as a set of rules
 - Read off solutions from stable models of facts and rules
- ASP as Low-level Language
 - Compile a problem into a logic program
 - Solve the original problem by solving its compilation

What is ASP good for?

 Combinatorial search problems in the realm of P, NP, and NPNP (some with substantial amount of data), like

What is ASP good for?

- Combinatorial search problems in the realm of *P*, *NP*, and *NP*^{*NP*} (some with substantial amount of data), like
 - Automated Planning
 - Code Optimization
 - Composition of Renaissance Music
 - Database Integration
 - Decision Support for NASA shuttle controllers
 - Model Checking
 - Product Configuration
 - Robotics
 - System Biology
 - System Synthesis
 - (industrial) Team-building
 - and many many more

What does ASP offer?

- Integration of DB, KR, and SAT techniques
- Succinct, elaboration-tolerant problem representations
 - Rapid application development tool
- Easy handling of dynamic, knowledge intensive applications
 - including: data, frame axioms, exceptions, defaults, closures, etc

What does ASP offer?

- Integration of DB, KR, and SAT techniques
- Succinct, elaboration-tolerant problem representations
 - Rapid application development tool
- Easy handling of dynamic, knowledge intensive applications
 - including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SAT

Agenda

Motivation

- Declarative Problem Solving
- ASP in a Nutshell
- ASP Paradigm

- 2 Introduction
 - Syntax
 - Semantics
 - Examples
 - Language Constructs
 - Modeling

Problem solving in ASP: Syntax

Normal logic programs

- A (normal) logic program over a set \mathcal{A} of atoms is a finite set of rules
- A (normal) rule, r, is of the form

 $a_0 \leftarrow a_1, \ldots, a_m, not \ a_{m+1}, \ldots, not \ a_n$

where $0 \le m \le n$ and each $a_i \in \mathcal{A}$ is an atom for $0 \le i \le n$

Normal logic programs

- A (normal) logic program over a set \mathcal{A} of atoms is a finite set of rules
- A (normal) rule, r, is of the form

 $a_0 \leftarrow a_1, \ldots, a_m, not \ a_{m+1}, \ldots, not \ a_n$

where $0 \le m \le n$ and each $a_i \in \mathcal{A}$ is an atom for $0 \le i \le n$

Notation

$$head(r) = a_0$$

$$body(r) = \{a_1, \dots, a_m, not \ a_{m+1}, \dots, not \ a_n\}$$

$$body(r)^+ = \{a_1, \dots, a_m\}$$

$$body(r)^- = \{a_{m+1}, \dots, a_n\}$$

Normal logic programs

- A (normal) logic program over a set \mathcal{A} of atoms is a finite set of rules
- A (normal) rule, r, is of the form

 $a_0 \leftarrow a_1, \ldots, a_m, not \ a_{m+1}, \ldots, not \ a_n$

where $0 \le m \le n$ and each $a_i \in A$ is an atom for $0 \le i \le n$

Notation

$$head(r) = a_0$$

$$body(r) = \{a_1, \dots, a_m, not \ a_{m+1}, \dots, not \ a_n\}$$

$$body(r)^+ = \{a_1, \dots, a_m\}$$

$$body(r)^- = \{a_{m+1}, \dots, a_n\}$$

A program is called positive if *body*(*r*)[−] = Ø for all its rules

Rough notational convention

We sometimes use the following notation interchangeably in order to stress the respective view:

	true, false	if	and	or	iff	default negation	classical negation
source code		:-	,			not	-
logic program		\leftarrow	,	;		not	_
formula	\perp, \top	\rightarrow	\wedge	\vee	\leftrightarrow	\sim	_

Problem solving in ASP: Semantics

Formal Definition

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any r ∈ P, head(r) ∈ X whenever body(r)⁺ ⊆ X
 - X corresponds to a model of P (seen as a formula)

Formal Definition

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any r ∈ P, head(r) ∈ X whenever body(r)⁺ ⊆ X
 - X corresponds to a model of P (seen as a formula)
- The smallest set of atoms which is closed under a positive program *P* is denoted by *Cn*(*P*)
 - Cn(P) corresponds to the \subseteq -smallest model of P (ditto)

Formal Definition

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any r ∈ P, head(r) ∈ X whenever body(r)⁺ ⊆ X
 - X corresponds to a model of P (seen as a formula)
- The smallest set of atoms which is closed under a positive program *P* is denoted by *Cn*(*P*)

