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Exercise 1

Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query g and a database instance 7, does 7 = g hold?

Query Answering Given an n-ary query g, a database instance 7, and an n-ary tuple ¢, does ¢ € M[q](Z) hold?
Query Emptiness Given a query q and a database instance 7, is M[q](Z) # 0?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
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We show that using a TM deciding BQE, we can construct a TM deciding QA:

Let M be a TM deciding BQE.

Construct the TM M’ that, on input (7, g[X], ¢) with X = (x1,...,xp) and ¢ = {c, ..., Cp):
1. transforms (7, q[x], ¢} into (Z, g[x1/c1, ..., Xn/Cnl),

2. simulates M on input (Z, g[x{/c1, ..., Xa/Cn]), and
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> Then M’ decides QA.

vy
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3. Initially, p, points to the first $ symbol, and we repeat:
3.1 point p; at the beginning of the i-th constant of the row;
3.2 point pj at the beginning of the j-th constant of the row;
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Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.
Definition (Lecture 3, Slides 20-21)
A LoGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> a read/write working tape of size O(log n)
> a write-only, write-once output tape

The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions X* — ¥*.

Solution.

> We describe a LOGSPACE transducer M that, given a table R with schema Rlas, ..., as] and some
aj,aj €{ai,...,an}, computes oa=5(R):

> 1. We use the unnamed perspective, encoding attributes a; and a; as numbers i and j, and storing the table R as a sequence
of rows of the form $c, ..., c,#.
2. We use three pointers p;, p;, and p;.
3. Initially, p, points to the first $ symbol, and we repeat:
3.1 point p; at the beginning of the i-th constant of the row;
3.2 point pj at the beginning of the j-th constant of the row;
3.3 using p; and p; compare the two constants.
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Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LoGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> a read/write working tape of size O(log n)
> a write-only, write-once output tape

The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions X* — ¥*.

Solution.

> We describe a LOGSPACE transducer M that, given a table R with schema Rlas, ..., as] and some
aj,aj €{ai,...,an}, computes oa=5(R):

> 1. We use the unnamed perspective, encoding attributes a; and a; as numbers i and j, and storing the table R as a sequence
of rows of the form $c, ..., c,#.

2. We use three pointers p;, p;, and p;.

3. Initially, p, points to the first $ symbol, and we repeat:
3.1 point p; at the beginning of the i-th constant of the row;
3.2 point pj at the beginning of the j-th constant of the row;
3.3 using p; and p; compare the two constants.
3.4 if the constants are equal, copy the row to the output tape (using pr); and
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Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LoGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> a read/write working tape of size O(log n)
> a write-only, write-once output tape

The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions X* — ¥*.

Solution.

> We describe a LOGSPACE transducer M that, given a table R with schema Rlas, ..., as] and some
aj,aj €{ai,...,an}, computes oa=5(R):

> 1. We use the unnamed perspective, encoding attributes a; and a; as numbers i and j, and storing the table R as a sequence
of rows of the form $c, ..., c,#.

2. We use three pointers p;, p;, and p;.

3. Initially, p, points to the first $ symbol, and we repeat:
3.1 point p; at the beginning of the i-th constant of the row;
3.2 point pj at the beginning of the j-th constant of the row;
3.3 using p; and p; compare the two constants.
3.4 if the constants are equal, copy the row to the output tape (using pr); and
3.5 point pr to the next $, if there is any, otherwise halt.
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Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LoGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> a read/write working tape of size O(log n)
> a write-only, write-once output tape

The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions X* — ¥*.

Solution.
> We describe a LOGSPACE transducer M that, given a table R with schema Rlas, ..., as] and some
aj,8j €{ai,...,an}, computes oa=4 (R).
> We describe a LOGSPACE transducer M that, given a table R with schema RJay, ..., a;] and some
{&,....a,} c{a,...,an}, computes g 2 (R):
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Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.
Definition (Lecture 3, Slides 20-21)
A LoGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> a read/write working tape of size O(log n)
> a write-only, write-once output tape

The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions X* — ¥*.

