
Artificial Intelligence, Computational Logic

PROBLEM SOLVING AND SEARCH
IN ARTIFICIAL INTELLIGENCE

Lecture 3 Metaheuristic Algorithms

Sarah Gaggl

Dresden



Agenda

1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction (CSP)
7 Evolutionary Algorithms/ Genetic Algorithms
8 Structural Decomposition Techniques (Tree/Hypertree Decompositions)

TU Dresden PSSAI slide 2 of 53



Hill-climbing Methods

• Hill climbing methods use an iterative improvement technique.
• Technique is applied to a single point - the current point - in the search

space.
• During each iteration, a new point is selected from the neighborhood of

the current point.
• If new point provides better value (in light of evaluation function) the new

point becomes the current point.
• Otherwise, some other neighbor is selected and tested against the

current point.
• The method terminates if no further improvement is possible, or we run

out of time.

TU Dresden PSSAI slide 3 of 53



Iterated Hill-Climber

Algorithm iterated hill-climber
t ← 0
initialize best
repeat

local← FALSE
select a current point vc at random
evaluate vc
repeat

select all new points in the neighborhood of vc
select the point vn from the set of new points with the best value of evaluation function eval
if eval(vn) is better than eval(vc) then

vc ← vn
else

local← TRUE
end if

until local
t ← t + 1
if vc is better than best then

best ← vc
end if

until t = MAX

TU Dresden PSSAI slide 4 of 53



Weaknesses of Hill-climbing Algorithms

1 They usually terminate at solutions that are only locally optimal.
2 No information about how much the local optimum deviates from the

global optimum, or from other local optima.
3 The obtained optimum depends on the initial configuration.
4 In general, it is not possible to provide an upper bound for the

computation time.

But, they are easy to apply. All that is needed is:
• the representation,
• the evaluation function, and
• a measure that defines the neighborhood around a given solution.

TU Dresden PSSAI slide 5 of 53



Balance Between Exploration and
Exploitation

Effective search techniques provide a mechanism for balancing two conflicting
objectives:
• exploiting the best solutions found so far, and
• at the same time exploring the search space.

TU Dresden PSSAI slide 6 of 53



Balance Between Exploration and
Exploitation

Effective search techniques provide a mechanism for balancing two conflicting
objectives:
• exploiting the best solutions found so far, and
• at the same time exploring the search space.

Hill-climbing Techniques
Exploit the best available solution for possible improvement but neglect
exploring a large portion of the search space.

TU Dresden PSSAI slide 7 of 53



Balance Between Exploration and
Exploitation

Effective search techniques provide a mechanism for balancing two conflicting
objectives:
• exploiting the best solutions found so far, and
• at the same time exploring the search space.

Hill-climbing Techniques
Exploit the best available solution for possible improvement but neglect
exploring a large portion of the search space.

Random Search
Explores the search space thoroughly (points are sampled from the search
space with equal probabilities) but foregoes exploiting promising regions.

TU Dresden PSSAI slide 8 of 53



Balance Between Exploration and
Exploitation

Effective search techniques provide a mechanism for balancing two conflicting
objectives:
• exploiting the best solutions found so far, and
• at the same time exploring the search space.

There is no way to choose a single search method that can serve well in
every case!

TU Dresden PSSAI slide 9 of 53



Local Search

1 Pick a solution from the search space and evaluate its merit. Define this
as the current solution.

2 Apply a transformation to the current solution to generate a new solution
and evaluate its merit.

3 If the new solution is better than the current solution then exchange it with
the current solution; otherwise discard the new solution.

4 Repeat sets 2 and 3 until no transformation in the given set improves the
current solution.

TU Dresden PSSAI slide 10 of 53



Local Search

1 Pick a solution from the search space and evaluate its merit. Define this
as the current solution.

2 Apply a transformation to the current solution to generate a new solution
and evaluate its merit.

3 If the new solution is better than the current solution then exchange it with
the current solution; otherwise discard the new solution.

4 Repeat sets 2 and 3 until no transformation in the given set improves the
current solution.

The key lies in the type of the transformation applied to the current solution.

