
Master’s Thesis

Towards a Categorical Semantics

for the

Open Calculus of Constructions

Max Schäfer
xiemaisi@yahoo.de

Overseeing Professor: Prof. Dr. rer. nat. habil. Steffen Hölldobler, TU Dresden
Supervisor: Dr. Michael Posegga, TU Dresden
Co-Supervisor: Dr. Tyng-Ruey Chuang, Academia Sinica (Taiwan)

International MSc Program in Computational Logic

Fakultät Informatik, TU Dresden

March 13, 2007

Declaration

I hereby declare that all the results in this thesis are my own, except where
explicitly attributed to someone else. In particular, this thesis is not the result
of any form of joint work, and I have not used any other sources or materials
besides the indicated.

Dresden, March 13, 2007

Abstract

Stehr’s Open Calculus of Constructions combines a type theory in
the style of the Calculus of Constructions with concepts from rewriting
logic. Stehr’s original thesis gives a very simple set-theoretic semantics
for the calculus, which abstracts away many of its more peculiar features,
and is mainly used to obtain a semantic consistency proof. We present
a more sophisticated, categorical semantics in the tradition of Streicher
and Jacobs for a restricted variant of Stehr’s original system. Specifi-
cally, we show that rewriting can be modelled by enriching the traditional,
(1-)categorical approach with a 2-category structure, much in the spirit of
Meseguer’s 2-functorial semantics for rewriting logic. The semantics thus
obtained is a good match for the system under consideration, as witnessed
by a soundness proof, and could serve as a basis for further investigations
into the meta-theoretic properties of related systems.

1

Contents

1 Introduction 4
1.1 Type Theory and Rewriting Logic 5
1.2 Semantics of Type Theory and Rewriting Logic 6
1.3 Outline . 7

2 OCC0: The Algebraic Substrate 9
2.1 Syntax . 9
2.2 TCINNI-OCC0 . 10
2.3 Formal System . 12
2.4 OCC0 Structures . 13
2.5 The Interpretation Function . 19

2.5.1 Interpretation of Contexts 20
2.5.2 Interpretation of Types 20
2.5.3 Interpretation of Terms 20

2.6 Semantics of TCINNI-OCC0 . 21
2.7 Soundness . 25

3 OCC1: Product Types and Structural Equality 27
3.1 Syntax . 27
3.2 TCINNI-OCC1 . 28
3.3 Formal System . 29
3.4 OCC1 Structures . 30
3.5 The Interpretation Function . 32

3.5.1 Interpretation of Terms 32
3.6 Semantics of TCINNI-OCC1 . 33
3.7 Soundness . 35

4 OCC2: Rewriting 39
4.1 Syntax . 39
4.2 TCINNI-OCC2 . 40
4.3 Formal System . 40
4.4 OCC2 Structures . 41
4.5 The Interpretation Function . 45

4.5.1 Interpretation of Terms 45
4.6 Semantics of TCINNI-OCC2 . 45
4.7 Soundness . 45

5 OCC3: Computational Equality 48
5.1 Syntax . 48
5.2 TCINNI-OCC3 . 48
5.3 Formal System . 49
5.4 OCC3 Structures . 50
5.5 The Interpretation Function . 51

5.5.1 Interpretation of Terms 51
5.6 Semantics of TCINNI-OCC3 . 51
5.7 Soundness . 52

6 Conclusion 54

2

A Basic Category Theory 56
A.1 1-Category Theory . 56

A.1.1 (1-)Categories . 56
A.1.2 Diagrams . 56
A.1.3 Isomorphisms and Sections 57
A.1.4 Initial and Terminal Objects 57
A.1.5 Subcategories . 57
A.1.6 Pullbacks . 57
A.1.7 (1-)Functors . 58
A.1.8 (1-)Natural Transformations 58
A.1.9 (1-)Adjoints . 59

A.2 2-Category Theory . 59
A.2.1 2-Categories . 59
A.2.2 2-Functors, 2-Natural Transformations, and 2-Adjoints . . 61

B Formal System of OCC3 62

3

1 Introduction

One of the great promises that the theoretical investigation of programming
languages holds for the world of computer science is the construction of provably
correct software. For the achievement of this goal, two general approaches have
been proposed. One is model-checking, in which software is still written in
basically the same way as it is today, with similar tools and languages like they
are used in current industry practice, and then automatically checked against
a mathematical specification to uncover bugs and verify correctness. The other
approach is more radical, putting forward new languages and new programming
systems, in which programs are correct by design, in which programs that do
not meet their specification cannot even be created. It is this latter approach
with which we will be concerned here.

Again, there are two major research directions. The first one derives its
basic ingredients from (constructive) type theory on the one hand and lambda
calculi and functional programming on the other hand. By the celebrated Curry-
Howard correspondence, which connects propositions with types and their proofs
with programs of the corresponding type, we can conceive systems which can
be used both as higher-order logics, in which mathematical propositions can be
formalized and proved, and typed lambda calculi, in which programs can be
written and typechecked. The use of dependent and polymorphic types makes
it possible to express the specification of a program completely within the type
system, so that the correctness proof of an implementation of a program amounts
to nothing more than type checking its code.

The other direction builds on the theory of algebraic specifications and (in
spirit at least) logic programming. The idea is to provide the programmer
with a framework in which specifications can conveniently be expressed and
then directly executed, without having to provide a lower-level implementation,
thus eliminating the very problem of checking the implementation against its
specification.

Both directions have their strengths and weaknesses; programs written in
type theory can often be compiled to lower-level languages for efficient execu-
tion, which might not be possible for pure specification languages; but while
specifications are often easy to write, implementing them in type theory can be
a trying task.

Thus it is natural to ask whether one could not try to unite these two ap-
proaches. For example, a programmer might first want to prototype her code
using a specification language so as to be able to concentrate on understand-
ing, clarifying, and maybe correcting the specification without having to worry
about low-level implementation details, and then set out to write a concrete
implementation in type theory, never having to fear that the resulting program
does not match the specification.

Different systems have been proposed to achieve this unification, many of
them with working implementations. In order to explore their potential, a
thorough theoretical investigation seems in order, and an important tool in
such an investigation would certainly be a sophisticated semantics.

As a contribution to this, our thesis aims at paving the way for the semantic
investigation of systems integrating type theory with concepts of rewriting logic,
in particular the Open Calculus of Constructions [20], by showing how to extend
traditional categorical semantics of type theories to cover rewriting.

4

We cannot give a general introduction to type theory and rewriting logic
and their respective semantics here; instead we content ourselves with a very
cursory and incomplete overview of these two topics. The reader who is already
familiar with them should feel free to skip or skim it, while the type theory
novice is urged to first consult one of the many introductory books and articles
on the subject such as [14] or [9]. A comprehensive introduction to rewriting
logic can be found in [15].

1.1 Type Theory and Rewriting Logic

The history of type theory is long and complicated1. Here we will only be con-
cerned with its use in computer science: As mentioned above, the Curry-Howard
correspondence allows us to understand specifications, expressed through logical
propositions, as types, and programs, expressed in a powerful functional pro-
gramming language, as proofs of such propositions, so that program verification
is nothing more than type checking.

Of course, this is most useful if type checking is decidable in the underlying
lambda calculus. Indeed, many type theoretic systems, such as most incar-
nations of Martin-Löf’s type theory [14] and Coquand and Huet’s Calculus of
Constructions (CC) [7], do have decidable type checking2. To achieve this, it is
necessary that their term language is strongly normalizing, i.e. every typable
program terminates.

In practical programming, this restriction can be quite cumbersome: general
recursion is not allowed, instead, recursive algorithms have to be expressed
purely through recursors. Extensions of CC such as the Calculus of Inductive
Constructions (CIC) [8] which lies at the heart of the Coq proof assistant [3]
try to mitigate this by providing explicit support for inductive datatypes and
structural induction, but writing recursive programs is still by no means trivial.

