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Outline
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– Declarative Problem Solving
– ASP in a Nutshell
– ASP Paradigm
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– Syntax
– Semantics
– Examples
– Language Constructs
– Modeling
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Answer Set Programming
in a Nutshell

• ASP is an approach to declarative problem solving, combining
– a rich yet simple modeling language
– with high-performance solving capacities

• ASP has its roots in
– (deductive) databases
– logic programming (with negation)
– (logic-based) knowledge representation and (nonmonotonic)

reasoning
– constraint solving (in particular, SATisfiability testing)

• ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

• ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

• ASP embraces many emerging application areas
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Answer Set Programming
in a Hazelnutshell

• ASP is an approach to declarative problem solving, combining
– a rich yet simple modeling language
– with high-performance solving capacities

tailored to Knowledge Representation and Reasoning
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Answer Set Programming
in a Hazelnutshell

• ASP is an approach to declarative problem solving, combining
– a rich yet simple modeling language
– with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

ASP = DB+LP+KR+SAT
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KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)
1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)
1 Provide a representation of the problem
2 A solution is given by a model of the representation
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Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment
propositional horn theories smallest model
propositional theories models

SAT

propositional theories minimal models
propositional theories stable models
propositional programs minimal models
propositional programs supported models
propositional programs stable models
first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models
auto-epistemic theories expansions
default theories extensions

...
...
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LP-style playing with blocks

Prolog program
on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries
?- above(a,c).
true.

?- above(c,a).
no.
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LP-style playing with blocks

Prolog program
on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries (testing entailment)
?- above(a,c).
true.

?- above(c,a).
no.
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LP-style playing with blocks

Shuffled Prolog program
on(a,b).
on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).
above(X,Y) :- on(X,Y).

Prolog queries
?- above(a,c).

Fatal Error: local stack overflow.
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LP-style playing with blocks

Shuffled Prolog program
on(a,b).
on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).
above(X,Y) :- on(X,Y).

Prolog queries (answered via fixed execution)
?- above(a,c).

Fatal Error: local stack overflow.

TU Dresden, 19th May 2015 PSSAI slide 29 of 142



SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X, Y)→ above(X, Y))
∧ (on(X, Z) ∧ above(Z, Y)→ above(X, Y))

Herbrand model
{

on(a, b), on(b, c), on(a, c), on(b, b),
above(a, b), above(b, c), above(a, c), above(b, b), above(c, b)

}
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SAT-style playing with blocks
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KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)
1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)
1 Provide a representation of the problem
2 A solution is given by a model of the representation
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KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)
1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)
1 Provide a representation of the problem
2 A solution is given by a model of the representation

å Answer Set Programming (ASP)
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Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment
propositional horn theories smallest model
propositional theories models
propositional theories minimal models
propositional theories stable models
propositional programs minimal models
propositional programs supported models
propositional programs stable models
first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models
auto-epistemic theories expansions
default theories extensions

...
...
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Answer Set Programming at large

Representation Solution
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Answer Set Programming commonly

Representation Solution

constraint satisfaction problem assignment
propositional horn theories smallest model
propositional theories models
propositional theories minimal models

propositional theories stable models

propositional programs minimal models
propositional programs supported models

propositional programs stable models

first-order theories models
first-order theories minimal models

first-order theories stable models

first-order theories Herbrand models
auto-epistemic theories expansions
default theories extensions

...
...

TU Dresden, 19th May 2015 PSSAI slide 39 of 142



Answer Set Programming in practice

Representation Solution

constraint satisfaction problem assignment
propositional horn theories smallest model
propositional theories models
propositional theories minimal models
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Answer Set Programming in practice

Representation Solution

constraint satisfaction problem assignment
propositional horn theories smallest model
propositional theories models
propositional theories minimal models
propositional theories stable models
propositional programs minimal models
propositional programs supported models

propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models
auto-epistemic theories expansions
default theories extensions

first-order programs stable Herbrand models
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ASP-style playing with blocks

Logic program
on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) }
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ASP-style playing with blocks

Logic program
on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).
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ASP-style playing with blocks

Logic program
on(a,b).
on(b,c).

above(X,Y) :- above(Z,Y), on(X,Z).
above(X,Y) :- on(X,Y).