TU Dresden PSSAI slide 11 of 53



Local Search

1 Pick a solution from the search space and evaluate its merit. Define this
as the current solution.

2 Apply a transformation to the current solution to generate a new solution
and evaluate its merit.

3 If the new solution is better than the current solution then exchange it with
the current solution; otherwise discard the new solution.

4 Repeat sets 2 and 3 until no transformation in the given set improves the
current solution.

The key lies in the type of the transformation applied to the current solution.
• One extreme could be to return a potential solution from the search space

selected uniformly at random.

TU Dresden PSSAI slide 12 of 53



Local Search

1 Pick a solution from the search space and evaluate its merit. Define this
as the current solution.

2 Apply a transformation to the current solution to generate a new solution
and evaluate its merit.

3 If the new solution is better than the current solution then exchange it with
the current solution; otherwise discard the new solution.

4 Repeat sets 2 and 3 until no transformation in the given set improves the
current solution.

The key lies in the type of the transformation applied to the current solution.
• One extreme could be to return a potential solution from the search space

selected uniformly at random.
– Then, current solution has no effect on the probabilities of selecting

any new solution.
– The search becomes essentially enumerative.
– Could be even worse: one might resample points that have already

been tried.

TU Dresden PSSAI slide 13 of 53



Local Search

1 Pick a solution from the search space and evaluate its merit. Define this
as the current solution.

2 Apply a transformation to the current solution to generate a new solution
and evaluate its merit.

3 If the new solution is better than the current solution then exchange it with
the current solution; otherwise discard the new solution.

4 Repeat sets 2 and 3 until no transformation in the given set improves the
current solution.

The key lies in the type of the transformation applied to the current solution.
• One extreme could be to return a potential solution from the search space

selected uniformly at random.
– Then, current solution has no effect on the probabilities of selecting

any new solution.
– The search becomes essentially enumerative.
– Could be even worse: one might resample points that have already

been tried.
• Another extreme would be to always return the current solution - this

gets you nowhere!

TU Dresden PSSAI slide 14 of 53



Local Search ctd.

• Searching within some local neighborhood of current solution is a useful
compromise.

• Then, current solution imposes a bias on where we can search next.
• If we find something better, we can update the current point to new

solution and retain what we have learned.
• If the size of the neighborhood is small, the search might be very quick,

but we might get trapped at local optimum.
• If the size of neighborhood is very large, there is less chance to get stuck,

but the efficiency may suffer.
• The type of transformation we apply determines the size of

neighborhood.

TU Dresden PSSAI slide 15 of 53



Local Search and the SAT
Local search algorithms are surprisingly good at finding satisfying assignments
for certain classes of SAT formulas. GSAT is one of the best-known
(randomized) local search algorithms for SAT.

Algorithm GSAT
for i← 1 step 1 to MAX-TRIES do

T ← a randomly generated truth assignment
for j← 1 step 1 to MAX-FLIPS do

if T satisfies the formula then
return(T)

else
make a flip

end if
end for
return("no satisfying assignment found")

end for

TU Dresden PSSAI slide 16 of 53



Local Search and the SAT

Algorithm GSAT
for i← 1 step 1 to MAX-TRIES do

T ← a randomly generated truth assignment
for j← 1 step 1 to MAX-FLIPS do

if T satisfies the formula then
return(T)

else
make a flip

end if
end for
return("no satisfying assignment found")

end for

• "make a flip" flips the variable in T that results in the largest decrease in
the number of unsatisfied clauses.

• MAX-TRIES, determines the number of new search sequences.
• MAX-FLIPS, determines the maximum number of moves per try.

TU Dresden PSSAI slide 17 of 53



Local Search and the SAT ctd.

• GSAT begins with randomly generated truth assignment.
• If assignment satisfies the problem, the algorithm terminates.
• Else, it flips each of the variables from TRUE to FALSE or FALSE to

TRUE and records the decrease in the number of unsatisfied clauses.
• After trying all possible flips, it updates current solution to solution with

largest decrease in unsatisfied clauses.
• If this new solution satisfies the problem, we are done.
• Otherwise, the algorithm starts flipping again.

