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Agenda

@ Introduction

@ Uninformed Search versus Informed Search (Best First Search, A*
Search, Heuristics)

e Local Search, Stochastic Hill Climbing, Simulated Annealing

© Tabu Search

e Answer-set Programming (ASP)

@ Constraint Satisfaction (CSP)

e Evolutionary Algorithms/ Genetic Algorithms

@ Structural Decomposition Techniques (Tree/Hypertree Decompositions)
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Hill-climbing Methods

e Hill climbing methods use an iterative improvement technique.

® Technique is applied to a single point - the current point - in the search
space.

® During each iteration, a new point is selected from the neighborhood of
the current point.

® |f new point provides better value (in light of evaluation function) the new
point becomes the current point.

® Otherwise, some other neighbor is selected and tested against the
current point.

® The method terminates if no further improvement is possible, or we run
out of time.
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lterated Hill-Climber

Algorithm iterated hill-climber

t< 0
initialize best
repeat
local + FALSE
select a current point v, at random
evaluate v,
repeat
select all new points in the neighborhood of v,
select the point v, from the set of new points with the best value of evaluation function eval
if eval(v, ) is better than eval(v,) then
Ve £ Vn
else
local + TRUE
end if
until local
t+—1t+1
if v, is better than best then
best <— v,
end if
until r = MAX
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Weaknesses of Hill-climbing Algorithms

0 They usually terminate at solutions that are only locally optimal.

@ No information about how much the local optimum deviates from the
global optimum, or from other local optima.

e The obtained optimum depends on the initial configuration.
e In general, it is not possible to provide an upper bound for the
computation time.
But, they are easy to apply. All that is needed is:
® the representation,
® the evaluation function, and
® a measure that defines the neighborhood around a given solution.
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Balance Between Exploration and
Exploitation

Effective search techniques provide a mechanism for balancing two conflicting
objectives:

® exploiting the best solutions found so far, and

® at the same time exploring the search space.
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Balance Between Exploration and
Exploitation

Effective search techniques provide a mechanism for balancing two conflicting
objectives:

® exploiting the best solutions found so far, and

® at the same time exploring the search space.

Hill-climbing Techniques

Exploit the best available solution for possible improvement but neglect
exploring a large portion of the search space.
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Balance Between Exploration and
Exploitation

Effective search techniques provide a mechanism for balancing two conflicting
objectives:

® exploiting the best solutions found so far, and
® at the same time exploring the search space.

Hill-climbing Techniques

Exploit the best available solution for possible improvement but neglect
exploring a large portion of the search space.

Random Search

Explores the search space thoroughly (points are sampled from the search
space with equal probabilities) but foregoes exploiting promising regions.

| A,
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Balance Between Exploration and
Exploitation

Effective search techniques provide a mechanism for balancing two conflicting
objectives:

® exploiting the best solutions found so far, and

® at the same time exploring the search space.

There is no way to choose a single search method that can serve well in
every case!
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Local Search

@ Pick a solution from the search space and evaluate its merit. Define this
as the current solution.

e Apply a transformation to the current solution to generate a new solution
and evaluate its merit.

© ! the new solution is better than the current solution then exchange it with
the current solution; otherwise discard the new solution.

e Repeat sets 2 and 3 until no transformation in the given set improves the
current solution.
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Local Search

@ Pick a solution from the search space and evaluate its merit. Define this
as the current solution.

e Apply a transformation to the current solution to generate a new solution
and evaluate its merit.

© ! the new solution is better than the current solution then exchange it with
the current solution; otherwise discard the new solution.

e Repeat sets 2 and 3 until no transformation in the given set improves the
current solution.

The key lies in the type of the transformation applied to the current solution.
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Local Search

@ Pick a solution from the search space and evaluate its merit. Define this
as the current solution.

e Apply a transformation to the current solution to generate a new solution
and evaluate its merit.

© ! the new solution is better than the current solution then exchange it with
the current solution; otherwise discard the new solution.

e Repeat sets 2 and 3 until no transformation in the given set improves the
current solution.
The key lies in the type of the transformation applied to the current solution.

® One extreme could be to return a potential solution from the search space
selected uniformly at random.
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Local Search

@ Pick a solution from the search space and evaluate its merit. Define this
as the current solution.

e Apply a transformation to the current solution to generate a new solution
and evaluate its merit.

© ! the new solution is better than the current solution then exchange it with
the current solution; otherwise discard the new solution.

e Repeat sets 2 and 3 until no transformation in the given set improves the
current solution.