A very different approach is taken by algebraic specification languages such
as Maude [6], which is based on Meseguer’s rewriting logic [15]. Rewriting logic
axiomatizes an abstract rewriting relation “→” on top of an underlying equa-
tional logic (membership equational logic in the case of Maude). In Maude,
the user can express specifications using this framework, and then immediately
execute them. General recursion is allowed as a matter of course, leading to
often very simple and elegant definitions, but also to potential non-termination.
Moreover, Maude is purely first-order, and does not support dependent or poly-
morphic types.

Stehr’s Open Calculus of Constructions, first introduced in his thesis [20],
is one of several systems that aim at combining both approaches. Roughly
speaking, it can be seen either as a type theory with support for rewriting,
or as a rewriting logic on top of a higher-order logic. No particular attention
is paid to issues of termination or confluence, but a lot of emphasis is put on
the increased flexibility gained by the rewriting capabilities. A peculiar feature
of OCC is its distinction between equalities of different “granularity”, which
overcomes the usual dichotomy between intensional and extensional handling of
equality in type theory.

1See the introductory chapter of Streicher [21] for a partial overview.
2Type inference, however, is undecidable, hence the programmer has to provide more

explicit typing annotations than would be necessary in a conventional functional programming
language such as ML or Haskell.

5

In type theories with intensional equality, the equality of two terms is sim-
ply viewed as a proposition (and hence a type), for which proof objects can
be constructed and passed around. Given some appropriate definition of the
natural numbers and addition and two variables x, y of natural number type,
it would, for example, be possible to construct some proof object p witnessing
the equality x + y = y + x; this would be expressed by a typing judgement like
p : Eq(x+y, y+x). The existence of the proof object p, however, has no bearing
on the treatment of the terms x + y and y + x, respectively. In particular, a
theorem prover for such a type theory will never automatically substitute one
by the other (in Coq, for example, this substitution could only be effected by
an explicit command to the interactive theorem prover).

Some versions of Martin-Löf’s type theory opt for an extensional treatment
of equality, where the type checker makes use of available equality proofs. For
example, suppose we have a type NatList depending on a natural number such
that NatList(n) is the type of natural number lists of length n. Furthermore,
suppose that we have some expression e of type NatList(x+y); in a type theory
with extensional equality, the existence of a proof object p as before would then
allow us to conclude that e is also of type NatList(y + x), and can hence be
compared with other expressions of type NatList(y+x) without sacrificing type
safety. While very convenient, this feature is also quite dangerous, and can lead
to non-terminating reduction sequences (and hence undecidable type checking)
unless some judiciously chosen constraints are imposed.

OCC’s solution builds on the approach of Maude, which distinguishes two
kinds of equalities: The first, most fine-grained is the so-called structural equal-
ity; structurally equal terms are viewed as operationally indistinguishable, either
can be substituted for the other. The second, coarser one, is known as com-
putational equality; computational equalities can be viewed as reduction rules,
in which the left hand side can be turned into the right hand side, but not
the other way around. This distinction allows the user more control over the
reduction process.

A typical example of the application of these two equalities is shown in Fig-
ure 1 (adapted from [20]). Here, computational equalities (written !!(− = −))
are used to express the usual reduction rules for the definition of addition, while
structural equalities (written ||(− = −)) are used to express commutativity
and associativity. The reader interested in the pragmatics of these different
equalities should refer to Stehr’s thesis for further examples.

OCC adds a third and fourth kind of equality, assertional equality and propo-
sitional equality, which are closer to the intensional equality of Coq, but we will
not treat them in detail in this thesis.

1.2 Semantics of Type Theory and Rewriting Logic

Although a classical set-theoretic semantics can be given for many flavors of
type theory (see, e.g., [22] for a set-theoretic semantics of CC), such semantics
tend not to be very useful for meta-theoretic investigations: As was proved by
Reynolds in [17], polymorphic lambda calculi (such as CC and OCC) can only
be given a so-called proof irrelevance semantics, in which all propositions are
interpreted as singleton sets; their proof objects must then all be interpreted
as the same semantic object. This precludes any finer analysis of such proof
objects beyond the mere acknowledgement of their existence.

6

N : Type
O : N

suc : N→ N

plus : N→ N→ N

pluscomm : Πi, j : N.||((plus i j) = (plus j i)) : N
plusass : Πi, j, k : N.||((plus i(plus j k)) = (plus (plus i j)k))

plusz : Πi : N.!!((plus i O) = i) : N
pluss : Πi, j : N.!!((plus i(suc j)) = (suc (plus i j))) : N

Figure 1: A specification of the natural numbers and addition

Category theory provides a way out of this dilemma. Using categorical lan-
guage, one can, for many type theories, give a succinct definition of a very
broad class of structures in which the type theory can be interpreted. To just
name two of the many works on categorical semantics of type theory, Jacobs’
thesis [10] treats a rather wide range of different type theories, while Streicher’s
thesis, later expanded into the monograph [21], contains a very thorough and
detailed presentation of a semantics for the Calculus of Constructions. The class
of structures used in his account contains structures which do allow for the dis-
tinction between proof objects, and even a term model, so that a completeness
proof can be obtained. More interestingly, Streicher uses his semantics for fur-
ther investigations, proving results such as uniqueness of typing and of product
formation, as well as some independence results.

For rewriting logic there also is a quite simple categorical semantics, pre-
sented for example in [15] and [13]. The underlying equational logic used in
these accounts is untyped, hence the categorical setup is quite different from
the one used in the semantics of type theories.

Our aim is to extend and integrate these existing approaches to arrive at
a categorical semantics for systems combining both type theory and rewriting
logic, with the hope that such a semantics can then be used in the further study
of the systems, probably obtaining similarly interesting results as in the case of
the Calculus of Constructions.

1.3 Outline

The Open Calculus of Constructions is a very large and complex system. Intro-
ducing its semantics in one swoop would be quite a tour de force; we will not do
so. Rather, we start from a very simple, one might say trivial, subsystem, which
we dub OCC0. Although not very useful as a type theory, it will allow us to
introduce the basic ideas behind our categorical semantics. We start by giving
its abstract syntax and formal system, then proceed to define the corresponding
notion of a semantic structure and specify how to interpret expressions of the

7

language in such a structure. A soundness proof shows that this interpretation
makes sense. All results in this section are well-known in the literature.

We then introduce an extended system, called OCC1, which extends OCC0

with product and equality types, yielding a system similar in power to the
Calculus of Constructions. We show how product and equality types can be
interpreted categorically, and give a soundness proof extending the proof for
OCC0. Again, the approach taken and the results obtained in this section are
anything but new.

With the third system, OCC2, we enter new territory: it supports rewriting.
We show how to interpret rewriting (2-)categorically, and mention the connec-
tion to Meseguer’s 2-functorial semantics for Rewriting Logic [13]. As before, a
soundness proof is provided on the basis of the soundness proof for OCC1.

Our final system, OCC3, is already quite close to Stehr’s original formu-
lation of OCC. We show how the newly introduced feature of computational
equality corresponds to 2-categorically lax type constructors, and give one final
soundness proof.

Taken together, these two chapters, which are the heart of this thesis, present
the main result of our work: They demonstrate how to enrich a categorical se-
mantics for a traditional type theory with additional structure such that rewrit-
ing and non-structural equalities can be modelled.

As a byproduct of our investigations, we will see that the CINNI calculus
of explicit substitutions, which is employed by OCC and its variants, is closely
connected to the categorical semantics in that its three basic constructors (re-
placement, shifting, and lifting) correspond exactly to three special kinds of
arrows in the semantics3.

