
1Foundations of Logic Programming Negation: Declarative Interpretation

Chapter 7

Negation: Declarative Interpretation

2Foundations of Logic Programming Negation: Declarative Interpretation

Outline

First-Order Formulas and Logical Truth

The Completion semantics

Soundness and restricted completeness of SLDNF-Resolution

Extended consequence operator

An alternative semantics: Standard models

[Lloyd, 1987] J.W. Lloyd. Foundations of Logic Programming: Second, Extended Edition.
Springer Verlag, 1987.

[Cavedon and Lloyd, 1989] L. Cavedon and J.W. Lloyd. A Completeness Theorem for
SLDNF Resolution. Journal of Logic Programming, 7:177-191, 1989.

[Apt and Bol, 1994] K. Apt and R. Bol. Logic Programming and Negation: A Survey. Journal
of Logic Programming, 19/20: 9-71, 1994.

3Foundations of Logic Programming Negation: Declarative Interpretation

First-Order Formulas

∏, F ranked alphabets of predicate symbols and function symbols, respectively,
V set of variables

The (first-order) formulas (over ∏, F, and V) are inductively defined as follows:

if A  TB
∏,F,V

, then A is a formula

if G1 and G2 are formulas, then ¬G1, G1 ∧ G2 (written G1, G2),G1 ∨ G2,
G1 ← G2, and G1 ↔ G2 are formulas

if G1 is formula and x  V, then x G and x G are formulas

4Foundations of Logic Programming Negation: Declarative Interpretation

Extended Notion of Logical Truth (I)

G formula, I interpretation with domain D,  : V → D state

G true in I under , written I ╞ G :Û

I ╞ p(t1, ..., tn) :Û ((t1), ..., (tn))  pI

I ╞ ¬G :Û I  G

I ╞ G1 ∧ G2 :Û I ╞ G1 and I ╞ G2

I ╞ G1 ∨ G2 :Û I ╞ G1 or I ╞ G2

I ╞ G1 ← G2 :Û if I ╞ G2 then I ╞ G1

I ╞ G1 ↔ G2 :Û I ╞ G1 iff I ╞ G2

I ╞ x G :Û for every d  D: I ╞' G

I ╞ x G :Û for some d  D: I ╞' G

where ' : V → D with '(x) = d and '(y) = (y) for every y  V – {x}

/╞

5Foundations of Logic Programming Negation: Declarative Interpretation

Extended Notion of Logical Truth (II)

G formula, S, T sets of formulas, I, interpretation

Let x1, ..., xk be the variables occurring in G.

x1, ..., xk G universal closure of G (abbreviated G)

I ╞ G :Û I ╞ G for every state 

I ╞ p(t1, ..., tn) :Û ((t1), ..., (tn))  pI

G true in I (or: I model of G), written: I ╞ G :Û I ╞ G

I model of S, written: I ╞ S :Û I ╞ G for every G  S

T semantic (or: logical) consequence of S, written S ╞ T
:Û every model of S is a model of T

6Foundations of Logic Programming Negation: Declarative Interpretation

Programs Never Have Negative Consequences (I)

 Pmem: member(x, [x|y]) ←

 member(x, [y|z]) ← member(x, z)

Then Pmem ╞ member(a, [a,b]) and Pmem member(a, []).

But also Pmem ¬member(a, []), since

 HB{member},{|,[],a} ╞ Pmem and HB{member},{|,[],a} ¬member(a, []).

Nevertheless the SLDNF-tree of Pmem  {member(a, [])} is successful:

 ¬member(a,[])

 member(a(,[])

 failure

 □
 success

/╞

/╞

/╞

7Foundations of Logic Programming Negation: Declarative Interpretation

Programs Never Have Negative Consequences (II)

Problem: For every extended program P the “corresponding” Herbrand base is
a model.

Hence: No negative ground literal L can ever be a logical consequence of P.

But: SLDNF-tree of P  {L} may be successful!

  Soundness of SLDNF-resolution?

Solution: Strengthen P by completion (“replace implications by equivalences”)
to comp(P) and compare SLDNF-resolution with comp(P) instead of P!

