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Answer Set Programming
What is ASP?

I ASP is a declarative problem solving approach.
 Syntactically similar to Prolog, but truely declarative.

I For a given ASP “program”, we compute models representing a
solution for the encoded problem.

I Very efficient implementations are available, for computing models.

I We will use the Potassco tools Gringo, Clasp and Clingo.
 http://potassco.sourceforge.net/
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Sudoku

The famous number riddle Sudoku represents a constraint problem,
typically defined on a 9× 9 board, where numbers 1 . . . 9 are placed on
each cell. The goal is to complete a given board such that in each row,
column, and square the numbers 1 . . . 9 occur exactly once.
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Sudoku

The famous number riddle Sudoku represents a constraint problem,
typically defined on a 9× 9 board, where numbers 1 . . . 9 are placed on
each cell. The goal is to complete a given board such that in each row,
column, and square the numbers 1 . . . 9 occur exactly once.

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

Unsolved Sudoku
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typically defined on a 9× 9 board, where numbers 1 . . . 9 are placed on
each cell. The goal is to complete a given board such that in each row,
column, and square the numbers 1 . . . 9 occur exactly once.
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2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

Solved Sudoku

4 6 7 3 8

5 7 9 1 4

1 9 4 8 2 5

9 7 3 8 5 2 4

3 7 2 6 8

6 8 1 4 9 5 3

7 4 6 2 5 1

6 5 1 9 3

3 8 5 4 2
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Sudoku
How to start modeling?

Declarative means we declare and describe the things we know;

I The game board, cells, rows, columns and squares.

I The rules, in detail
I On each cell there is exactly one number from {1 . . . 9}.
I In each row every number occurs exactly once.
I In each column every number occurs exactly once.
I In each square every number occurs exactly once.

And there is no need to specify an algorithm on how to solve Sudokus.
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Sudoku
Board Encoding

I We encode the board via facts:

number(1..9). row(0..8). column(0..8).

square(0, 0..2, 0..2). square(1, 0..2, 3..5). square(2, 0..2, 6..8).
square(3, 3..5, 0..2). square(4, 3..5, 3..5). square(5, 3..5, 6..8).
square(6, 6..8, 0..2). square(7, 6..8, 3..5). square(8, 6..8, 6..8).
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Sudoku
Board Encoding

I Alternatively, via rules:

square(0, X, Y ) :- row(X), column(Y ), X < 3, Y < 3.
square(1, X, Y ) :- row(X), column(Y ), X < 3, Y > 2, Y < 6.
square(2, X, Y ) :- row(X), column(Y ), X < 3, Y > 5.
square(3, X, Y ) :- row(X), column(Y ), X > 2, X < 6, Y < 3.
square(4, X, Y ) :- row(X), column(Y ), X > 2, X < 6, Y > 2, Y < 6.
square(5, X, Y ) :- row(X), column(Y ), X > 2, X < 6, Y > 5.
square(6, X, Y ) :- row(X), column(Y ), X > 5, Y < 3.
square(7, X, Y ) :- row(X), column(Y ), X > 5, Y > 2, Y < 6.
square(8, X, Y ) :- row(X), column(Y ), X > 5, Y > 5.
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Sudoku
Board Encoding

I Grounding the program via

gringo sudoku.lp ---text

I Yields instantiated square atoms (beside the known facts):

square(0,0,0). square(0,0,1). square(0,0,2). ...

square(1,0,3). square(1,0,4). square(1,0,5). ...

square(2,0,6). square(2,0,7). square(2,0,8). ...

...
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Sudoku
Rules Encoding

I On each cell there is exactly one number from {1 . . . 9}.

cell(X,Y, 1) :- row(X), column(Y ),
not cell(X,Y, 2), not cell(X,Y, 3), not cell(X,Y, 4),
not cell(X,Y, 5), not cell(X,Y, 6), not cell(X,Y, 7),
not cell(X,Y, 8), not cell(X,Y, 9).

cell(X,Y, 2) :- row(X), column(Y ),
not cell(X,Y, 1), not cell(X,Y, 3), not cell(X,Y, 4),
not cell(X,Y, 5), not cell(X,Y, 6), not cell(X,Y, 7),
not cell(X,Y, 8), not cell(X,Y, 9).
. . .