We conclude with a discussion of some of the remaining features of full OCC
not covered by our semantics as well as other differences between Stehr’s system
and ours. Finally, we give some pointers to related work and possible directions
of future research.

Acknowledgements

This thesis could not have reached its present form without the help of many
people. I want to thank Dr. Chuang for giving me the opportunity to write my
thesis at his laboratory, for assistance in matters small and large, and unwa-
vering support throughout; Prof. Hölldobler for making it all possible; and Dr.
Posegga for patient support over 8000 kilometers and seven timezones. Mark-
Oliver Stehr was swift and helpful in answering all my questions about the Open
Calculus of Constructions. My colleagues at Academia Sinica provided a hos-
pitable and cheerful atmosphere. Dr. Shin-Cheng Mu and Dr. Bow-Yaw Wang
gave valuable comments on different stages of my work. And finally, my most
heartfelt thanks go to Shixin, who helped and supported me in more ways than
she knows herself.

3A similar result was, for a different substitution calculus, proved by P.-L. Curien [1].

8

2 OCC0: The Algebraic Substrate

We begin our investigations of the categorical semantics of the Open Calculus
of Constructions with a very simple system, OCC0, which focuses entirely on
OCC’s “algebraic substrate”, almost without any type constructors. While cer-
tainly not a very powerful, or even very useful, system, it allows us to introduce
the basic ideas on which our semantics is based. Systems like OCC0 have been
a staple of categorical semantics since its early days, and there are no novel
results to be expected in this section.

Although in a rudimentary way, OCC0 already deals with the same three
levels of entities as the later systems, namely universes, types, and atoms4.
Atoms belong to types which belong to universes. For example, the natural
number 0 is an atom belonging to the type Nat of natural numbers, which
in turn belongs to the universe Type of types (of course, this example is not
expressible in such a simple-minded type theory as OCC0). Note that even in
OCC0 these levels are by no means mutually disjoint: both universes and types
can also be seen as atoms, and universes can also be types.

2.1 Syntax

OCC0 is a family of type systems parametrized by a countable set S of universe
constants and an acyclic partial function A : S ; S describing universe contain-
ment. The set S has to contain a designated propositional universe Prop. These
data are gathered into a triple Σ = (S,Prop,A), called an OCC0-signature.

Given such a signature Σ, the set of OCC0 pseudoterms T Σ
0 , or simply

T0 when the signature is understood from context, is defined by the following
grammar:

T0 ::= S | VN | unit | ∗

where V is a fixed set of syntactic variable names and N is the set of natural
numbers (including 0).

Thus, a pseudoterm is either a universe constant (such as Prop), an indexed
variable, the unit type, or its inhabitant ∗. Intuitively, the index of a variable
indicates how many bindings of the variable to skip; for example, the indexed
variable x0 refers to the innermost binding of x in the current context, whereas
x1 refers to the binding beyond it. This notation, a generalization of de Bruijn’s
index notation, comes from the CINNI calculus of explicit substitutions [19],
about which we will have more to say below. Note that we write the index of
a CINNI variable as superscript (as in x0) instead of Stehr’s subscript notation
x0.

A unit type does not occur in Stehr’s formulation of OCC, but we will see
that it has a very useful place in the categorical semantics.

The set of pseudoterms contains both terms which we perceive to stand for
types and terms which stand for atoms. If we want to emphasize that a certain
pseudoterm stands for a type, we will sometimes call it a pseudotype, but this
is a purely rhetoric distinction.

4In most other accounts, entities of this latter level are called objects or elements. Both of
these terms, however, have fixed and quite different meanings in category theory, so we will
generally avoid them.

9

Definition 2.1. The size of a pseudoterm M , written |M |, is defined as usual:

1. for s ∈ S: |s| = 1

2. for x ∈ V, n ∈ N: |xn| = 1

3. |unit | = | ∗ | = 1

The following two definitions will be the same for all of the systems we
describe:

Definition 2.2. A pseudocontext is a list of entries of the form x : A, with label
x ∈ V and A ∈ T0. The empty context is written 3.

Definition 2.3. The size of a pseudocontext Γ, written |Γ| is defined as

|x1 : A1, . . . , xn : An| = |A1|+ · · ·+ |An|

In particular, of course, |3| = 0.

Syntactic equality of pseudoterms and pseudocontexts is denoted by the
symbol ≡.

2.2 TCINNI-OCC0

An important aspect of OCC (and all its subsystems considered here) is that
it “takes names seriously”. Instead of the rather informal freshness conditions
and implicit renaming assumptions commonly encountered in more traditional
calculi, its use of CINNI (the “Calculus of Indexed Names and Named Indices”)
provides a rigorous account of the syntactic operations of renaming and sub-
stitution. For our purposes, the most important contribution of CINNI is that
it allows to define complicated syntactic operations (such as capture avoiding
substitution under a binder) in a syntax-directed way without having to as-
sume alpha equivalence. The reader who is not familiar with CINNI or some
other explicit substitution calculus may want to refer to [19] for a thorough
introduction.

CINNI’s approach fits very well with a categorical semantics, in which much
attention has to be paid to such details5, and allows us to obtain a clear corre-
spondence between CINNI operations in the syntax, and categorical operations
in the semantics.

We use a slightly modified version of CINNI with type annotations, in-
stantiated for the syntax of OCC0; this system is referred to as TCINNI-
OCC0(“Typed CINNI for OCC0”).

The set Θ of TCINNI-substitutions over a set Ty of types, a set Tm of terms,
and a set V of names is given by the following grammar:

Θ ::= [V := Tm: Ty] | ↑(V : Ty) | ⇑(V : Ty)Θ

TCINNI-OCC0 is simply TCINNI with Ty = Tm = T0.
5As Jacobs [10] remarks: “We like to see [categorical semantics of type theory] as descrip-

tion at the assembly level: categorical formulations require far more attention for details, like
substitution and coherence conditions”.

10

Intuitively, a substitution of the form [x := M : A] , called replacement ,
replaces every occurrence of x0 by the pseudoterm M , while decreasing the
indices of other occurrences of x. M is supposed to have type A, but this fact
has no influence on the substitution behavior. Replacements are used to model
beta-reduction, which can (in informal syntax) be written as (λx : A.M)N →β

[x := N : A]M .
A substitution of the form ↑(x : A), called shifting , increases the index of every

occurrence of x by one. This is needed when one wants to make sure that a
term cannot refer to a certain binding, as for example in η-expansion (although
this particular example does not occur in OCC), which we could formulate as
M →η (λx : A. ↑(x : A)Mx). Again, the type annotation A is purely for book-
keeping.

The behavior of a lifting substitution like ⇑(x : A)ϑ , with ϑ being another
substitution, is somewhat harder to explain intuitively (the precise definition
is given below). Roughly speaking, ⇑(x : A)ϑ performs capture-avoiding substi-
tution under a binding for x. This will become more important in the next
chapter when we extend our system by an abstraction mechanism.

Definition 2.4. The action of substitutions on OCC0-pseudoterms is defined
as follows:

[x := M : A]x0 = M
[x := M : A]xm+1 = xm

[x := M : A]yn = yn where x 6≡ y

↑(x : A)x
n = xn+1

↑(x : A)y
m = ym where x 6≡ y

(⇑(x : A)ϑ)x0 = x0

(⇑(x : A)ϑ)xn+1 = ↑(x : ϑA)(ϑxn)
(⇑(x : A)ϑ)ym = ↑(x : ϑA)(ϑym) where x 6≡ y

ϑs = s
ϑ unit = unit
ϑ ∗ = ∗

The extra type annotations play no role when applying a substitution to
a term (and we will omit them when no ambiguity can arise); so we get the
following theorem for free:

Theorem 2.5. For every TCINNI-substitution ϑ and every OCC0-pseudoterm
M , the expression ϑM reduces by the above rules to a unique, well-defined pseu-
doterm N .