- Cn(P) corresponds to the \subseteq -smallest model of P (ditto)

• The set *Cn*(*P*) of atoms is the stable model of a positive program *P*

Some "logical" remarks

- Positive rules are also referred to as definite clauses
 - Definite clauses are disjunctions with exactly one positive atom:

 $a_0 \vee \neg a_1 \vee \cdots \vee \neg a_m$

- A set of definite clauses has a (unique) smallest model

Some "logical" remarks

- Positive rules are also referred to as definite clauses
 - Definite clauses are disjunctions with exactly one positive atom:

 $a_0 \vee \neg a_1 \vee \cdots \vee \neg a_m$

- A set of definite clauses has a (unique) smallest model
- Horn clauses are clauses with at most one positive atom
 - Every definite clause is a Horn clause but not vice versa
 - Non-definite Horn clauses can be regarded as integrity constraints
 - A set of Horn clauses has a smallest model or none

Some "logical" remarks

- Positive rules are also referred to as definite clauses
 - Definite clauses are disjunctions with exactly one positive atom:

 $a_0 \vee \neg a_1 \vee \cdots \vee \neg a_m$

- A set of definite clauses has a (unique) smallest model
- Horn clauses are clauses with at most one positive atom
 - Every definite clause is a Horn clause but not vice versa
 - Non-definite Horn clauses can be regarded as integrity constraints
 - A set of Horn clauses has a smallest model or none
- This smallest model is the intended semantics of such sets of clauses
 - Given a positive program *P*, *Cn*(*P*) corresponds to the smallest model of the set of definite clauses corresponding to *P*

Basic idea

Consider the logical formula Φ and its three (classical) models:

 $\Phi \quad q \land (q \land \neg r \to p)$

 $\{p,q\},\{q,r\}, \text{ and } \{p,q,r\}$

Basic idea

Consider the logical formula Φ and its three (classical) models:

 $\{p,q\},\{q,r\}, \text{ and } \{p,q,r\}$

Basic idea

Consider the logical formula Φ and its three (classical) models:

Consider the logical formula Φ and its three (classical) models:

 $\{p,q\},\{q,r\}, \text{ and } \{p,q,r\}$

Consider the logical formula Φ and its three (classical) models:

$$\Phi \quad q \land (q \land \neg r \to p)$$

 $\{p,q\},\{q,r\}, \text{ and } \{p,q,r\}$

Formula Φ has one stable model, often called answer set:

 $\{p,q\}$

Consider the logical formula Φ and its three (classical) models:

 $\{p,q\},\{q,r\}, \text{ and } \{p,q,r\}$

Formula Φ has one stable model, often called answer set:

 $\{p,q\}$

 $\Phi \quad \overline{q \land (q \land \neg r \to p)}$

$$\begin{array}{cccc} P_{\Phi} & q & \leftarrow & \\ p & \leftarrow & q, \ not \ r \end{array}$$

Consider the logical formula Φ and its three (classical) models:

 $\{p,q\}, \{q,r\}, \text{ and } \{p,q,r\}$

Formula Φ has one stable model, often called answer set:

 $\{p,q\}$

$$\begin{array}{cccc} P_{\Phi} & q & \leftarrow \\ p & \leftarrow & q, \ not \ r \end{array}$$

Informally, a set X of atoms is a stable model of a logic program P

- if X is a (classical) model of P and
- if all atoms in *X* are justified by some rule in *P*

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Formula Φ has one stable model, often called answer set:

$$\begin{array}{cccc} P_{\Phi} & q & \leftarrow \\ p & \leftarrow & q, \ not \ r \end{array}$$

 $\{p,q\}$

Informally, a set X of atoms is a stable model of a logic program P

- if X is a (classical) model of P and
- if all atoms in *X* are justified by some rule in *P*

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Formal Definition

Stable model of normal programs

• The Gelfond-Lifschitz Reduct[Gelfond and Lifschitz(1991)], *P*^{*X*}, of a program *P* relative to a set *X* of atoms is defined by

 $P^{X} = \{head(r) \leftarrow body(r)^{+} \mid r \in P \text{ and } body(r)^{-} \cap X = \emptyset\}$