8Foundations of Logic Programming Negation: Declarative Interpretation

Completion (Example I)

 P: happy ← sun, holidays
 happy ← snow, holidays
 snow ← cold, precipitation
 cold ← winter
 precipitation ← holidays
 winter ←
 holidays ←

comp(P): happy ↔ (sun, holidays) ∨ (snow, holidays)
 snow ↔ cold, precipitation
 cold ↔ winter
 precipitation ↔ holidays
 winter ↔ true
 holidays ↔ true
 sun ↔ false

Then, comp(P) ╞ happy, snow, cold, precipitation, winter, holidays, ¬sun.

9Foundations of Logic Programming Negation: Declarative Interpretation

Completion (Example II)

 P: member(x, [x|y]) ←
 member(x, [y|z]) ← member(x, z)
 disjoint([], x) ←
 disjoint([x|y], z) ← member(x, z), disjoint(y, z)

comp(P): x1, x2 member(x1, x2) ↔ x, y (x1 = x, x2 = [x|y]) ∨
 x, y, z (x1 = x, x2 = [y|z], member(x, z))
 x1, x2 disjoint(x1, x2) ↔ x (x1 = [], x2 = x)∨
 (x, y, z x1 = [x|y], x2 = z,
 ¬member(x, z), disjoint(y, z))

 plus standard equality and inequality axioms

Then, e.g. comp(P) ╞ member(a, [a|b]), ¬member(a, []), ¬disjoint([a], [a]).

10Foundations of Logic Programming Negation: Declarative Interpretation

Completion (I)

Completion of extended program P (denoted by comp(P)) is the set of formulas

constructed from P by the following 6 steps:

1. Associate with every n-ary predicate symbol p a sequence of pairwise distinct

 variables x1, ..., xn which do not occur in P.

2. Transform each clause c = p(t1, ..., tn) ← B into

 p(x1, ..., xn) ← x1 = t1, ..., xn = tn, B

3. Transform each resulting formula p(x1, ..., xn) ← G into

 p(x1, ..., xn) ← z G

 where z is a sequence of the elements of Var(c).

11Foundations of Logic Programming Negation: Declarative Interpretation

Completion (II)

4. For every n-ary predicate symbol p, let

 p(x1, ..., xn) ← z1 G1, ..., p(x1, ..., xn) ← zm Gm

 be all implications obtained in Step 3 (m  0).

If m > 0, then replace these by the formula

 x1, ..., xn p(x1, ..., xn) ↔ z1 G1 ∨ ... ∨ zm Gm

 (If some zi Gi is empty, then replace it by true.)

 If m = 0, then add the formula

 x1, ..., xn p(x1, ..., xn) ↔ false

12Foundations of Logic Programming Negation: Declarative Interpretation

Completion (III)

5. Standard axioms of equality

  [x = x]

  [x = y → y = x]

  [x = y ∧ y = z → x = z]

  [xi = y → f(x1, ..., xi, ..., xn) = f(x1, ..., y, ..., xn)]

  [xi = y → (p(x1, ..., xi, ..., xn) ↔ p(x1, ..., y, ..., xn))]

6. Standard axioms of inequality

  [x1  y1 ∨ ... ∨ xn  yn → f(x1, ..., xn)  f(y1, ..., yn)]

  [f(x1, ..., xm)  g(y1, ..., yn)] (whenever f  g)

  [x  t] (whenever x is proper subterm of t)

5. and 6. ensure that = must be interpreted as equality!

13Foundations of Logic Programming Negation: Declarative Interpretation

Soundness of SLDNF-Resolution

P extended program, Q extended query,  substitution:

 |Var(Q) correct answer substitution of Q :Û comp(P) ╞ Q

Q correct instance of Q :Û comp(P) ╞ Q

Theorem (cf. e.g. [Lloyd, 1987])

If there exists a successful SLDNF-derivation of P  {Q} with CAS , then
comp(P) ╞ Q.

Corollary

If there exists a successful SLDNF-derivation of P  {Q}, then comp(P) ╞ Q.

14Foundations of Logic Programming Negation: Declarative Interpretation

SLDNF-Resolution is Not Complete (I):
Inconsistency

 P : p ← ¬p

comp(P) ⊇ {p ↔ ¬p} “=” {false}.