The key lies in the type of the transformation applied to the current solution.

® One extreme could be to return a potential solution from the search space
selected uniformly at random.
— Then, current solution has no effect on the probabilities of selecting
any new solution.
— The search becomes essentially enumerative.
— Could be even worse: one might resample points that have already
been tried.
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Local Search

@ Pick a solution from the search space and evaluate its merit. Define this
as the current solution.

e Apply a transformation to the current solution to generate a new solution
and evaluate its merit.

© ! the new solution is better than the current solution then exchange it with
the current solution; otherwise discard the new solution.

e Repeat sets 2 and 3 until no transformation in the given set improves the
current solution.

The key lies in the type of the transformation applied to the current solution.

® One extreme could be to return a potential solution from the search space
selected uniformly at random.
— Then, current solution has no effect on the probabilities of selecting
any new solution.
— The search becomes essentially enumerative.
— Could be even worse: one might resample points that have already
been tried.

® Another extreme would be to always return the current solution - this
gets you nowhere!
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Local Search ctd.

® Searching within some local neighborhood of current solution is a useful
compromise.

® Then, current solution imposes a bias on where we can search next.

e [f we find something better, we can update the current point to new
solution and retain what we have learned.

® |f the size of the neighborhood is small, the search might be very quick,
but we might get trapped at local optimum.

® |f the size of neighborhood is very large, there is less chance to get stuck,
but the efficiency may suffer.

® The type of transformation we apply determines the size of
neighborhood.
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Local Search and the SAT

Local search algorithms are surprisingly good at finding satisfying assignments
for certain classes of SAT formulas. GSAT is one of the best-known
(randomized) local search algorithms for SAT.

Algorithm GSAT

for i «+ 1 step 1 to MAX-TRIES do
T <+ arandomly generated truth assignment
for j < 1 step 1 to MAX-FLIPS do
if T satisfies the formula then
return(7)
else
make a flip
end if
end for
return("no satisfying assignment found")
end for
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Local Search and the SAT

Algorithm GSAT

fori < 1 step 1 to MAX-TRIES do
T <+ arandomly generated truth assignment
forj < 1 step 1 to MAX-FLIPS do
if T satisfies the formula then
return(7T)
else
make a flip
end if
end for
return("no satisfying assignment found")
end for

® "make a flip" flips the variable in T that results in the largest decrease in
the number of unsatisfied clauses.

® MAX-TRIES, determines the number of new search sequences.
® MAX-FLIPS, determines the maximum number of moves per try.
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Local Search and the SAT ctd.

® GSAT begins with randomly generated truth assignment.
® [f assignment satisfies the problem, the algorithm terminates.

® FElse, it flips each of the variables from TRUE to FALSE or FALSE to
TRUE and records the decrease in the number of unsatisfied clauses.

® After trying all possible flips, it updates current solution to solution with
largest decrease in unsatisfied clauses.

® |f this new solution satisfies the problem, we are done.
® QOtherwise, the algorithm starts flipping again.

TU Dresden PSSAI slide 18 of 53



Local Search and the SAT ctd.

® GSAT begins with randomly generated truth assignment.
® [f assignment satisfies the problem, the algorithm terminates.

® FElse, it flips each of the variables from TRUE to FALSE or FALSE to
TRUE and records the decrease in the number of unsatisfied clauses.

® After trying all possible flips, it updates current solution to solution with
largest decrease in unsatisfied clauses.

® |f this new solution satisfies the problem, we are done.
® QOtherwise, the algorithm starts flipping again.

Interesting feature of the algorithm:
® Best available flip might increase the number of unsatisfied clauses.
® Selection is only made from neighborhood of current solution. If every
neighbor (defined as being one flip away) is worse than current solution,
then GSAT takes the one that is the least bad.
® Has the chance to escape local optimum!

— But, it might oscillate between points and never escape from some
plateaus.

— One can assign a weight to each clause, and increase the weight
for those who remain unsatisfied.
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Local Search and the TSP

® There are many local search algorithms for TSP.
® The simplest is called 2—opr.

® Starts with random permutation of cities (call this tour 7) and tries to
improve it.

® Neighborhood of T is defined as the set of all tours that can be reached
by changing two nonadjacent edges in T.

® This move is called a 2—interchange.
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Local Search and the TSP

® There are many local search algorithms for TSP.