Formal Definition

Stable model of normal programs

• The Gelfond-Lifschitz Reduct[Gelfond and Lifschitz(1991)], *P*^{*X*}, of a program *P* relative to a set *X* of atoms is defined by

$$P^{X} = \{head(r) \leftarrow body(r)^{+} \mid r \in P \text{ and } body(r)^{-} \cap X = \emptyset\}$$

• A set X of atoms is a stable model of a program P, if $Cn(P^X) = X$

Formal Definition

Stable model of normal programs

• The Gelfond-Lifschitz Reduct[Gelfond and Lifschitz(1991)], *P*^{*X*}, of a program *P* relative to a set *X* of atoms is defined by

 $P^{X} = \{head(r) \leftarrow body(r)^{+} \mid r \in P \text{ and } body(r)^{-} \cap X = \emptyset\}$

- A set X of atoms is a stable model of a program P, if $Cn(P^X) = X$
- Note: $Cn(P^X)$ is the \subseteq -smallest (classical) model of P^X
- Note: Every atom in X is justified by an "applying rule from P"

A closer look at P^X

• In other words, given a set X of atoms from P,

 P^X is obtained from P by deleting

• each rule having *not* a in its body with $a \in X$ and then

2 all negative atoms of the form *not* a in the bodies of the remaining rules

A closer look at P^X

• In other words, given a set X of atoms from P,

 P^X is obtained from P by deleting

1 each rule having *not a* in its body with $a \in X$ and then

- 2 all negative atoms of the form *not a* in the bodies of the remaining rules
- Note: Only negative body literals are evaluated w.r.t. X

 $P = \{p \leftarrow p, \ q \leftarrow not \ p\}$

 $P = \{p \leftarrow p, \ q \leftarrow not \ p\}$

X	P^X	$Cn(P^X)$
Ø	$p \leftarrow p$	$\{q\}$
	$q \leftarrow$	
$\{p\}$	$p \leftarrow p$	Ø
$\{q\}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\{q\}$
$\{p,q\}$	$p \leftarrow p$	Ø

 $P = \{p \leftarrow p, \ q \leftarrow not \ p\}$

X	P^X			$Cn(P^X)$	
Ø	р	\leftarrow	р	$\{q\}$	×
	q	\leftarrow			
{ <i>p</i> }	р	\leftarrow	р	Ø	
$\{q\}$	р	\leftarrow	р	$\{q\}$	
	q	\leftarrow			
$\{p,q\}$	p	\leftarrow	p	Ø	

$$P = \{p \leftarrow p, \ q \leftarrow not \ p\}$$

X	P^X			$Cn(P^X)$	
Ø	р	\leftarrow	р	$\{q\}$	×
	q	\leftarrow			
$\{p\}$	р	\leftarrow	р	Ø	×
$\{q\}$	р	\leftarrow	р	$\{q\}$	
	q	\leftarrow			
$\{p,q\}$	p	\leftarrow	p	Ø	

$$P = \{p \leftarrow p, \ q \leftarrow not \ p\}$$

X	P^X	$Cn(P^X)$
Ø	$p \leftarrow p$	$\{q\}$ X
- ()	$q \leftarrow$	
$\{p\}$	$p \leftarrow p$	Ø ×
- ()		
$\{q\}$	$p \leftarrow p$	$\{q\}$
	$q \leftarrow$	
$\{p,q\}$	$p \leftarrow p$	Ø

$$P = \{p \leftarrow p, \ q \leftarrow not \ p\}$$

X	P^X			$Cn(P^X)$	
Ø	p	\leftarrow	р	$\{q\}$	×
	q	\leftarrow			
$\{p\}$	р	\leftarrow	р	Ø	×
$\{q\}$	р	<i>←</i>	р	$\{q\}$	~
	<i>q</i>	<u> </u>		4	
$\{p,q\}$	p	\leftarrow	р	Ø	×

$$P = \{p \leftarrow p, \ q \leftarrow not \ p\}$$

 $P = \{p \leftarrow not \ q, \ q \leftarrow not \ p\}$

$$P = \{p \leftarrow not \ q, \ q \leftarrow not \ p\}$$

$$P = \{p \leftarrow not \ q, \ q \leftarrow not \ p\}$$

 $P = \{p \leftarrow not \ q, \ q \leftarrow not \ p\}$

 $P = \{p \leftarrow not \ q, \ q \leftarrow not \ p\}$

$$P = \{p \leftarrow not \ q, \ q \leftarrow not \ p\}$$

Some properties

• A logic program may have zero, one, or multiple stable models!