Hence, comp(P) ╞ p and comp(P) ╞ ¬p.

(because I comp(P) for every interpretation I, i.e. comp(P) is inconsistent)

But there is neither a successful SLDNF-derivation of P  {p} nor of P  {p}.

/╞

15Foundations of Logic Programming Negation: Declarative Interpretation

SLDNF-Resolution is Not Complete (II):
Non-Strictness

 P : p ← q

 p ← ¬q

 q ← q

comp(P) ⊇ {p ↔ q ∨ ¬q, q ↔ q} “=” {p ↔ true}.

Hence, comp(P) ╞ p.

But there is no successful SLDNF-derivation of P  {p}.

16Foundations of Logic Programming Negation: Declarative Interpretation

SLDNF-Resolution is Not Complete (III):
Floundering

 P : p(x) ← ¬q(x)

comp(P) ⊇ {x1 p(x1) ↔ x x1 = x, ¬q(x), x1 q(x1) ↔ false}

“=” {x1 p(x1) ↔ true, x1 q(x1) ↔ false}.

Hence, comp(P) ╞ x1 p(x1).

But there is no successful SLDNF-derivation of P  {p(x1)}.

17Foundations of Logic Programming Negation: Declarative Interpretation

SLDNF-Resolution is Not Complete (IV):
Unfairness

 P : r ← p, q

 p ← p

comp(P) ⊇ {r ↔ p, q, p ↔ p, q ↔ false} “=” {r ↔ false, q ↔ false}.

Hence, comp(P) ╞ ¬r.

But there is no successful SLDNF-derivation of P  {r} w.r.t. leftmost selection rule.

18Foundations of Logic Programming Negation: Declarative Interpretation

Dependency Graphs

dependency graph DP of an extended program P

:Û

directed graph with labeled edges, where

the nodes are the predicate symbols of P;

the edges are either labeled by + (positive edge) or by – (negative egde);

p → q edge in DP :Û

P contains a clause p(s1, ..., sm) ← L, q(t1, ..., tn), N

p → q edge in DP :Û

P contains a clause p(s1, ..., sm) ← L, ¬q(t1, ..., tn), N

+

–

19Foundations of Logic Programming Negation: Declarative Interpretation

Strict, Hierarchical, Stratified Programs

P extended program, DP dependency graph of P, p, q predicate symbols, Q extended
query:

p depends evenly (resp. oddly) on q :Û
there is a path in DP from p to q with
an even–including 0–(resp. odd) number of negative edges

P is strict w.r.t. Q :Û
no predicate symbol occuring in Q depends both evenly and oddly on a predicate
symbol in the head of a clause in P

P is hierarchical :Û
no cycle exists in DP

P is stratified :Û
no cycle with a negative edge exists in DP

20Foundations of Logic Programming Negation: Declarative Interpretation

Restricted Completeness of SLDNF-Resolution (I)

Theorem ([Lloyd, 1987])

Let P be a hierarchical and allowed program and Q be an allowed query.

If comp(P) ╞ Q for some  such that Q is ground, then there exists a
successful SLDNF-derivation of P  {Q} with CAS .

Note:

Theorem does not hold, if arbitrary selection rule is fixed!

Selection rule has to be safe!

21Foundations of Logic Programming Negation: Declarative Interpretation

Restricted Completeness of SLDNF-Resolution (II)

Theorem ([Cavedon and Lloyd, 1989])

Let P be a stratified and allowed program and Q be an allowed query,
such that P is strict w.r.t. Q.

If comp(P) ╞ Q for some  such that Q is ground, then there exists a
successful SLDNF-derivation of P  {Q} with CAS .

Note:

Theorem does not hold if arbitrary selection rule is fixed!

Selection rule has to be safe and fair!

