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Course Tutors

Markus Krötzsch
Lectures

Daniel Borchmann
Lectures and Exercises
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Organization

Lectures
Tuesday, DS 2 (9:20–10:50), APB E005
Wednesday, DS 4 (13:00–14:30), APB E005

Exercise Sessions (starting 23 October)

Friday, DS 4 (13:00–14:30), APB E005

Web Page
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Lecture Notes
Slides of current and past lectures will be online. The are no notes for
blackboard lectures.
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Goals and Prerequisites

Goals
Introduce basic notions of computational complexity theory

Introduce commonly known complexity classes (P, NP, PSpace, . . . )
and discuss relationships between them

Develop tools to classify problems into their corresponding complexity
classes

Introduce (some) advanced topics of complexity theory

(Non-)Prerequisites
No particular prior courses needed

General mathematical and theoretical computer science skills
necessary
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Reading List

Michael Sipser: Introduction to the Theory of Computation,
International Edition; 3rd Edition; Cengage Learning 2013
Sanjeev Arora and Boaz Barak: Computational Complexity:
A Modern Approach; Cambridge University Press 2009
Michael R. Garey and David S. Johnson: Computers and
Intractability; Bell Telephone Laboratories, Inc. 1979
Erich Grädel: Complexity Theory; Lecture Notes, Winter Term
2009/10
John E. Hopcroft and Jeffrey D. Ullman: Introduction to Automata
Theory, Languages, and Computation; Addison Wesley Publishing
Company 1979
Neil Immerman: Descriptive Complexity; Springer Verlag 1999
Christos H. Papadimitriou: Computational Complexity; 1995
Addison-Wesley Publishing Company, Inc
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Motivation
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Computational Problems are Everywhere

Example 1.1

What are the factors of 54,623?

What is the shortest route by car from Berlin to Hamburg?

My program now runs for two weeks. Will it ever stop?

Is this C++ program syntactically correct?

Clear
Computational Problems are ubiquitous in our everyday life!
And, depending on what we want to do, those problems either need to be
easily solvable or hardly solvable.

Approach to problems:

[T]he way is to avoid what is strong, and strike at what is weak.

(Sun Zi: The Art of War, Chapter 6: Weak Points and Strong)
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Examples

Example 1.2 (Shortest Path Problem)

Given a weighted graph and two vertices s, t , find the shortest path
between s and t .

Easily solvable using, e.g., Dijkstra’s Algorithm.

Example 1.3 (Longest Path Problem)

Given a weighted graph and two vertices s, t , find the longest path
between s and t .

No efficient algorithm known, and believed to not exist.
(i.e., this problem is NP-hard)

Observation
Difficulty of a problem is hard to assess
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Measuring the Difficulty of Problems

Question
How can we measure the complexity of a problem?

Approach

Estimate the resource requirements of the “best” algorithm that solves this
problem.

Typical Resources:

Running Time

Memory Used

Note
To assess the complexity of a problem, we need to consider all possible
algorithms that solve this problem.
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Problems

What actually is . . . a Problem?

(Decision) Problems are word problems of particular languages.

Example 1.4

“Problem: Is a given graph connected?” will be modeled as the word
problem of the language

GCONN B { 〈G〉 | G is a connected graph }.

Then for a graph G we have

G is connected ⇐⇒ 〈G〉 ∈ GCONN.

Note
The notation 〈G〉 denotes a suitable “encoding” of the graph G over some
fixed alphabet (e.g., { 0, 1 }).
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Algorithms

What actually is . . . an Algorithm?

Different approaches to formalize the notion of an “algorithm”

Turing Machines

Lambda Calculus

µ-Recursion

. . .
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. . .
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Avoid What is Strong

Suppose we are give a language L and a word w.

Question
Does there need to exist any algorithm that decides whether w ∈ L?

Answer
No. Some problems are undecidable.

Example 1.5

The Halting Problem of Turing machines

The Entscheidungsproblem (Is a mathematical statement true?)

Finding the lowest air fare between two cities (→ Reference)

Deciding syntactic validity of C++ programs (→ Reference)

Avoid: Suppose from now on all problems we consider to be decidable.
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Time and Space

Drawback
Measuring running time and memory requirements depends highly on the
machine, and not so much on the problem.

Resort
Measure time and space only asymptotically using Big-O-Notation:

f(n) = O(g(n)) ⇐⇒ f(n) “asymptotically bounded by” g(n)

More formally:

f(n) = O(g(n)) ⇐⇒ ∃c > 0∃n0 ∈ N∀n > n0 : f(n) ≤ c · g(n).
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Big-O-Notation

Example 1.6

100n3 + 1729n = O(n4):

0 50 100 150 200
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·109
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Complexity of Problems

Approach

The time (space) complexity of a problem is the asymptotic running time of
a fastest (least memory consumptive) algorithm that solves the problem.