Some properties

- A logic program may have zero, one, or multiple stable models!
- If X is an stable model of a logic program P, then X is a model of P (seen as a formula)
- If X and Y are stable models of a normal program P, then X ⊄ Y

Let P be a logic program

- Let \mathcal{T} be a set of (variable-free) terms
- Let $\mathcal A$ be a set of (variable-free) atoms constructable from $\mathcal T$

Let P be a logic program

- Let $\mathcal T$ be a set of variable-free terms (also called Herbrand universe)
- Let \mathcal{A} be a set of (variable-free) atoms constructable from \mathcal{T} (also called alphabet or Herbrand base)

Let P be a logic program

- Let \mathcal{T} be a set of (variable-free) terms
- Let ${\mathcal A}$ be a set of (variable-free) atoms constructable from ${\mathcal T}$
- Ground Instances of *r* ∈ *P*: Set of variable-free rules obtained by replacing all variables in *r* by elements from *T*:

$$ground(r) = \{ r\theta \mid \theta : var(r) \to \mathcal{T}, var(r\theta) = \emptyset \}$$

where var(r) stands for the set of all variables occurring in r; θ is a (ground) substitution

Let P be a logic program

- Let \mathcal{T} be a set of (variable-free) terms
- Let ${\mathcal A}$ be a set of (variable-free) atoms constructable from ${\mathcal T}$
- Ground Instances of *r* ∈ *P*: Set of variable-free rules obtained by replacing all variables in *r* by elements from *T*:

$$ground(r) = \{ r\theta \mid \theta : var(r) \to \mathcal{T}, var(r\theta) = \emptyset \}$$

where var(r) stands for the set of all variables occurring in r; θ is a (ground) substitution

• Ground Instantiation of *P*: $ground(P) = \bigcup_{r \in P} ground(r)$

An example

$$P = \{ r(a,b) \leftarrow, r(b,c) \leftarrow, t(X,Y) \leftarrow r(X,Y) \}$$

$$\mathcal{T} = \{a,b,c\}$$

$$\mathcal{A} = \left\{ r(a,a), r(a,b), r(a,c), r(b,a), r(b,b), r(b,c), r(c,a), r(c,b), r(c,c), \\ t(a,a), t(a,b), t(a,c), t(b,a), t(b,b), t(b,c), t(c,a), t(c,b), t(c,c) \right\}$$

An example

$$P = \{ r(a, b) \leftarrow, r(b, c) \leftarrow, t(X, Y) \leftarrow r(X, Y) \}$$

$$\mathcal{T} = \{a, b, c\}$$

$$\mathcal{A} = \left\{ r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c), \\ t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c) \right\}$$

$$ground(P) = \left\{ \begin{array}{l} r(a,b) \leftarrow , \\ r(b,c) \leftarrow , \\ t(a,a) \leftarrow r(a,a), t(b,a) \leftarrow r(b,a), t(c,a) \leftarrow r(c,a), \\ t(a,b) \leftarrow r(a,b), t(b,b) \leftarrow r(b,b), t(c,b) \leftarrow r(c,b), \\ t(a,c) \leftarrow r(a,c), t(b,c) \leftarrow r(b,c), t(c,c) \leftarrow r(c,c) \end{array} \right\}$$

An example

$$P = \{ r(a,b) \leftarrow, r(b,c) \leftarrow, t(X,Y) \leftarrow r(X,Y) \}$$

$$\mathcal{T} = \{a,b,c\}$$

$$\mathcal{A} = \left\{ r(a,a), r(a,b), r(a,c), r(b,a), r(b,b), r(b,c), r(c,a), r(c,b), r(c,c), \\ t(a,a), t(a,b), t(a,c), t(b,a), t(b,b), t(b,c), t(c,a), t(c,b), t(c,c) \right\}$$

$$\left\{ r(a,b) \leftarrow, \\ r(b,c) \leftarrow, \\ r(b$$

$$ground(P) = \begin{cases} f(a,b) \leftarrow f(a,b) \leftarrow f(b,c) \leftarrow f(b,c$$

• Intelligent Grounding aims at reducing the ground instantiation
Stable models of programs with Variables