Proof. This was shown by Stehr in [19] for CINNI (without type annotations),
but since the substitution behavior is the same, the result immediately carries
over to the case of TCINNI.

While the set of TCINNI-substitutions will essentially be the same for all
our systems, every extension of the pseudoterm syntax will make it necessary
to extend Definition 2.4 by new clauses.

It is easy to see that shifting does not change the size of a term:

11

Lemma 2.6. For any variable x, any pseudotype A and any pseudoterm M ,
we have | ↑(x : A)M | = |M |

Proof. Induction on the structure of M .

We also define the size of a substitution.

Definition 2.7. The size of a substitution ϑ, written |ϑ| is inductively defined
as follows:

1. for x ∈ V, N,A ∈ T0: |[x := N : A]| = |N |

2. for x ∈ V, A ∈ T0: | ↑(x : A)| = 1

3. for x ∈ V, A ∈ T0, ϑ′ ∈ S: | ⇑(x : A)ϑ
′| = |ϑ′|+ 1

Lemma 2.8. For a substitution ϑ, a variable y ∈ V, and an index n ∈ N , we
have |ϑyn| ≤ |ϑ|.

Proof. Induction on the structure of ϑ.

1. ϑ ≡ [x := M : A]:

By definition, |ϑ| = |M |; if yn ≡ x0, then ϑyn ≡ M , otherwise it is an
indexed variable. In either case, the claim is fulfilled.

2. ϑ ≡ ↑(x : A):

ϑyn is an indexed variable, hence the claim is fulfilled.

3. ϑ ≡ ⇑(x : A)ϑ
′ :

If yn ≡ x0, the result is trivial. Otherwise, it follows by induction hypoth-
esis and Lemma 2.6.

2.3 Formal System

Definition 2.9. There is only a single form of judgement in OCC0, namely

A : B

where A is a pseudoterm, and B a pseudotype. Put into a pseudocontext Γ, the
judgement-in-context Γ ` A : B, means that under Γ, A is of type B.

A valid OCC0 judgement is any judgement that can be derived by the fol-
lowing rules of inference:

(Ax) ,A(s1) = s2
Γ ` s1 : s2

(Start1)
Γ, x : A ` x0 : ↑(x : A)A

Γ ` xi : A
(Start2)

Γ, x : B ` xi+1 : ↑(x : B)A

12

Γ ` ym : A
(Start3) , x 6≡ y

Γ, x : B ` ym : ↑(x : B)A

(UnitForm)
Γ ` unit : Prop

(UnitIntro)
Γ ` ∗ : unit

The following easy result (often called substitution lemma in the literature on
typed lambda calculi) indicates a connection between the structure of contexts
and the application of substitutions, which will become very important in the
motivation of the categorical semantics below:

Lemma 2.10. 1. For any pseudocontext Γ, name x ∈ V, pseudoterms M,N ,
and pseudotypes A,B, the following rule is admissible in OCC0:

Γ, x : A ` M : B Γ ` N : A

Γ ` [x := N : A]M : [x := N : A]B

2. For any pseudocontext Γ, name x ∈ V, pseudoterm M , and pseudotypes
A,B, the following rule is admissible in OCC0:

Γ ` M : B
Γ, x : A ` ↑(x : A)M : ↑(x : A)B

Proof. The results are proved by induction on the possible derivations of
Γ, x : A ` M : B and Γ ` M : B, respectively.

1. If the last rule used was (Ax), (UnitForm), or (UnitIntro), the claim im-
mediately follows from the induction hypothesis.

For (Start1), observe that we must have M ≡ x0 and B ≡ ↑(x : A)A, hence
the conclusion is nothing but the second premise.

Cases (Start2) and (Start3) are very similar and follow by the definition
of substitution application.

2. Again, cases (Ax), (UnitForm) and (UnitIntro) are trivial. The other cases
are instances of (Start2) and (Start3).

2.4 OCC0 Structures

We are now going to describe a class of structures that OCC0 can be interpreted
in. Before diving into the precise definitions, we take a bird’s eye view of the
semantics, and try to motivate the different categorical features comprising an
OCC0 structure.

Our underlying categorical setup is based on Jacobs’ comprehension cat-
egories with unit [10], which are an alternative formulation of Ehrhard’s D-
categories.

The basic realization underlying this approach is that in type theory, types
only ever occur “in context”, i.e. to fully describe them we have to provide a
context that specifies the types of all free variables occurring in the type. This is

13

reflected in the semantics, where we have one category E whose objects interpret
types and universes, and another category C whose objects interpret contexts.
A “parent” functor p assigns to every type in E its associated context in C. All
types of a certain context C can be assembled into a subcategory of E , called
the fiber over C.

But this rather static setting is not enough. If we have a type A in context
Γ, then there should be some sort of connection between the interpretation
of A (which we will denote as JΓ ` : AK to emphasize its dependence on Γ)
and the interpretation of the extended context Γ, x : A (denoted JΓ, x : AK).
In Streicher’s semantics, for example, these two are interpreted as the same
categorical object.

This is impossible in our setup, since JΓ ` : AK is an object of E , whereas
JΓ, x : AK is an object of C. Instead we require the existence of a functor
{−}, called comprehension functor, which maps JΓ ` : AK to {JΓ ` : AK}JxK =
JΓ, x : AK.

In including the “semantic name” JxK in the definition, we somewhat de-
part from traditional approaches which ignore names and force alpha equivalent
terms to be interpreted as the same semantic object. Since OCC’s basic philos-
ophy is to avoid such identifications, we feel justified to respect names in the
semantics. Of course, the semantic names do not have to be the same as the
syntactic ones (i.e., the set V introduced before), and one can, in fact, regain
name irrelevance by simply mapping all syntactic names to the same semantic
name.

Because types are interpreted as objects of E and atoms belong to types, we
interpret atoms as categorical elements of the corresponding objects in E , i.e.
arrows out of terminal objects. But like types, atoms depend on a context, so
there is not one terminal object in E out of which all these arrows come, but one
for every fiber. Thus, if we can derive the judgement Γ ` M : A, then we would
expect that Γ, M , and A are interpreted in such a way that the interpretation
of M is an arrow from 1(JΓK), the terminal object in the fiber above JΓK, to
JΓ ` : AK.

There is a slight catch having to do with the double role played by types:
In the above example, the type A in turn belongs to some universe s. Thus
it should also be interpreted as a categorical element of JΓ ` : sK – but this
is impossible, since we already decided to interpret it as an object of E , not a
morphism. The solution is to give A two different interpretations, depending on
whether we want to view it as a type or as a term. The first interpretation is
denoted as JΓ ` : AK (which is an object of E), the second one as JΓ ` AK (which
is a morphism of E). Obviously, these two semantic entities should be related,
so we need a mapping U that maps the latter to the former.

A second cornerstone of the categorical interpretation of type theory are
context morphisms, which are the semantic counterpart of the TCINNI sub-
stitutions introduced above. Looking at Lemma 2.10, we see that, intuitively
speaking, the application of a substitution ϑ1 = [x := N : A] transports a
valid judgement in context Γ′ = (Γ, x : A) to a valid judgement in context Γ,
and conversely the application of a substitution ϑ2 = ↑(x : A) transports a valid
judgement in context Γ to a valid judgement in context Γ′.