cell(X,Y, 9) :- row(X), column(Y ),
not cell(X,Y, 1), not cell(X,Y, 2), not cell(X,Y, 3),
not cell(X,Y, 4), not cell(X,Y, 5), not cell(X,Y, 6),
not cell(X,Y, 7), not cell(X,Y, 8).
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Sudoku
Board Encoding

I What is the meaning of these rules?

cell(X,Y, 1) :- row(X), column(Y ),
not cell(X,Y, 2), not cell(X,Y, 3), not cell(X,Y, 4),
not cell(X,Y, 5), not cell(X,Y, 6), not cell(X,Y, 7),
not cell(X,Y, 8), not cell(X,Y, 9).
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Sudoku
Board Encoding

I What is the meaning of these rules?

cell(X,Y, 1) :- row(X), column(Y ),
not cell(X,Y, 2), not cell(X,Y, 3), not cell(X,Y, 4),
not cell(X,Y, 5), not cell(X,Y, 6), not cell(X,Y, 7),
not cell(X,Y, 8), not cell(X,Y, 9).

For the cell at position (X,Y ) we can place 1, if X corresponds to some
row and Y to some column, and we failed to demonstrate that there is
already placed one of the other numbers 2 . . . 9.
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Sudoku
Board Encoding

Since we have one such rule for every number, we can
non-deterministically choose / guess which number to place on some cell.

We defined the search space with these rules. In fact, without further
knowledge, these rules generate all 981 combinations of cell numberings;
therefore they are called guessing rules.
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Sudoku
Board Encoding

Since we have one such rule for every number, we can
non-deterministically choose / guess which number to place on some cell.

We defined the search space with these rules. In fact, without further
knowledge, these rules generate all 981 combinations of cell numberings;
therefore they are called guessing rules.

We need to restrict the search space such that only proper numberings
are generated.
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Sudoku
Constraints Encoding

I Each number occurs only once in each row and column.

:- cell(X,Y 1, N), cell(X,Y 2, N), Y 1 != Y 2.
:- cell(X1, Y,N), cell(X2, Y,N), X1 != X2.

I Each number occurs only once in each square.

in square(S,N) :- cell(X,Y,N), square(S,X, Y ).
:- number(N), not in square(S,N),

square(S, , ).
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Sudoku
Grounding and Solving

I We ground the program and call clasp

gringo sudoku.lp | clasp
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Sudoku
Grounding and Solving

Solving...

Answer: 1

cell(8,8,1) cell(8,7,4) cell(8,6,7) cell(8,5,2) cell(8,4,9)

cell(8,3,8) cell(8,2,3) cell(8,1,6) cell(8,0,5) cell(7,8,4)

cell(7,7,2) cell(7,6,9) cell(7,5,1) cell(7,4,8) cell(7,3,7)

cell(7,2,6) cell(7,1,5) cell(7,0,3) cell(6,8,8) cell(6,7,9)

cell(6,6,3) cell(6,5,7) cell(6,4,6) cell(6,3,5) cell(6,2,1)

cell(6,1,4) cell(6,0,2) cell(5,8,2) cell(5,7,1) cell(5,6,8)

cell(5,5,4) cell(5,4,7) cell(5,3,9) cell(5,2,5) cell(5,1,3)

cell(5,0,6) cell(4,8,9) cell(4,7,7) cell(4,6,6) cell(4,5,8)

cell(4,4,5) cell(4,3,3) cell(4,2,4) cell(4,1,2) cell(4,0,1)

cell(3,8,7) cell(3,7,8) cell(3,6,5) cell(3,5,9) cell(3,4,3)

cell(3,3,6) cell(3,2,2) cell(3,1,1) cell(3,0,4) cell(2,8,3)

SATISFIABLE

Models : 1+

Time : 0.043s (Solving: 0.01s 1st Model: 0.01s Unsat: 0.00s)

CPU Time : 0.040s
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Sudoku
Grounding and Solving

I We ground the program and call clasp

gringo sudoku.lp | clasp

I When providing no options clasp will compute one answer set in
case of satisfiability. We can request more, e.g. 5, via

gringo sudoku.lp | clasp ---number 5
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Sudoku
Grounding and Solving

I We ground the program and call clasp

gringo sudoku.lp | clasp

I When providing no options clasp will compute one answer set in
case of satisfiability. We can request more, e.g. 5, via

gringo sudoku.lp | clasp ---number 5

Up to now, what are we generating?
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Sudoku
Problem Instance

I We add a concrete Sudoku, given as cell facts.