22Foundations of Logic Programming Negation: Declarative Interpretation

Fair Selection Rules

(extended) selection rule R is fair :Û
for every SLDNF-tree F via R and for every branch  in F:

either  is failed

or for every literal L occurring in a query of , (some further instantiated version

of) L is selected within a finite number of derivation steps

Example:

selection rule “select leftmost literal” is unfair

selection rule “select leftmost literal to the right of the literals introduced at the

previous derivation step, if it exists; otherwise select leftmost literal” is fair

23Foundations of Logic Programming Negation: Declarative Interpretation

Extended Consequence Operator

Let P be an extended program and I a Herbrand interpretation.

Then

 TP(I) :Û {H | H ← B  ground(P), I ╞ B}

In case P is a definite program, we know that

TP is monotonic,

TP is continuous,

TP has the least fixpoint M(P),

M(P) = TP
w
.

In case of extended programs all of these properties are lost!

24Foundations of Logic Programming Negation: Declarative Interpretation

Extended TP-Characterization (I)

Lemma 4.3 ([Apt and Bol, 1994])

Let P be an extended program and I a Herbrand interpretation.

Then

 I ╞ P iff TP(I) ⊆ I.

Proof:

 I ╞ P

iff for every H ← B  ground(P): I ╞ B implies I ╞ H

iff for every H ← B  ground(P): I ╞ B implies H  I

iff for every ground atom H : H  TP(I) implies H  I

iff TP(I) ⊆ I

25Foundations of Logic Programming Negation: Declarative Interpretation

Extended TP-Characterization (II)

Definition

Let F and ∏ be ranked alphabets of function symbols and predicate symbols,
respectively, let = ∉ ∏ be a binary predicate symbol (“equality”), and let I be a
Herbrand interpretation for F and ∏.

Then I= :Û I  {= (t, t) | t  HUF} is called a standardized Herbrand interpretation
for F and ∏  {=}.

Lemma 4.4 ([Apt and Bol, 1994])

Let P be an extended program and I a Herbrand interpretation.

Then

 I= ╞ comp(P) iff TP(I) = I.

26Foundations of Logic Programming Negation: Declarative Interpretation

Extended TP-Characterization (III)

Proof Idea of Lemma 4.4:

 I= ╞ comp(P)

iff (since I= is a model for standard axioms of equality and inequality)

 for every ground atom H : I ╞ (H ↔ ∨
(H ← B)ground(P)

 B)

iff for every ground atom H : H  I Û I ╞ B for some H ← B  ground(P)

iff for every ground atom H : H  I Û H  TP(I)

iff TP(I) = I

27Foundations of Logic Programming Negation: Declarative Interpretation

Completion may be Inadequate

 ill ← ¬ill, infection

 infection ←

comp(P) ⊇ {ill ↔ ¬ill, infection , infection ↔ true}

is inconsistent (it has no models).

Hence, comp(P) ╞ healthy.

But I = {infection, ill} is (the only) Herbrand model of P.

Hence, P healthy./╞

28Foundations of Logic Programming Negation: Declarative Interpretation

Non-Intended Minimal Herbrand Models

 P1: p ← ¬q

P1 has three Herbrand models:

M1 = {p}, M2 = {q}, and M3 = {p, q}

P1 has no least, but two minimal Herbrand models: M1 and M2

However: M1, and not M2, is the “intuitive” model of P1.

29Foundations of Logic Programming Negation: Declarative Interpretation

Supported Herbrand Interpretations

A Herbrand interpretation I is supported

:Û

for every H  I there exists some H ← B  ground(P) such that I ╞ B

(Intuition: B is an “explanation” for H)

Example:

M1 is a supported model of P1. (¬q is explanation for p)

M2 is no supported model of P1.

Also note (cf. Lemma 4.3) that TP1
(M2) = ; ⊆ M2, but in particular TP1

(M1) = M1.

30Foundations of Logic Programming Negation: Declarative Interpretation

Extended TP-Characterization (IV)

Lemma 6.2 ([Apt and Bol, 1994])

Let P be an extended program and I a Herbrand interpretation.

Then
 I ╞ P and I supported iff TP(I) = I.