Since in the first case the term N is a term in context Γ (and not in context
Γ′), we see the substitution ϑ1 as a context morphism from Γ to Γ′ and ϑ2 as
a context morphism from Γ′ to Γ. These morphisms should now be interpreted

14

A′

f ′

++VVVVVVVVVVVVVVVVVVVVVVVVV

u
$$H

H
H

H
H

E A
f

// B

C p(A′)
p(f ′)

**UUUUUUUUUUUUUUUUUUUUUU

v=p(u) ##F
FFFFFFF

p(A)
p(f)

// p(B)

Figure 2: Cartesian Arrow

as arrows t1, t2 between the interpretations C and C ′ of Γ and Γ′ in C, in such
a way that t1 can “pull back” any object and arrow of the fiber over C ′ into the
fiber over C and the other way around for t2. This is achieved by the categorical
construction of a fibration introduced below.

To make these considerations precise, we start with some technical definitions
which are adapted from [10], but originate with Grothendieck.

Let p be a functor from a category E to another category C.

Definition 2.11. We picture E as being located “above” C, and hence say that
an object A of E is above C ∈ Ob(C) if p(A) = C, and likewise for arrows. An
arrow above an identity arrow is called vertical .

The fiber over an object C ∈ C, written EC , is the subcategory of E containing
all objects above C and the vertical arrows between them.

Definition 2.12. An arrow f : A → B in E is called cartesian if, for any arrow
f ′ : A′ → B in E and an arrow v : p(A′) → p(A) in C such that p(f ′) = p(f) ◦ v,
there is a unique arrow u : A′ → A with p(u) = v and f ′ = f ◦ u (see Figure 2).

Definition 2.13. A functor p from C to D is called a cloven fibration (or a
fibration with cleavage) if for every object A of C and every morphism f : B →
p(A) in D there is a chosen cartesian arrow (called the cartesian lifting of f)
f(A) above f . The domain of this arrow is written f∗(A).

Definition 2.14. A cloven fibration p is called split if

1. id∗(A) = A

2. id(A) = idA

3. (f ◦ g)∗(A) = g∗(f∗(A))

4. f ◦ g(A) = f(A) ◦ g(f∗(A))

15

A very basic construction in categorical semantics are the so-called reindex-
ing functors, which will be used to model application of substitution.

Definition 2.15. Given a cloven fibration p as above, every arrow f : D → C
in C induces a functor f∗ from EC to ED, called a reindexing or pullback functor .
On objects, it is defined by the cleavage. For a vertical arrow k : A → B, we can
see that both k ◦ f(A) and f(B) are above f and the latter is cartesian. Thus,
there must be a unique vertical arrow from f∗(A) to f∗(B), which we will call
f∗(k), such that f(B) ◦ f∗(k) = k ◦ f(A).

Based on these definitions, we can now describe the class of structures we
can interpret OCC0 in.

Definition 2.16. An OCC0-structure M is given by

• a category C called the base category (“contexts and substitutions”), with
a terminal object 1C

• a category E called the total category (“types and terms”)

• a non-empty set N (“semantic names”)

• a split fibration p from E to C (“parent functor”)

• an N -indexed family of functors ({−}n)n∈N from E to C (“comprehen-
sion”)

• for every x ∈ N , a natural transformation Px : {−}x
•→ p; for A ∈ E , its

component Px(A) is called a display map

• a subcategory SC of E (“universes”); each object s ∈ SC is above 1C , hence
we can form the object C∗s :=!∗C(s) for any C ∈ C

• for every x ∈ N , a functor 1x that is left-adjoint to {−}x; the counit ε1

is required to be above Px and 1x’s action on objects must not depend
on x; for any C ∈ C and f : D → C, we furthermore need to ensure that
f∗(1(C)) = 1(D)

• for every C ∈ C, a mapping UC : (
⋃

s∈SC EC(1(C), C∗s)) → EC from ele-
ments of C∗s, for any s ∈ S, to objects of E ; this mapping is required to
be stable under substitution, i.e. for f : D → C and m ∈ EC(1(C), C∗s)
for some s ∈ S we have f∗(UC(m)) = UD(f∗(m))

• for C ∈ C an arrow 1̂(C) : 1(C) → C∗Prop such that UC(1̂(C)) = 1(C),
and for f : C → D we have f∗(1̂(D)) = 1̂(C)

The objects of SC are used to interpret universes. Universes do not depend
on a context and hence they are interpreted as objects above the terminal object
1(C). For a universe s we define the full subcategory E(s) of E to contain all
objects A such that there is a C ∈ C, m : 1(C) → C∗s with UC(m) = A; more
succinctly, E(s) contains all objects corresponding to types in universe s.

Note that these subcategories E(s) are not required to be disjoint, i.e. the
same type-in-context can belong to different universes; this is inevitable if we
want to model cumulative universe hierarchies.

16

Terms are interpreted as elements of objects in E , i.e. as vertical arrows out
of 1(C) for some object C. In [10], it is shown that 1(C) is a terminal object
in EC , so this interpretation matches the intuition that elements are arrows out
of the terminal object.

In [21], for example, terms are modelled as sections of display maps, instead.
We reserve sections to model substitution (see below), but in a sense a term
M of type A corresponds to a substitution of the form [x := M : A] . This
correspondence is expressed by the following result adapted from [10].

Lemma 2.17. For A ∈ E above C ∈ C and x ∈ N , there is a bijective cor-
respondence between sections of Px(A) and vertical morphisms from 1(C) to
A.

Proof. Since 1x a {−}x, we have E(1x(−),−) ∼= C(−, {−}x); each m : 1(C) → A
corresponds to {m}x ◦ η1(C) : C → {A}x, and each n : C → {A}x to ε1(A) ◦
1x(n) : 1C → A. It remains to show that the one’s being a section implies the
other’s being vertical and vice versa.

So assume m is vertical, i.e. p(m) = idC . We need to show that {m}x◦η1(C)
is a section of Px(A). Indeed,

Px(A) ◦ {m}x ◦ η1(C)
= p(m) ◦ Px(1(C)) ◦ η1(C)
= Px(1(C)) ◦ η1(C)
= p(ε1(1(C))) ◦ p(1x(η1(C)))
= p(ε1(1(C)) ◦ 1x(η1(C)))
= idC

For the other direction, assume n is a section of Px(A), i.e Px(A) ◦ n = idC .
We need to show that ε1(A) ◦ 1x(n) is vertical. This is also not difficult:

p(ε1(A) ◦ 1x(n))
= p(ε1(A) ◦ n(1({A}x)))
= p(ε1(A)) ◦ p(n(1({A}x)))
= Px(A) ◦ n

= idC

Notice that this holds for every x ∈ N (a term M corresponds to different
substitutions, say [x := M : A], [y := M : A], . . .), but for a fixed name, the
correspondence is one-to-one.

We use a special notation to indicate the passage from vertical morphisms
to sections (the other direction is much less frequently used): If m is a vertical
morphism, then Sectx(m) is the corresponding section.

Definition 2.18. For any object A ∈ E , there is a useful injection arrow
δx,A : 1({A}x) → Px(A)∗(A) which is vertical6, i.e. it corresponds to a sec-
tion of Py(Px(A)∗(A)) for any y ∈ N . This arrow is obtained from the unique

6For this reason, we would rather avoid calling it by its common name of “diagonal arrow”.

17

lifting property; for observe that both Px(A)(A) and ε1(A) are arrows from
1({A}x) to A, both of which are above Px(A). Hence there must be such an
arrow δA, which arises as the lifting of id{A}x

.

Finally, we introduce a third kind of special arrows (besides display maps
and sections):

Definition 2.19. We write q(f, x,A) for {f(A)}x. This arrow is called a lifting
of f along Px(A) (not to be confused with the cartesian lifting mentioned above).