Solution.
> We describe a LOGSPACE transducer M that, given a table R with schema Rlas, ..., as] and some
aj,8j €{ai,...,an}, computes oa=4 (R).
> We describe a LOGSPACE transducer M that, given a table R with schema RJay, ..., a;] and some
{&,....a,} c{a,...,an}, computes ., aZ(R):
> 1. We use the named perspective, encoding the set of attributes {a; ,...,a,}as #4,, ..., a,# at the start of the input, and

then encoding R as $a; — cq ..... an - ch$.
2. We point a pointer p. to the first attribute &}, and, for every row of the input, proceed:
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Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.
Definition (Lecture 3, Slides 20-21)
A LoGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> a read/write working tape of size O(log n)
> a write-only, write-once output tape

The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions X* — ¥*.

Solution.
> We describe a LOGSPACE transducer M that, given a table R with schema Rlas, ..., as] and some
aj,8j €{ai,...,an}, computes oa=4 (R).
> We describe a LOGSPACE transducer M that, given a table R with schema RJay, ..., a;] and some
{&,....a,} c{a,...,an}, computes ., aZ(R):
> 1. We use the named perspective, encoding the set of attributes {a; ,...,a,}as #4,, ..., a,# at the start of the input, and

then encoding R as $a; — cq ..... an - ch$.
2. We point a pointer p. to the first attribute &}, and, for every row of the input, proceed:
2.1 write $ to the output.
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Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.
Definition (Lecture 3, Slides 20-21)
A LoGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> a read/write working tape of size O(log n)
> a write-only, write-once output tape

The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions X* — ¥*.
Solution.
> We describe a LOGSPACE transducer M that, given a table R with schema Rlas, ..., as] and some
aj,8j €{ai,...,an}, computes oa=4 (R).
> We describe a LOGSPACE transducer M that, given a table R with schema RJay, ..., a;] and some
{&,....a,} c{a,...,an}, computes ., aZ(R):
> 1. We use the named perspective, encoding the set of attributes {a; ,...,a,}as #4,, ..., a,# at the start of the input, and
then encoding R as $a, - c},..., ap - ch$.

2. We point a pointer p. to the first attribute &}, and, for every row of the input, proceed:

2.1 write $ to the output. )
2.2 for every pair g; c]!, check whether g; occurs in (a; ,,,,, ap, } and write aj - c]( if that is the case.
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Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.
Definition (Lecture 3, Slides 20-21)
A LoGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> a read/write working tape of size O(log n)
> a write-only, write-once output tape

The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions X* — ¥*.

Solution.
> We describe a LOGSPACE transducer M that, given a table R with schema Rlas, ..., as] and some
aj,8j €{ai,...,an}, computes oa=4 (R).
> We describe a LOGSPACE transducer M that, given a table R with schema RJay, ..., a;] and some
{&,....a,} c{a,...,an}, computes 4., az('q):

> 1. We use the named perspective, encoding the set of attributes {a; ,...,a,}as #4,, ..., a,# at the start of the input, and
then encoding R as $a, - c},..., ap - ch$.
2. We point a pointer p. to the first attribute &}, and, for every row of the input, proceed:

2.1 write $ to the output. )
2.2 for every pair g; c]!, check whether g; occurs in (a; ,,,,, ap, } and write aj - c]( if that is the case.

2.3 write $ to the output.
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Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

oi=c(R) (c a constant)

7731,..“,‘3[(":’1)
Say,...ap—by....b (R)
RUS

oi=j(R) (j an attribute)
R= S
R-S8
RNS
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Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

oi=c(R) (c a constant)

7731,..“,‘3[(":’1)
Say,...ap—by....b (R)
RUS

Solution.

oi=j(R) (j an attribute)
R= S
R-S8
RNS

42/75



Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra

gives rise to a corresponding circuit by describing the circuits for the following expressions:

oi=c(R) (c a constant) oi=j(R)
7731,..“,‘3[(":?) Rw S
6a1 ar—bi,..., b[(R) R-S
RUS RNS
Solution.
oi=c(R) for each tuple {c1,...,cp) in R, we add one of these two circuits:

(/ an attribute)

ifci=c
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Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra

gives rise to a corresponding circuit by describing the circuits for the following expressions:

oi=c(R) (c a constant) oi=j(R)
7731,..“,‘3[(":’1) Rw S
6a1 ar—bi,..., b[(R) R-S
RUS RNS
Solution.
oi=c(R) for each tuple {c1,...,cp) in R, we add one of these two circuits:

oi—j(R) analogous.