® The simplest is called 2—opr.

® Starts with random permutation of cities (call this tour 7) and tries to
improve it.

® Neighborhood of T is defined as the set of all tours that can be reached
by changing two nonadjacent edges in T.

® This move is called a 2—interchange.
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2—opt Algorithm

® Anew tour 77 replaces T if it is better.
— Note: we replace the tour every time we find an improvement.
— Thus, we terminate the search in the neighborhood of 7 when the

first improvement is found.
® |f none of the tours in neighborhood of T is better, then T is called
2—optimal and algorithm terminates.
® As GSAT, algorithm should be restarted from several random
permutations.

TU Dresden PSSAI slide 22 of 53



2—opt Algorithm

® Anew tour 77 replaces T if it is better.
— Note: we replace the tour every time we find an improvement.
— Thus, we terminate the search in the neighborhood of 7 when the
first improvement is found.
® |f none of the tours in neighborhood of T is better, then T is called
2—optimal and algorithm terminates.
® As GSAT, algorithm should be restarted from several random
permutations.
® (Can be generalized to k—opt, where either k or upto k edges are selected.

® Trade-off between size of neighborhood and efficiency of the search:
— If k is small the entire neighborhood can be searched quickly, but
increases likelihood of suboptimal answer.
— For larger values of k, the number of solutions in neighborhood
become enormous (grows exponentially with k). Seldomly used for
k> 3.
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Escaping Local Optima

® Traditional problem-solving strategies either
— guarantee discovering global solution, but are too expensive, or
— have a tendency of "getting stuck" in local optima.
® There is almost no chance to speed up algorithms that guarantee finding
global solution.
— Problem of finding polynomial-time algorithms for real problems (as
they are NP-hard).

® Remaining option is to design algorithms capable of escaping local
optima.
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Escaping Local Optima

® Traditional problem-solving strategies either
— guarantee discovering global solution, but are too expensive, or
— have a tendency of "getting stuck" in local optima.
® There is almost no chance to speed up algorithms that guarantee finding
global solution.
— Problem of finding polynomial-time algorithms for real problems (as
they are NP-hard).
® Remaining option is to design algorithms capable of escaping local
optima.

Simulated Annealing

Additional parameter (called temperature) that change the probability of moving
from one point of the search space to another.
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Escaping Local Optima

® Traditional problem-solving strategies either
— guarantee discovering global solution, but are too expensive, or
— have a tendency of "getting stuck” in local optima.
® There is almost no chance to speed up algorithms that guarantee finding
global solution.
— Problem of finding polynomial-time algorithms for real problems (as
they are NP-hard).

® Remaining option is to design algorithms capable of escaping local
optima.

Simulated Annealing

Additional parameter (called temperature) that change the probability of moving
from one point of the search space to another.

Tabu Search

Memory, which forces the algorithm to explore new areas of the search space.
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Local Search Revisited

Algorithm local search

x = some initial starting pointin &
while improve(x) # "no" do
x = improve(x)
end while
return(x)
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Local Search Revisited

Algorithm local search

x = some initial starting pointin &
while improve(x) # "no" do
x = improve(x)
end while
return(x)

® improve(x) returns new point y from neighborhood of x, i.e., y € N(x), if y
is better than x,

® otherwise, returns a string "no". In that case, x is a local optimum in S.
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Simulated Annealing

Algorithm simulated annealing

x = some initial starting pointin &
while not termination-condition do
x = improve?(x, T)
update(7)
end while
return(x)
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Simulated Annealing vs. Local Search

There are three important differences:

@ How the procedure halts.

— Simulated annealing is executed until some external termination
condition is satisfied.
— Local search is performed until no improvement is found.

e improve?(x, T) doesn’t have to return a better point from the
neighborhood of x. It returns an accepted solution y € N(x), where
acceptance is based on the current temperature 7.

e Parameter T is updated periodically, and the value of T influences the
outcome of the procedure "improve?".
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lterated Hill-Climber Revisited

Algorithm iterated hill-climber

t< 0
initialize best
repeat
local + FALSE
select a current point v, at random
evaluate v,
repeat
select all new points in the neighborhood of v,
select the point v, from the set of new points with the best value of evaluation function eval
if eval(v, ) is better than eval(v,) then
Ve £ Vn
else
local + TRUE
end if
until local
t+—1t+1
if v, is better than best then
best <— v,
end if
until r = MAX
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Modification of lterated Hill-Climber

® |nstead of checking all strings in the neighborhood of v. and selecting the
best one, select only one point, v, from this neighborhood.