Adapting a proof in [10], it can be shown that for any f : D → C in C and
A ∈ E above C, the following is a pullback diagram:

{f∗(A)}x

Px(f∗(A))

��

q(f,x,A) // {A}x

Px(A)

��
D

f
// C

The injection arrow has the interesting property that it acts as a right neutral
element for reindexing along sections:

Lemma 2.20. For A ∈ E above C and a section N of Px(A), we have

N∗(δx,A) = Sect−1(N)

Proof.

N∗(δx,A) = Px(A)(A) ◦N(Px(A)∗(A)) ◦N∗(δx,A)

= ε1(A) ◦N(1({A}x))

= Sect−1(N)

Furthermore, its section equivalent Sectx(δx,A) turns out to be the mediating
arrow in a special pullback situation (adapted from [10]):

Lemma 2.21. Let A ∈ E be an object of the total category. Then Sectx(δx,A)
is the mediating arrow in the following pullback situation (where we write P1

for Px(A) and P2 for Px(Px(A)∗(A)))

{A}x

Sectx(δx,A)

&&MMMMMMMMMM

id

""

id

))
{Px(A)∗(A)}x

q(P1,x,A)
//

P2

��

{A}x

P1

��
{A}x

P1

// p(A)

18

Proof. We must show that the diagram commutes. Indeed,

q(P1, x, A) ◦ Sectx(δx,A) = {P1(A)}x ◦ {δx,A}x ◦ η1({A}x)

= {P1(A) ◦ δx,A}x ◦ η1({A}x)
= {ε1(A)}x ◦ η1({A}x)
= id{A}x

and
P2 ◦ Sectx(δx,A) = id{A}x

since it is a section.

2.5 The Interpretation Function

Let an OCC0-signature Σ = (S,Prop,A) be given. To model the corresponding
OCC0-instance, we need an OCC0 structure M such that

• for every universe s ∈ S, there is an object psq ∈ SC ; when there can be
no ambiguity, we do not notationally distinguish between the two

• for every axiom s1 : s2 ∈ A, there is a morphism ŝ1 : 1(1C) → s2 such that
U1C

(ŝ1) = s1

• there is a mapping from syntactic names V to semantic names N ; often,
we will neglect this difference and simply treat a syntactic name x as a
semantic name

As mentioned before, we are going to interpret contexts as objects of C, types
as objects of E , and elements of types as their (category theoretical) elements.
Types themselves can be atoms of (universe) types, and the mapping U serves
to translate between the morphism used to interpret it as an atom and the
object used to interpret it as a type. The unit type is interpreted through the
1x functor, establishing a pattern that datatype constructors in the language
are interpreted through adjoint functors in the semantics; this beautiful parallel
was perhaps first discovered by Bill Lawvere, and has been extensively used in
categorical semantics ever since.

It is not in general possible to give syntax-directed definition of the semantic
interpretation function J−K for dependently typed calculi, since the definitions
of types and terms depend on each other. Hence we will make use of a device
due to Streicher [21]: We first define a partial interpretation function from
pseudoterms to semantic entities, and then prove that this function is defined
on all pseudoterms we might want to interpret.

More precisely, we need to define three different interpretation functions, one
for contexts, one for types-in-context, and one for atoms-in-context, which we
write in a notation suggestive of judgements:

• JΓK maps a pseudocontext Γ to an object in C

• JΓ ` : MK maps a pseudotype M in pseudocontext Γ to an object in E

• JΓ ` MK maps a pseudoterm M in pseudocontext Γ to a morphism in E

19

We now give the definitions of the three (partial) interpretation functions7

by induction on |Γ|+|M |. The definitions do not spell out definedness conditions
in detail, instead we use the convention that an expression can only be defined
if its every subexpression is defined.

2.5.1 Interpretation of Contexts

The empty context is interpreted as the terminal object in C, non-empty contexts
are interpreted as the comprehension of their last entry:

• J3K = 1C

• JΓ, x : AK = {JΓ ` : AK}x

2.5.2 Interpretation of Types

The interpretation of types, in turn, makes use of the interpretation of terms
defined below. Observe that if JΓ ` : AK is defined, then it is above JΓK as
expected.

• for s ∈ S: JΓ ` : sK = JΓK∗s

• for A 6∈ S: JΓ ` : AK = UJΓK(JΓ ` AK), where JΓ ` AK is an element of
JΓK∗s for some s ∈ SC ; this does not always have to be defined, but if it is
then it does not depend on the choice of s

2.5.3 Interpretation of Terms

If defined, JΓ ` MK is a morphism with domain 1(JΓK), that is an element of
some object in EJΓK.

• JΓ ` sK = (!JΓK)∗(ŝ)

Note that, given this definition, the first case of the interpretation function
for types is in fact a special case of the second when ŝ is defined:

UJΓK(JΓ ` sK) = UJΓK((!JΓK)∗(ŝ))
=!JΓK(U∗JΓK(ŝ))

=!JΓK(s)

• JΓ, x : A ` x0K = δx,JΓ` : AK

• JΓ, x : A ` xn+1K = Px(JΓ ` : AK)∗(JΓ ` xnK)

• JΓ, y : A ` xnK = Py(JΓ ` : AK)∗(JΓ ` xnK) for x 6≡ y

• JΓ ` unitK = 1̂(JΓK)

• JΓ ` ∗K = id1(JΓK)

The interpretation of contexts and types will be the same in all systems,
but the interpretation of atoms will have to be extended to cover new language
constructs.

7By and large, these definitions follow those in Streicher’s monograph.

20

2.6 Semantics of TCINNI-OCC0

When motivating our categorical semantics, we mentioned that substitutions are
interpreted as context morphisms, i.e. arrows in the category C. In this section,
we exhibit a fourth partial interpretation function, which (when defined) maps
a pseudocontext Γ and a TCINNI substitution ϑ to an arrow JΓ ` ϑK. The
reindexing functor induced by this arrow corresponds to the application of the
substitution to terms.

We then have to prove an important coherence result: in OCC, substitutions
are not first-class objects, but a meta-notation which can be eliminated through
the reduction rules given before; for any substitution ϑ and any pseudoterm M ,
there is a unique pseudoterm N which results from applying ϑ to M . Thus
we have to make sure that JΓ ` ϑK∗(JΓ ` MK) = JΓ ` NK, i.e. we obtain
the same result no matter whether we first interpret the substitution and then
(semantically) apply it to the interpretation of M , or first apply the substitution
(syntactically) to the term M (yielding N), and then interpreting the result.

It turns out that TCINNI substitutions can, in fact, be given a surprisingly
neat categorical semantics: The three substitution operators of TCINNI cor-
respond exactly to the three kinds of “special” morphisms in our semantics,
namely sections, display maps, and liftings.

Definition 2.22. We define a partial interpretation function J− ` −K, mapping
a pseudoterm Γ and a TCINNI substitution ϑ to an arrow JΓ ` ϑK in C:

1. JΓ ` [x := N : A]K = Sectx(JΓ ` NK), when JΓ ` NK is an element of
JΓ ` : AK

2. JΓ, x : A ` ↑(x : A)K = Px(JΓ ` : AK), when JΓ ` : AK is defined

3. JΓ, x : ϑA ` ⇑(x : A)ϑK = q(JΓ ` ϑK, x, Jcod(Γ, ϑ) ` : AK), when JΓ ` ϑK and
Jcod(Γ, ϑ) ` : AK are defined

cod(Γ, ϑ) is defined by induction on ϑ:

(a) cod(Γ, [x := N : A]) = (Γ, x : A) if JΓ ` NK is an element of JΓ ` : AK

(b) cod((Γ, x : A), ↑(x : A)) = Γ

(c) cod((Γ, x : ϑA),⇑(x : A)ϑ) = (cod(Γ, ϑ), x : A)

Theorem 2.23 (Soundness of the semantics for TCINNI-OCC0). For a pseu-
docontext Γ, a substitution ϑ and a pseudoterm M , we have

(∗) JΓ ` ϑMK = JΓ ` ϑK∗(Jcod(Γ, ϑ) ` MK)

and

(∗∗) JΓ ` : ϑMK = JΓ ` ϑK∗(Jcod(Γ, ϑ) ` : MK)

whenever all the involved quantities are defined.
We then also have

(+) JΓ ` ϑK : JΓK → Jcod(Γ, ϑ)K

21

Proof. We prove the theorem by induction on |Γ|+ |ϑ|+ |M |. In the induction
step, we prove (+) and (∗) by a case analysis on the structure of ϑ and M , and
then show that (∗∗) follows.