Stable Herbrand model (and no others)

{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) }
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ASP versus LP

ASP Prolog

Model generation Query orientation
Bottom-up Top-down
Modeling language Programming language

Rule-based format
Instantiation Unification
Flat terms Nested terms

(Turing +) NP(NP) Turing
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ASP versus SAT

ASP SAT

Model generation
Bottom-up

Constructive Logic Classical Logic
Closed (and open) Open world reasoning

world reasoning
Modeling language —
Complex reasoning modes Satisfiability testing

Satisfiability Satisfiability
Enumeration/Projection —
Optimization —
Intersection/Union —

(Turing +) NP(NP) NP
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ASP solving
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SAT solving
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Rooting ASP solving
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Rooting ASP solving

Problem
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6
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Two sides of a coin

• ASP as High-level Language
– Express problem instance(s) as sets of facts
– Encode problem (class) as a set of rules
– Read off solutions from stable models of facts and rules

• ASP as Low-level Language
– Compile a problem into a logic program
– Solve the original problem by solving its compilation
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What is ASP good for?
• Combinatorial search problems in the realm of P, NP, and NPNP

(some with substantial amount of data), like

– Automated Planning
– Code Optimization
– Composition of Renaissance Music
– Database Integration
– Decision Support for NASA shuttle controllers
– Model Checking
– Product Configuration
– Robotics
– System Biology
– System Synthesis
– (industrial) Team-building
– and many many more
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What does ASP offer?

• Integration of DB, KR, and SAT techniques

• Succinct, elaboration-tolerant problem representations
– Rapid application development tool

• Easy handling of dynamic, knowledge intensive applications
– including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SAT

TU Dresden, 19th May 2015 PSSAI slide 55 of 142



What does ASP offer?

• Integration of DB, KR, and SAT techniques

• Succinct, elaboration-tolerant problem representations
– Rapid application development tool

• Easy handling of dynamic, knowledge intensive applications
– including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SAT

TU Dresden, 19th May 2015 PSSAI slide 56 of 142



Agenda
1 Motivation

– Declarative Problem Solving
– ASP in a Nutshell
– ASP Paradigm

2 Introduction
– Syntax
– Semantics
– Examples
– Language Constructs
– Modeling
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Problem solving in ASP: Syntax

Problem

Logic Program

Solution

Stable Models

?
-

6

Modeling Interpreting

Solving
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Normal logic programs
• A (normal) logic program over a set A of atoms is a finite set of rules
• A (normal) rule, r, is of the form

a0 ← a1, . . . , am, not am+1, . . . , not an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

• Notation

head(r) = a0

body(r) = {a1, . . . , am, not am+1, . . . , not an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}

• A program is called positive if body(r)− = ∅ for all its rules
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Rough notational convention

We sometimes use the following notation interchangeably
in order to stress the respective view:

default classical
true, false if and or iff negation negation

source code :- , | not -
logic program ← , ; not ¬
formula ⊥,> → ∧ ∨ ↔ ∼ ¬
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Problem solving in ASP: Semantics

Problem

Logic Program

Solution

Stable Models

?
-

6

Modeling Interpreting

Solving
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Formal Definition
Stable models of positive programs

• A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

– X corresponds to a model of P (seen as a formula)

• The smallest set of atoms which is closed under a positive program P is
denoted by Cn(P)

– Cn(P) corresponds to the ⊆-smallest model of P (ditto)

• The set Cn(P) of atoms is the stable model of a positive program P
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Some “logical” remarks
• Positive rules are also referred to as definite clauses

– Definite clauses are disjunctions with exactly one positive atom:

a0 ∨ ¬a1 ∨ · · · ∨ ¬am

– A set of definite clauses has a (unique) smallest model

• Horn clauses are clauses with at most one positive atom
– Every definite clause is a Horn clause but not vice versa
– Non-definite Horn clauses can be regarded as integrity constraints

– A set of Horn clauses has a smallest model or none

• This smallest model is the intended semantics of such sets of clauses
– Given a positive program P, Cn(P) corresponds to the smallest

model of the set of definite clauses corresponding to P
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Basic idea
Consider the logical formula Φ and its three
(classical) models:

HH
HHH

HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r→ p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, not r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