cell(0, 0, 3). cell(0, 4, 8). cell(0, 6, 6). cell(0, 8, 7).
cell(1, 1, 1). cell(1, 6, 4). cell(1, 8, 9).
cell(2, 0, 8). cell(2, 1, 9). cell(2, 4, 6). cell(2, 5, 7).
cell(3, 1, 6). cell(3, 3, 1). cell(3, 4, 9). cell(3, 6, 7).
cell(4, 2, 9). cell(4, 3, 6). cell(4, 4, 5). cell(4, 8, 2).
cell(5, 2, 2). cell(5, 7, 1).
cell(6, 1, 5). cell(6, 4, 4). cell(6, 8, 3).
cell(7, 1, 4). cell(7, 3, 2). cell(7, 7, 9). cell(7, 8, 8).
cell(8, 1, 8). cell(8, 2, 6). cell(8, 4, 3). cell(8, 6, 1).

I There is only one solution, which we can verify by requesting all
answer sets

gringo sudoku.lp sudoku-instance.lp | clasp ---number 0
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Modeling Paradigm
Guess and Check Programs [?]

For the Sudoku example, we developed two main parts.

I Problem description
Encoding the underlying problem, i.e. the board, rules and
constraints.

I Problem instance
Encoding of a concrete instance of the problem; i.e. a partially filled
Sudoku.

We can solve any Sudoku with our encoding, the problem description is
therefore said to be uniform.

15



Modeling Paradigm
Guess and Check Programs

Two important aspects in the problem description:

I We defined so-called guessing rules to generate prospective solutions.

I We then constrained guesses in order to rule out those not
representing a solution.

These guess & check parts are characteristic for answer set programs.

I Motivated by NP-problems.

I Can be seen as ”Design-Pattern‘
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Traveling Salesman Problem

A salesman is requested to visit some pre-defined cities. In order to be as
efficient as possible, he wants to visit every city only once, as well as to
travel the shortest roundtrip visiting all cities starting and ending in the
same city.
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A salesman is requested to visit some pre-defined cities. In order to be as
efficient as possible, he wants to visit every city only once, as well as to
travel the shortest roundtrip visiting all cities starting and ending in the
same city.

Dresden

Frankfurt

Hanoi

Bankok
Hue

Ho Chi Minh

Da Nang

40

896

96

74

965

834
872

54

60
64

8
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Traveling Salesman Problem
Problem Seperation

I We can split the problem into:

(a) finding roundtrips beginning from and ending in the same city
visiting all other cities only once, and

(b) computing the length of each roundtrip in order to find the shortest.

I In fact, the first is the very well-known NP-complete problem of
finding Hamiltonian cycles.

I For the encoding of the Hamiltonian cycle problem we stick to the
guess and check paradigm.
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Traveling Salesman Problem
Hamiltonian Cycle Encoding

I Every node in a Hamiltonian cycle has exactly one incoming and one
outgoing edge.

1 {cycle(X,Y ) : edge(X,Y )} 1 :- node(X).
1 {cycle(X,Y ) : edge(X,Y )} 1 :- node(Y ).

I In a Hamiltonian cycle, every node is reachable.

reachable(Y ) :- cycle(s, Y ).
reachable(Y ) :- cycle(X,Y ), reachable(X).

:- node(X), not reachable(X).
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Traveling Salesman Problem
Hamiltonian Cycle Encoding

I Facts for the input graph.

Dresden

Frankfurt

Hanoi

Bankok
Hue

Ho Chi Minh

Da Nang

40

896

96

74

965

834
872

54

60
64

8
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Traveling Salesman Problem
Hamiltonian Cycle Encoding

I Facts for the input graph.

node(dresden). node(frankfurt).
node(bankok). node(hanoi).
node(hue). node(hochi).
node(danang). edge(dresden, frankfurt).
edge(dresden, hanoi). edge(frankfurt, hanoi).
edge(frankfurt, bankok). edge(frankfurt, hochi).
edge(bankok, hanoi). edge(bankok, hochi).
edge(hochi, hue). edge(hochi, danang).
edge(danang, hue). edge(hanoi, hue).
edge(Y,X) :- edge(X,Y ).

21



Traveling Salesman Problem
Solving - Computing Hamiltonian Cycles

gringo -c s=dresden hamiltonian.lp map.lp | clasp ---n 0

Solving...