(/ an attribute)

if ci = ¢j
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Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

oi=c(R) (c a constant) oi=j(R) (j an attribute)
7731,..“,‘3[(":’1) R»< S
6a1 o@D e b[(R) R-S
RUS RNS

Solution.
oi=c(R) for each tuple {c1,...,cp) in R, we add one of these two circuits:
oi—j(R) analogous.

_____ 2 (R) foralltuples {c1,...,Cn),...,{c],..., Cp) in R with
Cay = Cj,---,Cay = Cp,, We add the circuit:
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Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

oi=c(R) (c a constant) oi=j(R) (j an attribute)
7731,..“,‘3[(":’1) R»< S
6a1 o@D e b[(R) R-S
RUS RNS

Solution.

oi=c(R) for each tuple {c1,...,cp) in R, we add one of these two circuits:

(Ti:j(H) analogous. (R=S)(ar...., as,c,..., Cn.bi,..., bx)
Tay....a,(R) forall tuples {C1,...,Cn),-...{C,. .., Cp) in Rwith
Cay = Cj,---,Cay = Cp,, We add the circuit:

R S for each tuple (a1, ...,ar, C1,...,Cn) in R and each tuple
(by,...,bk,cqy,...,cp)in S, we add the circuit:
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Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

oi=c(R) (c a constant) oi=j(R) (j an attribute)
7(31,..“,‘3[(":’1) R»< S
6a1 o@D e b[(R) R-S
RUS RNS

Solution.
oi=c(R) for each tuple {c1,...,cp) in R, we add one of these two circuits:
oi—j(R) analogous.

2 (R) foralltuples {c1,...,Cn),...,{c],..., Cp) in R with
Cay = Cj,---,Cay = Cp,, We add the circuit:

R S for each tuple (a1, ...,ar, C1,...,Cn) in R and each tuple
(by,...,bk,cqy,...,cp)in S, we add the circuit:

Oay...an—by....b,(R) for each tuple (cs,...,ca,) in R, we add the circuit:
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Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

oi=c(R) (c a constant) oi=j(R) (j an attribute)
7731,..“,‘3[(":’1) R»< S
6a1 o@D e b[(R) R-S
RUS RNS

Solution.
oi=c(R) for each tuple {c1,...,cp) in R, we add one of these two circuits:
oi—j(R) analogous.

2 (R) foralltuples {c1,...,Cn),...,{c],..., Cp) in R with
Cay = Cj,---,Cay = Cp,, We add the circuit:

R S for each tuple (a1, ...,ar, C1,...,Cn) in R and each tuple
(by,...,bk,cqy,...,cp)in S, we add the circuit:

Oay...an—by....b,(R) for each tuple (cs,...,ca,) in R, we add the circuit:
R — S for each tuple {cy,...,cn) in R, we add the circuit:
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Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

oi=c(R) (c a constant) oi=j(R) (j an attribute)
7731,..“,‘3[(":’1) R»< S
6a1 o@D e b[(R) R-S
RUS RNS

Solution.
oi=c(R) for each tuple {c1,...,cp) in R, we add one of these two circuits:
oi—j(R) analogous.

2 (R) foralltuples {c1,...,Cn),...,{c],..., Cp) in R with
Cay = Cj,---,Cay = Cp,, We add the circuit:

R S for each tuple (a1, ...,ar, C1,...,Cn) in R and each tuple
(by,...,bk,cqy,...,cp)in S, we add the circuit:

Oay...an—by....b,(R) for each tuple (cs,...,ca,) in R, we add the circuit:
R — S for each tuple {cy,...,cn) in R, we add the circuit:

RU S for each tuple {cy,...,cn) in R, we add the circuit:
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Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

oi=c(R) (c a constant) oi=j(R) (j an attribute)
7731,..“,‘3[(":’1) Re S
6a1 o@D e b[(R) R-S
RUS RNS

Solution.
oi=c(R) for each tuple {c1,...,cp) in R, we add one of these two circuits:
oi—j(R) analogous.