Let P be a normal logic program with variables

Stable models of programs with Variables

Let P be a normal logic program with variables

• A set X of (ground) atoms is a stable model of P,

if $Cn(ground(P)^X) = X$

Problem solving in ASP: Extended Syntax

• Variables (over the Herbrand Universe)

- p(X) :- q(X) over constants {a,b,c} stands for p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

- Disjunction
 - p(X) | q(X) :- r(X)

- Integrity Constraints
 - :- q(X), p(X)

Choice

 $-2 \{ p(X, Y) : q(X) \} 7 :- r(Y)$

Aggregates s(Y) :- r(Y), 2 #count { p(X, Y) : q(X) } 7 also: #sum, #avg, #min, #max, #even, #odd

• Variables (over the Herbrand Universe)

- p(X) :- q(X) over constants {a,b,c} stands for p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

- p :- q(X) : r(X) given r(a), r(b), r(c) stands for p :- q(a), q(b), q(c)

• Integrity Constraints

- :- q(X), p(X)

Choice

- 2 { p(X,Y) : q(X) } 7 :- r(Y)

• Aggregates

- s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

- also: #sum, #avg, #min, #max, #even, #odd

Modeling

- For solving a problem class C for a problem instance I, encode
 - the problem instance I as a set P_I of facts and
 - 2 the problem class C as a set P_C of rules

such that the solutions to ${\bf C}$ for I can be (polynomially) extracted from the stable models of $\mathit{P}_1 \cup \mathit{P}_{\bf C}$

Modeling

• For solving a problem class C for a problem instance I, encode

the problem instance I as a set P_1 of facts and the problem class C as a set P_C of rules such that the solutions to C for I can be (polynomially) extracted from the stable models of $P_1 \cup P_C$

- P_I is (still) called problem instance
- *P*_C is often called the problem encoding

Modeling

• For solving a problem class C for a problem instance I, encode

the problem instance I as a set P_1 of facts and the problem class **C** as a set P_C of rules such that the solutions to **C** for I can be (polynomially) extracted from the stable models of $P_1 \cup P_C$

- *P*_I is (still) called problem instance
- Pc is often called the problem encoding
- An encoding P_C is uniform, if it can be used to solve all its problem instances That is, P_C encodes the solutions to C for any set P₁ of facts

Example 3-Colorability

- Vertices are represented with predicates vertex(*X*);
- Edges are represented with predicates edge(X, Y).

Question: Is there a valid assignment of three colors for an input graph G such that no two adjacent vertices have the same color?

node(1..6).

```
node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).
```

```
node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).
```

 $\operatorname{col}(r)$. $\operatorname{col}(b)$. $\operatorname{col}(g)$.

```
node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).
```

 $\operatorname{col}(r)$. $\operatorname{col}(b)$. $\operatorname{col}(g)$.

```
node (1..6).

edge (1,2). edge (1,3). edge (1,4).

edge (2,4). edge (2,5). edge (2,6).

edge (3,1). edge (3,4). edge (2,5).

edge (4,1). edge (4,2).

edge (5,3). edge (5,4). edge (5,6).

edge (6,2). edge (6,3). edge (6,5).
```

Problem instance

col(r). col(b). col(g).

```
node(1..6).
edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
col(r). col(b). col(g).
```

```
1 { color(X,C) : col(C) } 1 :- node(X).
```

```
node(1..6).
edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
col(r). col(b). col(q).
1 { color(X,C) : col(C) } 1 :- node(X).
:- edge(X,Y), color(X,C), color(Y,C).
```

```
node(1..6).
edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2), edge(6,3), edge(6,5),
col(r). col(b). col(q).
1 { color(X,C) : col(C) } 1 :- node(X).
                                           Problem
encoding
:- edge(X, Y), color(X, C), color(Y, C).
```

```
node(1..6).
edge(1,2). edge(1,3). edge(1,4).
edge(2, 4). edge(2, 5). edge(2, 6).
                                            Problem
edge(3,1). edge(3,4). edge(3,5).
                                            instance
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
col(r). col(b). col(q).
1 { color(X,C) : col(C) } 1 :- node(X).
                                            Problem
encoding
:- edge(X, Y), color(X, C), color(Y, C).
```

color.lp

```
node(1..6).
edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
col(r). col(b). col(q).
1 { color(X,C) : col(C) } 1 :- node(X).
:- edge(X,Y), color(X,C), color(Y,C).
```