Answer: 1

cycle(dresden,hanoi) cycle(hanoi,bankok)

cycle(bankok,hue) cycle(hue,danang)

cycle(danang,hochi) cycle(hochi, frankfurt)

cycle(frankfurt,dresden)

...

SATISFIABLE

Models : 2

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s
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Traveling Salesman Problem
Hamiltonian Cycle Encoding

I In order to calculate the cycle length, we need the distance
information.

distance(dresden, frankfurt, 40). distance(dresden, hanoi, 834).
distance(frankfurt, bankok, 896). distance(bankok, hanoi, 96).
distance(bankok, hochi, 74). distance(frankfurt, hochi, 965).
distance(frankfurt, hanoi, 872). distance(hanoi, hue, 54).
distance(hochi, danang, 60). distance(hochi, hue, 64).
distance(danang, hue, 8).
distance(X,Y,C) :- distance(Y,X,C).

I With a so-called aggregate function, we can compute the sum of the
edge in a cycle.

circumference(N) :- N = #sum [cycle(X,Y ) : distance(X,Y,C) = C].
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Traveling Salesman Problem
Hamiltonian Cycle Encoding

I In example, for cycle(dresden, frankfurt) and
cycle(frankfurt, hanoi), we obtain the grounded rule

circumference(912) :- 912 = #sum[cycle(dresden, frankfurt) = 40,
cycle(frankfurt, hanoi) = 872].
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Traveling Salesman Problem
Hamiltonian Cycle Encoding

I In example, for cycle(dresden, frankfurt) and
cycle(frankfurt, hanoi), we obtain the grounded rule

circumference(912) :- 912 = #sum[cycle(dresden, frankfurt) = 40,
cycle(frankfurt, hanoi) = 872].

I We can compute answer sets including one circumference atom, via

gringo -c s=dresden hamiltonian.lp

map.lp

distances.lp | clasp ---n 0
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Traveling Salesman Problem
Minimization

I Answer sets can be computed and enumerated with respect to some
optimization value; i.e. the circumference of our cycles.

I In clasp objective optimization functions are offered, in our case we
use minimize.

#minimize [circumference(N) = N ].

I Adding the statement to the program yields a minimal hamiltonian
cycle of length 1966.
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Traveling Salesman Problem
Minimization

Answer: 1

cycle(dresden,hanoi) cycle(hanoi,bankok)

cycle(bankok,hue) cycle(hue,danang)

cycle(danang,hochi) cycle(hochi, frankfurt)

cycle(frankfurt,dresden)

Optimization: 1966

...

OPTIMUM FOUND

Models : 1

Optimization: 1966

Time : 1.358s (Solving: 0.40s 1st Model: 0.01s Unsat: 0.39s)

26



Traveling Salesman Problem
Minimization

Dresden

Frankfurt

Hanoi

Bankok
Hue

Ho Chi Minh

Da Nang
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64

8
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Further Readings ...

I Potassco Guide:
https://github.com/potassco/guide/releases/

I META Encoding
I Multi-Shot Solving

I Multi-Shot Solving: Ricochet Robots
I https://www.cs.uni-potsdam.de/wv/publications/DBLP_conf/

birthday/GebserKOS14.pdf

Download clingo, or gringo and clasp here:

http://potassco.org
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BACKUP
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Graph Coloring

N -Coloring Problem
Is there some coloring of the vertices of a given graph using n colors,
such that no two adjacent vdertices share the same color?
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Graph Coloring

color(green). color(red). color(blue).

coloring(X, green) :- node(X), not coloring(X, red),
not coloring(X, blue).

coloring(X, red) :- node(X), not coloring(X, green),
not coloring(X, blue).

coloring(X, blue) :- node(X), not coloring(X, green),
not coloring(X, red).
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Graph Coloring

color(green). color(red). color(blue).

coloring(X, green) :- node(X), not coloring(X, red),
not coloring(X, blue).

coloring(X, red) :- node(X), not coloring(X, green),
not coloring(X, blue).

coloring(X, blue) :- node(X), not coloring(X, green),
not coloring(X, red).

:- coloring(X1, C), coloring(X2, C),
edge(X1, X2).
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Cannibals and Missionaries

Three missionaries and three cannibals must cross a river using a boat
which can carry at most two people, under the constraint that, for both
banks, if there are missionaries present on the bank, they cannot be
outnumbered by cannibals (if they were, the cannibals would eat the
missionaries). The boat cannot cross the river by itself with no people on
board.
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