® Accept this new point, i.e., v. < v, with some probability that depends on
the relative merit of these two points, i.e., the difference between the
values returned by the evaluation function for these two points.
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Modification of lterated Hill-Climber

® |nstead of checking all strings in the neighborhood of v. and selecting the
best one, select only one point, v, from this neighborhood.

® Accept this new point, i.e., v. < v, with some probability that depends on
the relative merit of these two points, i.e., the difference between the
values returned by the evaluation function for these two points.

= Stochastic hill-climber
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Stochastic Hill-Climber

Algorithm stochastic hill-climber

1<+ 0
select a current point v. at random
evaluate v,
repeat
select the string v, from the neighborhood of v,
select v, with probability
1

e T
tt+1
until t = MAX
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Analyzing Stochastic Hill-Climber

® Probabilistic formula for accepting a new solution is based on maximizing
the evaluation function.

® |t has only one loop. No repeated calls from different random points.

® Newly selected point is accepted with probability p. Thus, the rule of
moving from current point v. to new neighbor, v,, is probabilistic.

® New accepted point can be worse than current point.

_ 1
® p= oval(ve) —eval(vg)
1+e T

® Probability of acceptance depends on the difference in merit between
these two competitors, i.e., eval(ve) — eval(vy,), and on the value of an
additional parameter 7.

® T remains constant during the execution of the algorithm.
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Role of Parameter T

Example:
® cval(ve) = 107 and eval(v,) = 120
® eval(ve) — eval(v,) = —13, new point v, is better then v,
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Role of Parameter T

Example:
® cval(ve) = 107 and eval(v,) = 120
® eval(ve) — eval(v,) = —13, new point v, is better then v,

® What is probability of accepting new point based on different values of 7?
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Role of Parameter T

Example:

® cval(ve) = 107 and eval(v,) = 120

® cval(ve) — eval(vy) = —13, new point v, is better then v,

® What is probability of accepting new point based on different values of 7?

—13

T e T P

1 0.000002 1.00

5 0.0743 0.93
10 | 0.2725 0.78
20 | 0.52 0.66
50 | 0.77 0.56
100 ] 0.9999... | 0.5...
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Role of Parameter T

Example:
® cval(ve) = 107 and eval(v,) = 120
® cval(ve) — eval(vy) = —13, new point v, is better then v,

® What is probability of accepting new point based on different values of 7?

—13

T e T P

1 0.000002 1.00

5 0.0743 0.93
10 | 0.2725 0.78
20 | 0.52 0.66
50 | 0.77 0.56
100 ] 0.9999... | 0.5...

® The greater 7, the smaller the importance of the relative merit of the
competing points!

® |f Tis huge (e.g., T = 10'?), the probability of acceptance approaches 0.5.
The search becomes random!

® |f Tis very small (e.g., T = 1), we have an ordinary hill-climber!
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Role of new String

Suppose T = 10 and eval(v.) = 107. Then, probability of acceptance depends
only on the value of the new string.

TU Dresden

eval(vy)

eval(ve) — eval(vy)

eval(ve) —eval(vy)
T

e p

30 27 14.88 0.06

100 7 2.01 0.33

107 0 1.00 0.50

120 —13 0.27 0.78

150 —43 0.01 0.99
PSSAI
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Role of new String

Suppose T = 10 and eval(v.) = 107. Then, probability of acceptance depends
only on the value of the new string.

eval(vy) | eval(ve) — eval(va) PP ET) .
o & 14.88 0.06
100 7 2.01 0.33
107 0 1.00 0.50
120 —13 0.27 0.78
150 —43 0.01 0.99

® |f new point has same merit as current point, i.e., eval(vc) = eval(vn), the
probability of acceptance is 0.5.

® [f new point is better, the probability of acceptance is greater than 0.5.

® The probability of acceptance grows together with the (negative)
difference between these evaluations.
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Simulated Annealing

® Main difference to stochastic hill-climber is that simulated annealing
changes the parameter 7 during the run.

® Starts with high values of 7 making procedure more similar to random
search, and then gradually decreases value of T.

® Towards end of the run, values of T are quite small, like an ordinary
hill-climber.

® |n addition, new points are always accepted if they are better than current
point.
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Simulated Annealing ctd.