TU Dresden, 19th May 2015 PSSAI slide 70 of 142



Basic idea
Consider the logical formula Φ and its three
(classical) models:

HH
HHH

HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r→ p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, not r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

TU Dresden, 19th May 2015 PSSAI slide 71 of 142



Basic idea
Consider the logical formula Φ and its three
(classical) models:

HH
HHH

HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r→ p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, not r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

TU Dresden, 19th May 2015 PSSAI slide 72 of 142



Basic idea
Consider the logical formula Φ and its three
(classical) models:

HH
HHH

HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r→ p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, not r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

TU Dresden, 19th May 2015 PSSAI slide 73 of 142



Basic idea
Consider the logical formula Φ and its three
(classical) models:

HH
HHH

HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r→ p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, not r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

TU Dresden, 19th May 2015 PSSAI slide 74 of 142



Basic idea
Consider the logical formula Φ and its three
(classical) models:

HH
HHH

HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r→ p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, not r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

TU Dresden, 19th May 2015 PSSAI slide 75 of 142



Basic idea
Consider the logical formula Φ and its three
(classical) models:

HH
HHH

HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r→ p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, not r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

TU Dresden, 19th May 2015 PSSAI slide 76 of 142



Basic idea

Consider the logical formula Φ and its three
(classical) models:

HH
HHH

HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r→ p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, not r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

TU Dresden, 19th May 2015 PSSAI slide 77 of 142



Formal Definition
Stable model of normal programs

• The Gelfond-Lifschitz Reduct[Gelfond and Lifschitz(1991)], PX , of a
program P relative to a set X of atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

• A set X of atoms is a stable model of a program P, if Cn(PX) = X

• Note: Cn(PX) is the ⊆–smallest (classical) model of PX

• Note: Every atom in X is justified by an “applying rule from P”
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A closer look at PX

• In other words, given a set X of atoms from P,

PX is obtained from P by deleting
1 each rule having not a in its body with a ∈ X

and then
2 all negative atoms of the form not a

in the bodies of the remaining rules

• Note: Only negative body literals are evaluated w.r.t. X
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A first example

P = {p← p, q← not p}

X

PX

Cn(PX)
∅

p ← p
q ←

{q} 8

{p}

p ← p ∅ 8

{q}

p ← p
q ←

{q} 4

{p, q}

p ← p ∅ 8
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A second example

P = {p← not q, q← not p}
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Some properties

• A logic program may have zero, one, or multiple stable models!

• If X is an stable model of a logic program P,
then X is a model of P (seen as a formula)

• If X and Y are stable models of a normal program P,
then X 6⊂ Y
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Programs with Variables

Let P be a logic program
• Let T be a set of (variable-free) terms

(also called Herbrand universe)

• Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)
• Ground Instances of r ∈ P: Set of variable-free rules obtained by

replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T , var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r;
θ is a (ground) substitution

• Ground Instantiation of P: ground(P) =
⋃

r∈Pground(r)

TU Dresden, 19th May 2015 PSSAI slide 102 of 142



Programs with Variables

Let P be a logic program
• Let T be a set of

(

variable-free

)

terms (also called Herbrand universe)
• Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

• Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T , var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r;
θ is a (ground) substitution

• Ground Instantiation of P: ground(P) =
⋃

r∈Pground(r)

TU Dresden, 19th May 2015 PSSAI slide 103 of 142



Programs with Variables

Let P be a logic program
• Let T be a set of (variable-free) terms

(also called Herbrand universe)

• Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

• Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T , var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r;
θ is a (ground) substitution

• Ground Instantiation of P: ground(P) =
⋃

r∈Pground(r)

TU Dresden, 19th May 2015 PSSAI slide 104 of 142



Programs with Variables

Let P be a logic program
• Let T be a set of (variable-free) terms

(also called Herbrand universe)

• Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

• Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T , var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r;
θ is a (ground) substitution

• Ground Instantiation of P: ground(P) =
⋃

r∈Pground(r)

TU Dresden, 19th May 2015 PSSAI slide 105 of 142



An example

P = { r(a, b)←, r(b, c)←, t(X, Y)← r(X, Y) }

T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c, a) ← r(c, a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c, b) ← r(c, b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c, c) ← r(c, c)