2 (R) foralltuples {c1,...,Cn),...,{c],..., Cp) in R with
Ca; = Chy»-.-»Ca, = Ch,, We add the circuit:

R S for each tuple (a1, ...,ar, C1,...,Cn) in R and each tuple
(by,...,bk,cqy,...,cp)in S, we add the circuit:

Oay...an—by....b,(R) for each tuple (cs,...,ca,) in R, we add the circuit:
R — S for each tuple {cy,...,cn) in R, we add the circuit:

RU S for each tuple {cy,...,cn) in R, we add the circuit:
RN S analogous to Re< S.
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Exercise 4
Exercise. Decide whether the following statements are true or false:
1. The combined complexity of a query language is at least as high as its data complexity.
2. The query complexity of a query language is at least as high as its data complexity.
If true, explain why, otherwise give a counter-example.
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Exercise 4

Exercise. Decide whether the following statements are true or false:
1. The combined complexity of a query language is at least as high as its data complexity.
2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Definition (Lecture 3, Slide 5)

Combined complexity given BCQ q and database instance 7 does 7 = g hold?
Data complexity given database instance 7, does I = g hold for a fixed BCQ q?
Query complexity given BCQ q, does I |= g hold for a fixed database instance 7?
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Exercise 4
Exercise. Decide whether the following statements are true or false:
1. The combined complexity of a query language is at least as high as its data complexity.
2. The query complexity of a query language is at least as high as its data complexity.
If true, explain why, otherwise give a counter-example.
Definition (Lecture 3, Slide 5)

Combined complexity given BCQ q and database instance 7 does 7 = g hold?
Data complexity given database instance 7, does I = g hold for a fixed BCQ q?
Query complexity given BCQ q, does I |= g hold for a fixed database instance 7?

Solution.
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Exercise 4
Exercise. Decide whether the following statements are true or false:
1. The combined complexity of a query language is at least as high as its data complexity.
2. The query complexity of a query language is at least as high as its data complexity.
If true, explain why, otherwise give a counter-example.

Definition (Lecture 3, Slide 5)

Combined complexity given BCQ q and database instance 7 does 7 = g hold?
Data complexity given database instance 7, does I = g hold for a fixed BCQ q?
Query complexity given BCQ q, does I |= g hold for a fixed database instance 7?

Solution.
1. True (why?).
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Exercise 4

Exercise. Decide whether the following statements are true or false:
1. The combined complexity of a query language is at least as high as its data complexity.
2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Definition (Lecture 3, Slide 5)
Combined complexity given BCQ q and database instance 7 does 7 = g hold?

Data complexity given database instance 7, does I = g hold for a fixed BCQ q?
Query complexity given BCQ q, does I |= g hold for a fixed database instance 7?

Solution.
1. True (why?).

2. False: Consider L = {q} with q a non-trivial BCQ, i.e., a BCQ such that there are database instances 7 and J
with 7 = g and J = g. Then the query complexity is constant, yet the data complexity of L is still in ACO.
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Exercise 5

Exercise. Show that the composition of logspace reductions yields a logspace reduction.
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Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.
Definition (Lecture 3, Slides 20-21)
A LOGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> aread/write working tape of size O(log n)
> a write-only, write-once output tape

The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions ¥* — ¥*.
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Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)

A LOGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> aread/write working tape of size O(log n)
> a write-only, write-once output tape

The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions ¥* — ¥*.

Solution.
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Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)

A LOGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> aread/write working tape of size O(log n)
> a write-only, write-once output tape

The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions ¥* — ¥*.

Solution.
> Letf,g: X" - X* be LoGSPACE-computable functions.
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Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)

A LOGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> aread/write working tape of size O(log n)
> a write-only, write-once output tape

The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions ¥* — ¥*.