Algorithm simulated annealing

t<0
initialize T
select a current point v, at random
evaluate v,
repeat
repeat
select new point v, in the neighborhood of v,
if eval(v.) < eval(v,) then
Ve £ Vn
eval(vy) —eval(ve)
else if random[0, 1) < ¢ T
Ve £ Vp
end if
until (termination-condition)
T« g(T,1)
t 141

until (halting-criterion)

TU Dresden PSSAI
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Simulated Annealing ctd.

® |s also known as Monte Carlo annealing, statistical cooling, probabilistic
hill-climbing, stochastic relaxation, and probabilistic exchange algorithm.
® Based on an analogy taken from thermodynamics.
— To grow a crystal, the row material is heated to a molten state.
— The temperature of the crystal melt is reduced until the crystal
structure is frozen in.
— Cooling should not be done too quickly, otherwise some
irregularities are locked in the crystal structure.
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Analogies Between Physical System and
Optimization Problem

Physical System Optimization Problem
state feasible solution
energy evaluation function
ground state optimal solution

rapid quenching local search
temperature control parameter T
careful annealing | simulated annealing
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Problem-Specific Questions

As with any search algorithm, simulated annealing requires answers for the
following problem-specific questions.

® What is a solution?

® What are the neighbors of a solution?

® What is the cost of a solution?

® How do we determine the initial solution?

Answers yield the structure of the search space together with the definition of a
neighborhood, the evaluation function, and the initial starting point.
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Problem-Specific Questions

As with any search algorithm, simulated annealing requires answers for the
following problem-specific questions.

® What is a solution?

® What are the neighbors of a solution?

® What is the cost of a solution?

® How do we determine the initial solution?

Answers yield the structure of the search space together with the definition of a
neighborhood, the evaluation function, and the initial starting point.

Further Questions
® How do we determine the initial "temperature" 77
® How do we determine the cooling ration g(7,1)?
® How do we determine the termination condition?
® How do we determine the halting criterion?
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STEP 1:

T < Timax
select v, at random
STEP 2:
pick a point v, from the neighborhood of v,
if eval(v,) is better than eval(v.) then
select if (ve < vy)
else
— Aeval
select it with probability e 7
end if
repeat
this step
until k7 times
STEP 3:
setT < T
if T > T,,, then
goto STEP 2
else
goto STEP 1
end if

Where, 7)., initial temperature, k7 number of iterations, r cooling ratio, and 7,
frozen temperature.
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SA for SAT

Algorithm SA-SAT

tries < 0
repeat
v «— random truth assignment
j0
repeat
if v satisfies the clauses then
return v
end if .
T = Tpax - ¢ /"
for k = 1 to the number of variables do
compute the increase (decrease) § in the number of clauses made true if v, was flipped
—1

8
flip variable v, with probability (1 + ¢~ 7)
v «— new assignment if the flip is made
end for
j—Jjit+1
until T < Ty
tries «— tries+1
until tries = MAX-TRIES
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SA for SAT ctd.

® Qutermost loop variable called "tries" keeps track of the number of
independent attempts to solve the problem.

® T is setto T, at the beginning of each attempt (j +— 0) and a new
random truth assignment is made.

® Inner repeat loop tries different assignments by probabilistically flipping
each of the Boolean variables.

® Probability of a flip depends on the improvement ¢ of the flip and the
current temperature.

® |f the improvement is negative, the flip is unlikely to be accepted and vice
versa.

® ,represents a decay rate for the temperature, the rate where it drops from
Tinax O Tmin-

® The drop is caused by incrementing j, as T = Toax - ¢ 7"
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SA-SAT vs. GSAT

® Major difference: GSAT can make a backward move (decrease in number
of unsatisfied clauses) if other moves are not available.

® GSAT cannot make two backward moves in a row, as one backward move
implies existence of next improvement move!

® SA-SAT can make an arbitrary sequence of backward moves, thus
escape local optimal!

® SA-SAT appeared to satisfy at least as many formulas as GSAT, with less
work.

® Applications of SA: traveling salesman problem, production scheduling,
Timetabling problems and image processing
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Summary

® Hill-climbing methods face a danger of getting trapped in local optima and
need to be started from different points.

® | ocal search can make one backward move.

® Simulated annealing is designed to escape local optima and can make
uphill moves at any time.

® Hill-climbing, local search and SA work on complete solutions.
® SA has many parameters to worry about (temperature, rate of reductions,

® The more sophisticated the method, the more you have to use your
judgment as to how it should be utilized.
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