We first treat the case that M is a variable.

1. Case ϑ ≡ [x := N : A]:

Since JΓ ` ϑK and cod(ϑ, Γ) are assumed to be defined, we conclude that
N := JΓ ` NK is an element of A := JΓ ` : AK, and cod(ϑ, Γ) = (Γ, x : A).
Finally, we can assume that m := JΓ, x : A ` MK is defined.

Obviously, (+) holds, since JΓ ` [x := N : A]K = Sectx(JΓ ` NK) : JΓK →
JΓ, x : AK. We show

JΓ ` ϑMK = Sectx(JΓ ` NK)∗(JΓ, x : A ` MK)

by a case analysis of the structure of M .

(a) Case M ≡ x0.
By Lemma 2.20 we have

JΓ ` ϑMK = Sectx(N) = Sectx(N)∗(m)

= Sectx(JΓ ` NK)∗(JΓ, x : A ` x0K)

(b) Case M ≡ xn+1:

JΓ ` ϑMK = JΓ ` [x := N : A]xn+1K
= JΓ ` xnK
= (Px(JΓ ` : AK) ◦ Sectx(JΓ ` NK))∗(JΓ ` xnK)
= Sectx(JΓ ` NK)∗(Px(JΓ ` : AK)∗(JΓ ` xnK))
= Sectx(JΓ ` NK)∗(JΓ, x : A ` xn+1K)

(c) Case M ≡ yn: The argument is almost literally the same as in the
previous case.

2. Case ϑ ≡ ↑(x : A):

Since JΓ ` ϑK is assumed to be defined, Γ must be of the form Γ′, x : A.
Assume JΓK and JΓ′ ` MK are defined.

Obviously, (+) holds, since JΓ ` ↑(x : A)K = Px(JΓK) : JΓK → JΓ′K =
cod(Γ, ↑(x : A)).

We show

JΓ ` ↑(x : A)MK = Px(JΓK)∗(JΓ′ ` MK)

by a case analysis of the structure of M ; both cases are almost trivial:

(a) Case M ≡ xn:

JΓ′, x : A ` ↑(x : A)x
nK = JΓ′, x : A ` xn+1K

= Px(JΓK)∗(JΓ′ ` xnK)

22

(b) Case M ≡ yn, y 6≡ x:

JΓ′, x : A ` ↑(x : A)y
nK = JΓ′, x : A ` ynK

= Px(JΓK)∗(JΓ′ ` ynK)

3. Case ϑ ≡ ⇑(x : A)ϑ
′: Since JΓ ` ϑK is assumed to be defined, Γ must be of

the form Γ′, x : ϑ′A.
By induction hypothesis, (+) is assumed to hold for ϑ′, hence it also holds
for ϑ:

JΓ ` ⇑(x : A)ϑ
′K

= q(JΓ′ ` ϑ′K, x, Jcod(Γ′, ϑ′) ` : AK)
∈ C({JΓ′ ` ϑ′K∗(Jcod(Γ′, ϑ′),` : AK)}x, {Jcod(Γ′, ϑ′),` : AK}x)
= C(JΓ′, x : ϑ′AK, Jcod(Γ′, ϑ′), x : AK)
= C(JΓK, Jcod(Γ, ϑ)K)

We show

JΓ ` (⇑(x : A)ϑ
′)MK =

q(JΓ′ ` ϑ′K, x, Jcod(Γ′, ϑ′) ` : AK)∗(Jcod(Γ′, ϑ′) ` : A ` MK)

by case analysis:

(a) Case M ≡ x0:
Writing A for Jcod(Γ′, ϑ′) ` : AK, A′ for JΓ′ ` : ϑ′AK and ϑ′ for
JΓ′ ` ϑ′K, we see that

q(Px(A′), x, A′) ◦ Sectx(q(ϑ′, x, A)∗(δx,A))
= q(Px(A′), x, A′) ◦ {q(ϑ′, x, A)∗(δx,A)}x ◦ η1({A′}x)
= {ε1(A′)}x ◦ η1({A′}x)
= id{A′}x

Hence, by Lemma 2.21, Sectx(δx,A′) = Sectx(q(ϑ′, x, A)∗(δx,A)),
yielding

JΓ, x : ϑ′A ` x0K = δx,A′ = q(ϑ′, x, A)∗(δx,A)

= q(JΓ′ ` ϑ′K, x, Jcod(Γ′, ϑ′) ` : AK)∗(Jcod(Γ′, ϑ′), x : A ` x0K)

(b) Case M ≡ xn+1:
Writing A for Jcod(Γ′, ϑ′) ` : AK and ϑ′ for JΓ′ ` ϑ′K, we get

JΓ′, x : ϑ′A ` (⇑(x : A)ϑ
′)xn+1K

= JΓ′, x : ϑ′A ` ↑(x : ϑ′A)(ϑ′xn)K
= Px(JΓ ` : ϑ′AK)∗(JΓ′ ` ϑ′xnK)
= Px(ϑ′∗(A))∗(ϑ′∗(Jcod(Γ′, ϑ′) ` xnK))
= (ϑ′ ◦ Px(ϑ′∗(A)))∗(Jcod(Γ′, ϑ′) ` xnK)
= (Px(A) ◦ q(ϑ′, x, A))∗(Jcod(Γ′, ϑ′) ` xnK)
= q(ϑ′, x, A)∗(Px(A)∗(Jcod(Γ′, ϑ′) ` xnK))
= JΓ′, x : ϑA ` ⇑(x : A)ϑK∗(Jcod(Γ′, ϑ′), x : A ` xn+1K)

23

(c) Case M ≡ ym: This case is completely analogous to the last one.

Now we deal with M 6∈ V, assuming that ϑ satisfies (+), which we have
already shown.

1. Case M ≡ unit:
JΓ ` ϑ unitK = JΓ ` unitK

= 1̂(JΓK)

= JΓ ` ϑK∗1̂(Jcod(Γ, ϑ)K)
= JΓ ` ϑK∗(Jcod(Γ, ϑ) ` unitK)

2. Case M ≡ ∗:
JΓ ` ϑ ∗K = JΓ ` ∗K

= id1(JΓK)

= idJΓ`ϑK∗(1(Jcod(Γ,ϑ)K))

= JΓ ` ϑK∗(id1(Jcod(Γ,ϑ)K))
= JΓ ` ϑK∗(Jcod(Γ, ϑ) ` ∗K)

3. Case M ≡ s ∈ S:

JΓ ` ϑsK = JΓ ` sK
= (!JΓK)∗(ŝ)
= (!Jcod(Γ,ϑ)K ◦ JΓ ` ϑK)∗(ŝ)
= JΓ ` ϑK∗((!Jcod(Γ,ϑ)K)∗(ŝ))
= JΓ ` ϑK∗(Jcod(Γ, ϑ) ` MK)

From (∗) and (+) we can now derive (∗∗):
1. Case M ≡ s:

JΓ ` : ϑsK = JΓ ` sK
= (!JΓK)∗(s)
= (!Jcod(Γ,ϑ)K ◦ JΓ ` ϑK)∗(s)
= JΓ ` ϑK∗((!Jcod(Γ,ϑ)K)∗(s))
= JΓ ` ϑK∗(Jcod(Γ, ϑ) ` : sK)