Problem
Still too difficult . . .

Example 1.7 (Traveling Salesman Problem)

Given a weighted graph, find the shortest simple path visiting every node.

Best known algorithm runs in time O(n22n)
(Bellman-Held-Karp algorithm)

Best known lower bound is O(n log n)

Exact complexity of TSP unknown.
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Even more abstraction

Approach

Divide decision problems into the “quality” of their fastest algorithms:

P is the class of problems solvable in polynomial time

PSpace is the class of problems solvable in polynomial space

ExpTime is the class of problems solvable in exponential time

L is the class of problems solvable in logarithmic space
(apart from the input)

NP is the class of problems verifiable in polynomial time

NL is the class of problems verifiable in logarithmic space

And many more!

⊕P, #P, AC, AC0, ACC0, AM, AP, APSpace, BPL, BPP, BQP,
coNP, E, Exp, FP, IP, MA, MIP, NC, NExpTime, P/poly, PH, PP,
PSpace, RL, RP, Σp

i , TISP(T(n),S(n)), ZPP, . . .
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Strike at What is Weak

Approach (cf. Cobham-Edmonds-Thesis)

The problems in P are “tractable” or “efficiently solvable”
(and those outside not)

Example 1.8

The following problems are in P:

Shorts Path Problem

Satisfiability of Horn-Formulas

Linear Programming

Primality

Note
The Cobham-Edmonds-Thesis is only a rule of thumb: there are
(practically) tractable problems outside of P, and (practically) intractable
problems in P.
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Friend or Foe?

Caveat
It is not known how big P is.
In particular, it is unknown whether P , NP or not.

Approach

Try to find out which problems in a class are at least as hard as others.
Complete problems are then the hardest problems of a class.

Example 1.9

Satisfiability of propositional formulas is NP-complete: if we can efficiently
decide whether a propositional formula is satisfiable, we can solve any
problem in NP efficiently.

But: we still do not know whether we can or cannot solve satisfiability
efficiently. We only know it will be difficult to find out . . .
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Learning Goals

Get an overview over the foundations of Complexity Theory

Gain insights into advanced techniques and results in Complexity
Theory

Understand what it means to “compute” something, and what the
strengths and limits of different computing approaches are

Get a feeling of how hard certain problems are, and where this
hardness comes from

Appreciate how very little we actually know about the computational
complexity of many problems
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Lecture Outline I

Turing Machines (Revision)
Definition of Turing Machines; Variants; Computational Equivalence;
Decidability and Recognizability; Enumeration

Undecidability (Daniel)
Examples of Undecidable Problems; Mapping Reductions; Rice’s
Theorem (both for characterizing Decidability and Recognizability);
Recursion Theorem; Outlook into Decidability in Logic

Time Complexity (Markus)
Measuring Time Complexity; Many-One Reductions; Cook-Levin
Theorem; Time Complexity Classes (P, NP, ExpTime);
NP-completeness; pseudo-NP-complete problems

Space Complexity (Markus)
Space Complexity Classes (PSpace, L, NL); Savitch’s Theorem;
PSpace-completeness; NL-completeness; NL = coNL
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Lecture Outline II

Diagonalization (Daniel)
Hierarchy Theorems (det. Time, non-det. Time, Space); Gap
Theorem; Ladner’s Theorem; Relativization; Baker-Gill-Solovay
Theorem

Alternation (Markus)
Alternating Turing Machines; APTime = PSpace;
APSpace = ExpTime; Polynomial Hierarchy;
NTIME(n) * TISP(n1.2, n0.2)

Circuit Complexity (Markus)
Boolean Circuits; Alternative Proof of Cook-Levin Theorem; Parallel
Computation (NC); P-completeness; P/poly; (Karp-Lipton Theorem,
Meyer’s Theorem)

Probabilistic Computation (Daniel)
Randomized Complexity Classes (RP, PP, BPP, ZPP);
Sipser-Gács-Lautemann Theorem
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Lecture Outline III

Interactive Proofs (Daniel)
Prover and Verifier; Deterministic Proof Systems; Probabilistic
Verifiers; The Class IP; IP = PSpace; (Arthur-Merlin Proofs);
(NP-completeness of Graph Isomorphism implies the Collapse of PH)

Descriptive Complexity (Markus)
Logical Descriptions of Complexity Classes; Fagin’s Theorem; . . .

Approximation Complexity (Daniel)
Optimization Problems; Polynomial-Time Approximation Schemes;
Reductions; Hardness of Approximations; (PCP-Theorem)

Cryptography (Overview Only; Daniel)
One-Way Functions; Pseudorandom Generators; Zero Knowledge
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Avoid what is Strong, and Strike at what is Weak

Sometimes the best way to solve a problem is to avoid it . . .
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