Exercise Sheet 0: Introduction to Python
Maximilian Marx, Markus Krötzsch
Knowledge Graphs, 2018-10-16, Winter Term 2018/2019

Exercise 0.1. Find a Python 3 interpreter and a suitable code editor for your platform and make sure they are installed on your computer.

Exercise 0.2. Write a (Python) program that takes as input a directed graph in the format given below, and prints out all vertices that have maximal out-degree. The input should be read from a file given as a command-line argument.

The file format is as follows:

n	
s_{1}	t_{1}
s_{2}	t_{2}
s_{3}	t_{3}
\vdots	\vdots
s_{m}	t_{m}

The first line consists of a single integer n, the number of vertices of the graph. Each of the following lines consists of two integers s_{i} and t_{i}, specifying an edge from vertex s_{i} to vertex t_{i}, separated by a space. Vertices are numbered $0,1, \ldots, n-i$.

As an example, the following input encodes a directed triangle:

Data files are available at https://github.com/knowsys/Course-Knowledge-Graphs/tree/master/ test-data/.

Exercise 0.3. Modify your program to compute the vertices of minimal in-degree instead.