TU Dresden PSSAI slide 18 of 53



Local Search and the SAT ctd.

• GSAT begins with randomly generated truth assignment.
• If assignment satisfies the problem, the algorithm terminates.
• Else, it flips each of the variables from TRUE to FALSE or FALSE to

TRUE and records the decrease in the number of unsatisfied clauses.
• After trying all possible flips, it updates current solution to solution with

largest decrease in unsatisfied clauses.
• If this new solution satisfies the problem, we are done.
• Otherwise, the algorithm starts flipping again.

Interesting feature of the algorithm:
• Best available flip might increase the number of unsatisfied clauses.
• Selection is only made from neighborhood of current solution. If every

neighbor (defined as being one flip away) is worse than current solution,
then GSAT takes the one that is the least bad.

• Has the chance to escape local optimum!
– But, it might oscillate between points and never escape from some

plateaus.
– One can assign a weight to each clause, and increase the weight

for those who remain unsatisfied.

TU Dresden PSSAI slide 19 of 53



Local Search and the TSP

• There are many local search algorithms for TSP.
• The simplest is called 2−opt.
• Starts with random permutation of cities (call this tour T) and tries to

improve it.
• Neighborhood of T is defined as the set of all tours that can be reached

by changing two nonadjacent edges in T.
• This move is called a 2−interchange.

TU Dresden PSSAI slide 20 of 53



Local Search and the TSP

• There are many local search algorithms for TSP.
• The simplest is called 2−opt.
• Starts with random permutation of cities (call this tour T) and tries to

improve it.
• Neighborhood of T is defined as the set of all tours that can be reached

by changing two nonadjacent edges in T.
• This move is called a 2−interchange.

TU Dresden PSSAI slide 21 of 53



2−opt Algorithm

• A new tour T′ replaces T if it is better.
– Note: we replace the tour every time we find an improvement.
– Thus, we terminate the search in the neighborhood of T when the

first improvement is found.
• If none of the tours in neighborhood of T is better, then T is called

2−optimal and algorithm terminates.
• As GSAT, algorithm should be restarted from several random

permutations.

TU Dresden PSSAI slide 22 of 53



2−opt Algorithm

• A new tour T′ replaces T if it is better.
– Note: we replace the tour every time we find an improvement.
– Thus, we terminate the search in the neighborhood of T when the

first improvement is found.
• If none of the tours in neighborhood of T is better, then T is called

2−optimal and algorithm terminates.
• As GSAT, algorithm should be restarted from several random

permutations.
• Can be generalized to k−opt, where either k or upto k edges are selected.
• Trade-off between size of neighborhood and efficiency of the search:

– If k is small the entire neighborhood can be searched quickly, but
increases likelihood of suboptimal answer.

– For larger values of k, the number of solutions in neighborhood
become enormous (grows exponentially with k). Seldomly used for
k > 3.

TU Dresden PSSAI slide 23 of 53



Escaping Local Optima

• Traditional problem-solving strategies either
– guarantee discovering global solution, but are too expensive, or
– have a tendency of "getting stuck" in local optima.

• There is almost no chance to speed up algorithms that guarantee finding
global solution.

– Problem of finding polynomial-time algorithms for real problems (as
they are NP-hard).

• Remaining option is to design algorithms capable of escaping local
optima.

TU Dresden PSSAI slide 24 of 53



Escaping Local Optima

• Traditional problem-solving strategies either
– guarantee discovering global solution, but are too expensive, or
– have a tendency of "getting stuck" in local optima.

• There is almost no chance to speed up algorithms that guarantee finding
global solution.

– Problem of finding polynomial-time algorithms for real problems (as
they are NP-hard).

• Remaining option is to design algorithms capable of escaping local
optima.

Simulated Annealing
Additional parameter (called temperature) that change the probability of moving
from one point of the search space to another.

TU Dresden PSSAI slide 25 of 53



Escaping Local Optima

• Traditional problem-solving strategies either
– guarantee discovering global solution, but are too expensive, or
– have a tendency of "getting stuck" in local optima.