Solution.
> Letf,g: X" - X* be LoGSPACE-computable functions.
> Let M; and My be LOGSPACE transducers computing f and g, respectively.
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Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)

A LOGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> aread/write working tape of size O(log n)
> a write-only, write-once output tape

The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions ¥* — ¥*.

Solution.
> Letf,g: X" - X* be LoGSPACE-computable functions.
> Let M; and My be LOGSPACE transducers computing f and g, respectively.
> We show that f o g is also LOGSPACE computable by constructing a LoGSPACE transducer M computing f o g:
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Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)

A LOGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> aread/write working tape of size O(log n)
> a write-only, write-once output tape

The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions ¥* — ¥*.

Solution.
> Letf,g: X" - X* be LoGSPACE-computable functions.
> Let M; and My be LOGSPACE transducers computing f and g, respectively.

> We show that f o g is also LOGSPACE computable by constructing a LoGSPACE transducer M computing f o g:
1. We can't just simulate M, to compute g(w) for input w: |g(w)| may be polynomial in |w| (but not larger, since L C P).
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Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)
A LOGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> a read/write working tape of size O(log n)
> a write-only, write-once output tape
The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions ¥* — ¥*.
Solution.
> Letf,g: X" - X* be LoGSPACE-computable functions.
> Let M; and My be LOGSPACE transducers computing f and g, respectively.

> We show that f o g is also LOGSPACE computable by constructing a LoGSPACE transducer M computing f o g:
1. We can't just simulate M, to compute g(w) for input w: |g(w)| may be polynomial in |w| (but not larger, since L C P).
2. But we can construct Mj that computes the k-th symbol of g(w):
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Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)
A LOGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> a read/write working tape of size O(log n)
> a write-only, write-once output tape
The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions ¥* — ¥*.
Solution.
> Letf,g: X" - X* be LoGSPACE-computable functions.
> Let M; and My be LOGSPACE transducers computing f and g, respectively.

> We show that f o g is also LOGSPACE computable by constructing a LoGSPACE transducer M computing f o g:
1. We can't just simulate M, to compute g(w) for input w: |g(w)| may be polynomial in |w| (but not larger, since L C P).
2. But we can construct Mj that computes the k-th symbol of g(w):
2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w|, we can do that in logarithmic space).
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Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)
A LOGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> a read/write working tape of size O(log n)
> a write-only, write-once output tape
The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions ¥* — ¥*.
Solution.
> Letf,g: X" - X* be LoGSPACE-computable functions.
> Let M; and My be LOGSPACE transducers computing f and g, respectively.

> We show that f o g is also LOGSPACE computable by constructing a LoGSPACE transducer M computing f o g:
1. We can't just simulate M, to compute g(w) for input w: |g(w)| may be polynomial in |w| (but not larger, since L C P).
2. But we can construct Mj that computes the k-th symbol of g(w):

2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w], we can do that in logarithmic space).
2.2 Oninput p#w, M’g computes the k-th symbol of g(w).
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Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)
A LOGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> a read/write working tape of size O(log n)
> a write-only, write-once output tape
The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions ¥* — ¥*.
Solution.
> Letf,g: X" - X* be LoGSPACE-computable functions.
> Let M; and My be LOGSPACE transducers computing f and g, respectively.

> We show that f o g is also LOGSPACE computable by constructing a LoGSPACE transducer M computing f o g:
1. We can't just simulate M, to compute g(w) for input w: |g(w)| may be polynomial in |w| (but not larger, since L C P).
2. But we can construct Mj that computes the k-th symbol of g(w):

2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w], we can do that in logarithmic space).
2.2 Oninput p#w, M’g computes the k-th symbol of g(w).

3. Then M computes f o g on input w by simulating M;.
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Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)
A LOGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> a read/write working tape of size O(log n)
> a write-only, write-once output tape
The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions ¥* — ¥*.
Solution.
> Letf,g: X" - X* be LoGSPACE-computable functions.
> Let M; and My be LOGSPACE transducers computing f and g, respectively.