• Intelligent Grounding aims at reducing the ground instantiation
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Stable models of programs with Variables

Let P be a normal logic program with variables

• A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X) = X
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Problem solving in ASP: Extended Syntax

Problem

Logic Program

Solution

Stable Models

?
-

6

Modeling Interpreting

Solving
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Language Constructs

• Variables (over the Herbrand Universe)
– p(X) :- q(X) over constants {a,b,c} stands for

p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

• Conditional Literals
– p :- q(X) : r(X) given r(a), r(b), r(c) stands for

p :- q(a), q(b), q(c)

• Disjunction
– p(X) | q(X) :- r(X)

• Integrity Constraints
– :- q(X), p(X)

• Choice
– 2 { p(X,Y) : q(X) } 7 :- r(Y)

• Aggregates
– s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7
– also: #sum, #avg, #min, #max, #even, #odd
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p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

• Conditional Literals
– p :- q(X) : r(X) given r(a), r(b), r(c) stands for

p :- q(a), q(b), q(c)

• Disjunction
– p(X) | q(X) :- r(X)

• Integrity Constraints
– :- q(X), p(X)

• Choice
– 2 { p(X,Y) : q(X) } 7 :- r(Y)

• Aggregates
– s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7
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Modeling
• For solving a problem class C for a problem instance I,

encode
1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

• PI is (still) called problem instance
• PC is often called the problem encoding

• An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts
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Example 3-Colorability

• Vertices are represented with predicates vertex(X);
• Edges are represented with predicates edge(X, Y).

Question: Is there a valid assignment of three colors for an input graph G such
that no two adjacent vertices have the same color?
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Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

}
Problem
encoding
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ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving
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Graph coloring: Grounding

$ gringo --text color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).
edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(1,g)} 1.
1 {color(2,r), color(2,b), color(2,g)} 1.
1 {color(3,r), color(3,b), color(3,g)} 1.
1 {color(4,r), color(4,b), color(4,g)} 1.
1 {color(5,r), color(5,b), color(5,g)} 1.
1 {color(6,r), color(6,b), color(6,g)} 1.

:- color(1,r), color(2,r). :- color(2,g), color(5,g). ... :- color(6,r), color(2,r).
:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).
:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).
:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).
:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).
:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).
:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).
:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).
:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).
:- color(2,r), color(4,r). :- color(3,g), color(4,g).
:- color(2,b), color(4,b). :- color(3,r), color(5,r).
:- color(2,g), color(4,g). :- color(3,b), color(5,b).
:- color(2,r), color(5,r). :- color(3,g), color(5,g).
:- color(2,b), color(5,b). :- color(4,r), color(1,r).
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Graph coloring: Grounding

$ gringo --text color.lp
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edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).
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:- color(1,r), color(2,r). :- color(2,g), color(5,g). ... :- color(6,r), color(2,r).
:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).
:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).
:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).
:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).
:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).
:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).
:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).
:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).
:- color(2,r), color(4,r). :- color(3,g), color(4,g).
:- color(2,b), color(4,b). :- color(3,r), color(5,r).
:- color(2,g), color(4,g). :- color(3,b), color(5,b).
:- color(2,r), color(5,r). :- color(3,g), color(5,g).
:- color(2,b), color(5,b). :- color(4,r), color(1,r).
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Graph coloring: Solving

$ gringo color.lp | clasp 0

clasp version 2.1.0
Reading from stdin
Solving...
Answer: 1
edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,g) color(4,b) color(3,r) color(2,r) color(1,g)
Answer: 2
edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,g) color(4,r) color(3,b) color(2,b) color(1,g)
Answer: 3
edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,b) color(4,g) color(3,r) color(2,r) color(1,b)
Answer: 4
edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,b) color(4,r) color(3,g) color(2,g) color(1,b)
Answer: 5
edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,r) color(4,g) color(3,b) color(2,b) color(1,r)
Answer: 6
edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)
SATISFIABLE

Models : 6
Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s
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Problem solving in ASP: Reasoning Modes
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Reasoning Modes

• Satisfiability
• Enumeration†

• Projection†

• Intersection‡

• Union‡

• Optimization

• and combinations of them

† without solution recording
‡ without solution enumeration
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• See also: http://potassco.sourceforge.net
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