• There is almost no chance to speed up algorithms that guarantee finding
global solution.

– Problem of finding polynomial-time algorithms for real problems (as
they are NP-hard).

• Remaining option is to design algorithms capable of escaping local
optima.

Simulated Annealing
Additional parameter (called temperature) that change the probability of moving
from one point of the search space to another.

Tabu Search
Memory, which forces the algorithm to explore new areas of the search space.

TU Dresden PSSAI slide 26 of 53



Local Search Revisited

Algorithm local search

x = some initial starting point in S
while improve(x) 6= "no" do

x = improve(x)
end while
return(x)

TU Dresden PSSAI slide 27 of 53



Local Search Revisited

Algorithm local search

x = some initial starting point in S
while improve(x) 6= "no" do

x = improve(x)
end while
return(x)

• improve(x) returns new point y from neighborhood of x, i.e., y ∈ N(x), if y
is better than x,

• otherwise, returns a string "no". In that case, x is a local optimum in S.

TU Dresden PSSAI slide 28 of 53



Simulated Annealing

Algorithm simulated annealing

x = some initial starting point in S
while not termination-condition do

x = improve?(x, T)
update(T)

end while
return(x)

TU Dresden PSSAI slide 29 of 53



Simulated Annealing vs. Local Search

There are three important differences:
1 How the procedure halts.

– Simulated annealing is executed until some external termination
condition is satisfied.

– Local search is performed until no improvement is found.
2 improve?(x, T) doesn’t have to return a better point from the

neighborhood of x. It returns an accepted solution y ∈ N(x), where
acceptance is based on the current temperature T.

3 Parameter T is updated periodically, and the value of T influences the
outcome of the procedure "improve?".

TU Dresden PSSAI slide 30 of 53



Iterated Hill-Climber Revisited

Algorithm iterated hill-climber
t ← 0
initialize best
repeat

local← FALSE
select a current point vc at random
evaluate vc
repeat

select all new points in the neighborhood of vc
select the point vn from the set of new points with the best value of evaluation function eval
if eval(vn) is better than eval(vc) then

vc ← vn
else

local← TRUE
end if

until local
t ← t + 1
if vc is better than best then

best ← vc
end if

until t = MAX

TU Dresden PSSAI slide 31 of 53



Modification of Iterated Hill-Climber

• Instead of checking all strings in the neighborhood of vc and selecting the
best one, select only one point, vn from this neighborhood.

• Accept this new point, i.e., vc ← vn with some probability that depends on
the relative merit of these two points, i.e., the difference between the
values returned by the evaluation function for these two points.

TU Dresden PSSAI slide 32 of 53



Modification of Iterated Hill-Climber

• Instead of checking all strings in the neighborhood of vc and selecting the
best one, select only one point, vn from this neighborhood.

• Accept this new point, i.e., vc ← vn with some probability that depends on
the relative merit of these two points, i.e., the difference between the
values returned by the evaluation function for these two points.

⇒ Stochastic hill-climber

TU Dresden PSSAI slide 33 of 53



Stochastic Hill-Climber

Algorithm stochastic hill-climber

t← 0
select a current point vc at random
evaluate vc

repeat
select the string vn from the neighborhood of vc

select vn with probability 1

1+e
eval(vc)−eval(vn)

T

t← t + 1
until t = MAX

TU Dresden PSSAI slide 34 of 53



Analyzing Stochastic Hill-Climber

• Probabilistic formula for accepting a new solution is based on maximizing
the evaluation function.

• It has only one loop. No repeated calls from different random points.
• Newly selected point is accepted with probability p. Thus, the rule of

moving from current point vc to new neighbor, vn, is probabilistic.
• New accepted point can be worse than current point.
• p = 1

1+e
eval(vc)−eval(vn)

T

• Probability of acceptance depends on the difference in merit between
these two competitors, i.e., eval(vc)− eval(vn), and on the value of an
additional parameter T.

• T remains constant during the execution of the algorithm.