> We show that f o g is also LOGSPACE computable by constructing a LoGSPACE transducer M computing f o g:
1. We can't just simulate M, to compute g(w) for input w: |g(w)| may be polynomial in |w| (but not larger, since L C P).
2. But we can construct Mj that computes the k-th symbol of g(w):

2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w], we can do that in logarithmic space).
2.2 Oninput p#w, M’g computes the k-th symbol of g(w).
3. Then M computes f o g on input w by simulating M;.
4. Each time the simulation of M tries to read the k-th symbol of g(w), we simulate M, reading w from the input tape and p
from the working tape, respectively, storing the result in a single cell of the working tape.
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Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)
A LOGSPACE transducer is a deterministic TM with three tapes:
> aread-only input tape
> a read/write working tape of size O(log n)
> a write-only, write-once output tape
The output of a LOGSPACE transducer is the contents of its output tape when it halts, i.e., LOGSPACE transducers
compute partial functions ¥* — ¥*.
Solution.
> Letf,g: X" - X* be LoGSPACE-computable functions.
> Let M; and My be LOGSPACE transducers computing f and g, respectively.

> We show that f o g is also LOGSPACE computable by constructing a LoGSPACE transducer M computing f o g:
1. We can't just simulate M, to compute g(w) for input w: |g(w)| may be polynomial in |w| (but not larger, since L C P).
2. But we can construct Mj that computes the k-th symbol of g(w):
2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w], we can do that in logarithmic space).
2.2 Oninput p#w, M’g computes the k-th symbol of g(w).
. Then M computes f o g on input w by simulating M;.
4. Each time the simulation of M tries to read the k-th symbol of g(w), we simulate M, reading w from the input tape and p
from the working tape, respectively, storing the result in a single cell of the working tape.
5. Both simulations can be performed in logarithmic space, and thus, M runs in logarithmic space.

w
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Exercise 6

Exercise. Is the question “P = NP?” decidable?
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Exercise 6
Exercise. Is the question “P = NP?” decidable?

Definition (Lecture 3, slide 10)
A TM decides a decision problem £ if it halts on all inputs and accepts exactly the words in L.
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Exercise 6

Exercise. Is the question “P = NP?” decidable?

Definition (Lecture 3, slide 10)
A TM decides a decision problem £ if it halts on all inputs and accepts exactly the words in L.

Solution.
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Exercise 6

Exercise. Is the question “P = NP?” decidable?

Definition (Lecture 3, slide 10)
A TM decides a decision problem £ if it halts on all inputs and accepts exactly the words in L.

Solution.
> Let L be the decision problem for “P = NP?”, i.e., let L = X* if P = NP, and let £ = 0 otherwise.
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Exercise. Is the question “P = NP?” decidable?

Definition (Lecture 3, slide 10)
A TM decides a decision problem £ if it halts on all inputs and accepts exactly the words in L.

Solution.
> Let L be the decision problem for “P = NP?”, i.e., let L = X* if P = NP, and let £ = 0 otherwise.

> Let M4 and Mg be two terminating TMs that accept and reject every input, respectively.
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Exercise 6
Exercise. Is the question “P = NP?” decidable?
Definition (Lecture 3, slide 10)
A TM decides a decision problem £ if it halts on all inputs and accepts exactly the words in L.

Solution.
> Let L be the decision problem for “P = NP?”, i.e., let L = X* if P = NP, and let £ = 0 otherwise.

> Let M4 and Mg be two terminating TMs that accept and reject every input, respectively.
> One of these two TMs decides L.
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Exercise 6
Exercise. Is the question “P = NP?” decidable?
Definition (Lecture 3, slide 10)
A TM decides a decision problem £ if it halts on all inputs and accepts exactly the words in L.

Solution.
> Let L be the decision problem for “P = NP?”, i.e., let L = X* if P = NP, and let £ = 0 otherwise.

> Let M4 and Mg be two terminating TMs that accept and reject every input, respectively.
> One of these two TMs decides L.
» Thus, £ is decidable, and hence, so is “P = NP?".
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