ASP solving process

Graph coloring: Grounding

\$ gringo --text color.lp

Graph coloring: Grounding

```
$ gringo --text color.lp
node(1), node(2), node(3), node(4), node(5), node(6),
edge(1,2). edge(1,3).
                        edge(1,4).
                                     edge(2,4).
                                                  edge(2,5).
                                                              edge(2,6).
                                                  edge(4,2).
edge(3,1), edge(3,4),
                        edge(3,5).
                                     edge(4,1).
                                                              edge (5,3).
edge(5,4). edge(5,6).
                        edge(6,2).
                                     edge(6,3).
                                                  edge(6,5).
col(r). col(b). col(q).
1 {color(1,r), color(1,b), color(1,g)} 1.
1 {color(2,r), color(2,b), color(2,q)} 1.
1 \{ color(3,r), color(3,b), color(3,g) \} 1.
1 {color(4,r), color(4,b), color(4,g)} 1.
1 {color(5,r), color(5,b), color(5,g)} 1.
1 {color(6,r), color(6,b), color(6,g)} 1.
 := color(1,r), color(2,r).
                              := color(2,q), color(5,q).
                                                                 := color(6,r), color(2,r).
 :- color(1,b), color(2,b).
                              := color(2,r), color(6,r).
                                                                 := color(6,b), color(2,b).
 :- color(1,q), color(2,q).
                              :- color(2,b), color(6,b).
                                                                 := color(6,q), color(2,q).
 := color(1,r), color(3,r).
                              := color(2,q), color(6,q).
                                                                 := color(6,r), color(3,r).
 := color(1,b), color(3,b).
                              :- color(3,r), color(1,r).
                                                                 := color(6,b), color(3,b).
 := color(1,q), color(3,q).
                              := color(3,b), color(1,b).
                                                                 := color(6,q), color(3,q).
 := color(1,r), color(4,r).
                              := color(3,q), color(1,q).
                                                                 := color(6,r), color(5,r).
 := color(1,b), color(4,b).
                              := color(3,r), color(4,r).
                                                                 := color(6,b), color(5,b).
 := color(1,q), color(4,q).
                              := color(3,b), color(4,b).
                                                                 := color(6,q), color(5,q).
 :- color(2,r), color(4,r).
                              :- color(3,q), color(4,q).
 := color(2,b), color(4,b).
                              := color(3,r), color(5,r).
 := color(2,q), color(4,q).
                              := color(3,b), color(5,b).
TU Dresden, (2, r) May 2015 (5, r) .
- color(2, b), color(5, b).
                              :- color(3,q), color(5,q).
                                                                     slide 136 of 142
                              := color(4, r), color(1, r).
```

ASP solving process

Graph coloring: Solving

\$ gringo color.lp | clasp 0

Graph coloring: Solving

```
$ gringo color.lp | clasp 0
```

```
clasp version 2.1.0
Reading from stdin
Solving...
Answer: 1
edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,g) color(4,b) color(3,r) color(2,r
Answer: 2
edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,g) color(4,r) color(3,b) color(2,b)
Answer: 3
edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,b) color(4,g) color(3,r) color(2,r)
Answer: 4
edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,b) color(4,r) color(3,g) color(2,c
Answer: 5
edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,r) color(4,g) color(3,b) color(2,b)
Answer: 6
edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,r) color(4,b) color(3,g) color(2,c)
SATISFIABLE
```

Models : 6 Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s) CPU Time : 0.000s

Problem solving in ASP: Reasoning Modes

Reasoning Modes

- Satisfiability
- Enumeration[†]
- Projection[†]
- Intersection[‡]
- Union[‡]
- Optimization
- and combinations of them

[†] without solution recording[‡] without solution enumeration

References

- Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten Schaub.
 Answer Set Solving in Practice.
 Synthesis Lectures on Artificial Intelligence and Machine Learning.
 Morgan and Claypool Publishers, 2012.
 doi=10.2200/S00457ED1V01Y201211AIM019.
 Michael Gelfond and Vladimir Lifschitz.
 - Classical negation in logic programs and disjunctive databases. New Generation Comput., 9(3–4):365–386, 1991.
 - See also: http://potassco.sourceforge.net