TU Dresden PSSAI slide 35 of 53



Role of Parameter T
Example:
• eval(vc) = 107 and eval(vn) = 120
• eval(vc)− eval(vn) = −13, new point vn is better then vc

TU Dresden PSSAI slide 36 of 53



Role of Parameter T
Example:
• eval(vc) = 107 and eval(vn) = 120
• eval(vc)− eval(vn) = −13, new point vn is better then vc

• What is probability of accepting new point based on different values of T?

TU Dresden PSSAI slide 37 of 53



Role of Parameter T
Example:
• eval(vc) = 107 and eval(vn) = 120
• eval(vc)− eval(vn) = −13, new point vn is better then vc

• What is probability of accepting new point based on different values of T?

T e
−13

T p
1 0.000002 1.00
5 0.0743 0.93
10 0.2725 0.78
20 0.52 0.66
50 0.77 0.56

1010 0.9999 . . . 0.5 . . .

TU Dresden PSSAI slide 38 of 53



Role of Parameter T
Example:
• eval(vc) = 107 and eval(vn) = 120
• eval(vc)− eval(vn) = −13, new point vn is better then vc

• What is probability of accepting new point based on different values of T?

T e
−13

T p
1 0.000002 1.00
5 0.0743 0.93
10 0.2725 0.78
20 0.52 0.66
50 0.77 0.56

1010 0.9999 . . . 0.5 . . .

• The greater T, the smaller the importance of the relative merit of the
competing points!

• If T is huge (e.g., T = 1010), the probability of acceptance approaches 0.5.
The search becomes random!

• If T is very small (e.g., T = 1), we have an ordinary hill-climber!

TU Dresden PSSAI slide 39 of 53



Role of new String

Suppose T = 10 and eval(vc) = 107. Then, probability of acceptance depends
only on the value of the new string.

eval(vn) eval(vc)− eval(vn) e
eval(vc)−eval(vn)

T p
80 27 14.88 0.06
100 7 2.01 0.33
107 0 1.00 0.50
120 −13 0.27 0.78
150 −43 0.01 0.99

TU Dresden PSSAI slide 40 of 53



Role of new String

Suppose T = 10 and eval(vc) = 107. Then, probability of acceptance depends
only on the value of the new string.

eval(vn) eval(vc)− eval(vn) e
eval(vc)−eval(vn)

T p
80 27 14.88 0.06
100 7 2.01 0.33
107 0 1.00 0.50
120 −13 0.27 0.78
150 −43 0.01 0.99

• If new point has same merit as current point, i.e., eval(vc) = eval(vn), the
probability of acceptance is 0.5.

• If new point is better, the probability of acceptance is greater than 0.5.
• The probability of acceptance grows together with the (negative)

difference between these evaluations.

TU Dresden PSSAI slide 41 of 53



Simulated Annealing

• Main difference to stochastic hill-climber is that simulated annealing
changes the parameter T during the run.

• Starts with high values of T making procedure more similar to random
search, and then gradually decreases value of T.

• Towards end of the run, values of T are quite small, like an ordinary
hill-climber.

• In addition, new points are always accepted if they are better than current
point.

TU Dresden PSSAI slide 42 of 53



Simulated Annealing ctd.

Algorithm simulated annealing
t ← 0
initialize T
select a current point vc at random
evaluate vc
repeat

repeat
select new point vn in the neighborhood of vc
if eval(vc) < eval(vn) then

vc ← vn

else if random[0, 1) < e
eval(vn)−eval(vc)

T then
vc ← vn

end if
until (termination-condition)
T ← g(T, t)
t ← t + 1

until (halting-criterion)

TU Dresden PSSAI slide 43 of 53



Simulated Annealing ctd.

• Is also known as Monte Carlo annealing, statistical cooling, probabilistic
hill-climbing, stochastic relaxation, and probabilistic exchange algorithm.

• Based on an analogy taken from thermodynamics.
– To grow a crystal, the row material is heated to a molten state.
– The temperature of the crystal melt is reduced until the crystal

structure is frozen in.
– Cooling should not be done too quickly, otherwise some

irregularities are locked in the crystal structure.