Proof Idea:

 I ╞ P and I supported

iff for every (H ← B)  ground(P): I ╞ B implies I ╞ H

 and for every H  I : I ╞ ∨
(H ← B)ground(P)

 B

iff for every ground atom H : I ╞ (H ← ∨
(H ← B)ground(P)

 B)

 and I ╞ (H → ∨
(H ← B)ground(P)

 B)

iff for every ground atom H : I ╞ (H ↔ ∨
(H ← B)ground(P)

 B)

iff I= model for comp(P)

iff (Lemma 4.4) TP(I) = I

31Foundations of Logic Programming Negation: Declarative Interpretation

Non-Intended Supported Models

 P2: p ← ¬q

 q ← q

P2 has three Herbrand models:

M1 = {p}, M2 = {q}, and M3 = {p, q}

P2 has two supported Herbrand models: M1 and M2

However: M1, and not M2, is the “intended” model of P2.

M1 is called the standard model of P2 (cf. slide VII/35).

32Foundations of Logic Programming Negation: Declarative Interpretation

Stratifications

P extended program and DP dependency graph of P:

predicate symbol p defined in P

:Û P contains a clause p(t1, ..., tn) ← B

P1  ...  Pn = P stratification of P :Û

 - Pi  ; for every i  [1, n]

 - Pi ∩ Pj = ; for every i, j  [1, n] with i  j

 - for every p defined in Pi and edge p → q in DP: q not defined in

 - for every p defined in Pi and edge p → q in DP: q not defined in

Lemma 6.5 ([Apt and Bol, 1994])

An extended program is stratified iff it admits a stratification.

Note: A stratified program may have different stratifications.

+

–

∪j=i 1
n P j

∪j=i
n P j

33Foundations of Logic Programming Negation: Declarative Interpretation

Example (I)

 P: zero(0) ←

 positive(x) ← num(x), ¬zero(x)

 num(0) ←

 num(s(x)) ← num(x)

P1  P2  P3 is a stratification of P, where

 P1 = {num(0) ← , num(s(x)) ← num(x)}

 P2 = {zero(0) ←}

 P2 = {positive(x) ← num(x), ¬zero(x)}

34Foundations of Logic Programming Negation: Declarative Interpretation

Example (II)

 P: num(0) ←

 num(s(x)) ← num(x)

 even(0) ←

 even(x) ← ¬odd(x), num(x)

 odd(s(x)) ← even(x)

 P admits no stratification.

35Foundations of Logic Programming Negation: Declarative Interpretation

Standard Models (Stratified Progams)

I Herbrand interpretation, ∏ set of predicate symbols:

I | ∏ :Û I ∩ {p(t1, ..., tn) | p  ∏, t1, ..., tn ground terms}

Let P1  ...  Pn be stratification of extended program P.

 M1 :Û least Herbrand model of P1 such that

 M1 | {p | p not defined in P} = ;

 M2 :Û least Herbrand model of P2 such that

 M2 | {p | p defined nowhere or in P1} = M1

 ⋮

 Mn :Û least Herbrand model of Pn such that

 Mn | {p | p defined nowhere or in P1  ...  Pn-1} = Mn-1

We call MP = Mn the standard model of P.

36Foundations of Logic Programming Negation: Declarative Interpretation

Example (I)

Let P1  P2  P3 with

 P1 = {num(0) ← , num(s(x)) ← num(x)}

 P2 = {zero(0) ←}

 P3 = {positive(x) ← num(x), ¬zero(x)}

be stratification of P.

Then:

 M1 = {num(t) | t  HU{s,0}}

 M2 = {num(t) | t  HU{s,0}}  {zero(0)}

 M3 = {num(t) | t  HU{s,0}}  {zero(0)}  {positive(t) | t  HU{s,0} – {0}}

Hence MP = M3 is the standard model of P.

37Foundations of Logic Programming Negation: Declarative Interpretation

Properties of Standard Models

Theorem 6.7 ([Apt and Bol, 1994])

Consider a stratified program P. Then,

MP does not depend on the chosen stratification of P,

MP is a minimal model of P,

MP is a supported model of P.

Corollary

For a stratified program P, comp(P) admits a Herbrand model.

38Foundations of Logic Programming Negation: Declarative Interpretation

Objectives

First-Order Formulas and Logical Truth

The Completion semantics

Soundness and restricted completeness of SLDNF-Resolution

Extended consequence operator

An alternative semantics: Standard models

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38