TU Dresden PSSAI slide 44 of 53



Analogies Between Physical System and
Optimization Problem

Physical System Optimization Problem
state feasible solution
energy evaluation function
ground state optimal solution
rapid quenching local search
temperature control parameter T
careful annealing simulated annealing

TU Dresden PSSAI slide 45 of 53



Problem-Specific Questions

As with any search algorithm, simulated annealing requires answers for the
following problem-specific questions.
• What is a solution?
• What are the neighbors of a solution?
• What is the cost of a solution?
• How do we determine the initial solution?

Answers yield the structure of the search space together with the definition of a
neighborhood, the evaluation function, and the initial starting point.

TU Dresden PSSAI slide 46 of 53



Problem-Specific Questions

As with any search algorithm, simulated annealing requires answers for the
following problem-specific questions.
• What is a solution?
• What are the neighbors of a solution?
• What is the cost of a solution?
• How do we determine the initial solution?

Answers yield the structure of the search space together with the definition of a
neighborhood, the evaluation function, and the initial starting point.

Further Questions
• How do we determine the initial "temperature" T?
• How do we determine the cooling ration g(T, t)?
• How do we determine the termination condition?
• How do we determine the halting criterion?

TU Dresden PSSAI slide 47 of 53



STEP 1:
T ← Tmax
select vc at random

STEP 2:
pick a point vn from the neighborhood of vc
if eval(vn) is better than eval(vc) then

select if (vc ← vn)
else

select it with probability e
−∆eval

T

end if
repeat

this step
until kT times

STEP 3:
set T ← rT
if T ≥ Tmin then

goto STEP 2
else

goto STEP 1
end if

Where, Tmax initial temperature, kT number of iterations, r cooling ratio, and Tmin
frozen temperature.

TU Dresden PSSAI slide 48 of 53



SA for SAT

Algorithm SA-SAT
tries← 0
repeat

v← random truth assignment
j← 0
repeat

if v satisfies the clauses then
return v

end if
T = Tmax · e−j·r

for k = 1 to the number of variables do
compute the increase (decrease) δ in the number of clauses made true if vk was flipped

flip variable vk with probability (1 + e−
δ
T )−1

v← new assignment if the flip is made
end for
j← j + 1

until T < Tmin
tries← tries+1

until tries = MAX-TRIES

TU Dresden PSSAI slide 49 of 53



SA for SAT ctd.

• Outermost loop variable called "tries" keeps track of the number of
independent attempts to solve the problem.

• T is set to Tmax at the beginning of each attempt (j← 0) and a new
random truth assignment is made.

• Inner repeat loop tries different assignments by probabilistically flipping
each of the Boolean variables.

• Probability of a flip depends on the improvement δ of the flip and the
current temperature.

• If the improvement is negative, the flip is unlikely to be accepted and vice
versa.

• r represents a decay rate for the temperature, the rate where it drops from
Tmax to Tmin.

• The drop is caused by incrementing j, as T = Tmax · e−j·r.

TU Dresden PSSAI slide 50 of 53



SA-SAT vs. GSAT

• Major difference: GSAT can make a backward move (decrease in number
of unsatisfied clauses) if other moves are not available.

• GSAT cannot make two backward moves in a row, as one backward move
implies existence of next improvement move!

• SA-SAT can make an arbitrary sequence of backward moves, thus
escape local optima!

• SA-SAT appeared to satisfy at least as many formulas as GSAT, with less
work.

• Applications of SA: traveling salesman problem, production scheduling,
Timetabling problems and image processing

TU Dresden PSSAI slide 51 of 53



Summary

• Hill-climbing methods face a danger of getting trapped in local optima and
need to be started from different points.

• Local search can make one backward move.
• Simulated annealing is designed to escape local optima and can make

uphill moves at any time.
• Hill-climbing, local search and SA work on complete solutions.
• SA has many parameters to worry about (temperature, rate of reductions,

...).
• The more sophisticated the method, the more you have to use your

judgment as to how it should be utilized.

TU Dresden PSSAI slide 52 of 53



References

Zbigniew Michalewicz and David B. Fogel.
How to Solve It: Modern Heuristics, volume 2. Springer, 2004.

TU Dresden PSSAI slide 53 of 53