2. Case M ≡ A 6∈ S:

JΓ ` : ϑAK = UJΓK(JΓ ` ϑAK)
= UJΓK(JΓ ` ϑK∗(Jcod(Γ, ϑ) ` AK))
= JΓ ` ϑK∗(UJcod(Γ,ϑ)K(Jcod(Γ, ϑ) ` AK))
= JΓ ` ϑK∗(Jcod(Γ, ϑ) ` : AK)

Corollary 2.24. We record the following four special cases of the above result
for later use:

1. JΓ, x : A ` ↑(x : A)BK = Px(JΓ ` : AK)∗(JΓ ` BK)

2. JΓ, x : A ` : ↑(x : A)BK = Px(JΓ ` : AK)∗(JΓ ` : BK)

3. JΓ ` [x := N : S]MK = Sectx(JΓ ` NK)∗(JΓ ` MK)

4. JΓ ` : [x := N : S]MK = Sectx(JΓ ` NK)∗(JΓ ` : MK)

24

2.7 Soundness

We now proceed to prove soundness of the inference system of OCC0. Since
OCC0, like the original OCC, is a very flexible system, the mere derivability
of a judgement Γ ` J does not imply that Γ is a sensible context and can
meaningfully be interpreted. Hence we give the following more careful formu-
lation of the soundness theorem (which is close to the operational semantics
given by Stehr), where we write J−K ↓ to indicate (unique) definedness of the
interpretation function on the pseudoterm or -context in question.

Theorem 2.25 (Soundness of OCC0). If Γ ` A : B, and C := JΓK ↓, then
A := JΓ ` AK ↓ and B := JΓ ` : BK ↓; A is above C and A is an element of B.

Proof. The proof of the soundness theorem proceeds by induction on derivations,
making use of the previously proved substitution soundness theorem.

1. Last rule used was

(Ax) ,A(s1) = s2
Γ ` s1 : s2

Assume C := JΓK ↓, then S1 := JΓ ` s1K =!∗C(ŝ1) is also defined. Observe
that ŝ1 is an element of ps2q by definition, hence S1 is an element of
S2 :=!∗C(s2) = JΓ ` : s2K, and S2 is above C.

2. Last rule used was

(Start1)
Γ, x : A ` x0 : ↑(x : A)A

Assume JΓ, x : AK ↓, then also JΓ ` : AK ↓. By Corollary 2.24 we have

JΓ, x : A ` : ↑(x : A)AK = Px(JΓ ` : AK)∗(JΓ ` : AK),

of which δx,JΓ` : AK = JΓ, x : A ` x0K is an element.

3. Last rule used was

Γ ` xi : A
(Start2)

Γ, x : B ` xi+1 : ↑(x : B)A

Assume JΓ, x : BK ↓. Then also JΓK ↓, hence JΓ ` xiK is an element of
JΓ ` : AK by IH. Then JΓ, x : B ` xi+1K ↓, too, and it is an element of
JΓ, x : B ` : ↑(x : B)AK by Corollary 2.24.

4. Last rule used was

Γ ` ym : A
(Start3) x 6≡ y

Γ, x : B ` ym : ↑(x : B)A

This case is almost literally the same as case 3.

5. Last rule used was

25

(TruthForm)
Γ ` unit : Prop

Assume JΓK ↓, then JΓ ` unitK = 1̂(JΓK), which is an element of
JΓK∗Prop = JΓ ` : PropK as required.

6. Last rule used was

(TruthIntro)
Γ ` ∗ : unit

Assume JΓK ↓, then JΓ ` ∗K = id1(JΓK) which is an element of JΓ ` : unitK
as required.

Later soundness proofs will extend this proof by clauses for new language
constructs.

26

3 OCC1: Product Types and Structural Equal-
ity

In this section, we extend the rudimentary calculus OCC0 with type formers,
more specifically dependent product and structural equality, to yield a new
system OCC1. These two type formers are central to type theory, and indeed
the expressive power of systems like the Calculus of Constructions is in no small
measure due to the power and flexibility of the product forming operations they
offer.

In OCC, product types are even more flexible than in other calculi, since
their behavior can be customized through a partial function R that is part
of the signature. Unbridled use of this feature is dangerous, though, since it
allows the formulation of OCC instances that fall prey to Girard’s paradox.
This famous result, explained for example in [2], shows that by allowing certain
kinds of product formation one obtains inconsistent systems in which every type
is inhabited. To avoid this, OCC posits a number of restrictions on R, which
we directly adopt in OCC1.

Following established tradition, product types are modelled categorically
via a right adjoint to a particular reindexing functor. For equality types, often
modelled via adjoints as well, we take a somewhat different approach, which is
suggested in Streicher’s work. Both product and equality types have been ex-
tensively studied in the literature, so we are still on firm ground in this chapter.

Incidentally, while OCC1 lacks many features of full OCC, it is more or
less the same as the system Stehr gives his semantics for (the most important
omission being subtyping).

3.1 Syntax

An OCC1 signature is a tuple Σ = (S,Si,Sp,Prop,A,R,≤), where

1. (S,Prop,A) is an OCC0 signature

2. Si and Sp form a partition of S (of impredicative and predicative uni-
verses)

3. Prop ∈ Si

4. ≤ is a partial order on S with respect to which impredicative universes
are minimal

5. R : S × S ; S is a partial function such that

(a) ifR(s1, s2) is defined and s′1 ≤ s1, s′2 ≤ s2, thenR(s′1, s
′
2) ≤ R(s1, s2)

and it is in particular defined

(b) for s1 ∈ S and s2 ∈ Si, R(s1, s2) = s2 if defined

(c) for s1 ∈ S and s2 ∈ Sp, s1, s2 ≤ R(s1, s2) if defined

Given an OCC1 signature Σ, the set of OCC1 pseudoterms T Σ
1 , or simply

T1 when the signature is understood from context, is defined by the following
grammar:

27

T1 ::= S | VN | unit | ∗
| λV : T1.T1 | ΠV : T1.T1 | App([V : T1] T1, T1, T1)
| StrEqT1

(T1, T1) | σ(T1, T1)

where V is a fixed set of syntactic variable names and N is the set of natural
numbers (including 0).

In particular, every OCC0 pseudoterm is also an OCC1 pseudoterm. As
before, there are a number of syntactic differences from Stehr’s notation, be-
cause we choose a more conventional notation to express abstraction and prod-
uct types. More significantly, our system requires applications to be explicitly
typed, which greatly simplifies the definition of the interpretation function; see
Streicher’s monograph [21] for a discussion of this issue. The same holds for the
structural equality type StrEq−(−,−), where StrEqA(M,N) is understood to
be the type of proofs of the proposition that the atoms denoted by M and N ,
both of which are of type A, are in fact equal. Finally, the term σ(M,A) is the
canonical inhabitant of the type StrEqA(M,M) corresponding to a proof that
the atom of type A denoted by term M equals itself.

Definition 3.1. The definition of the size of a pseudoterm is extended to include
the new syntactic constructs:

1. for x ∈ V, S, T, M, N ∈ T1: |App([x : S]T,M,N)| = |S|+|T |+|M |+|N |+1

2. for x ∈ V, S, M ∈ T1: |λx : S.M | = |S|+ |M |+ 1

3. for x ∈ V, S, T ∈ T1: |Πx : S.T | = |S|+ |T |+ 1

4. for A,M,N ∈ T1: |StrEqA(M,N)| = |M |+ |A|+ |N |+ 1

5. for A,M ∈ T1: |σ(M,A)| = |M |+ |A|+ 1

Pseudocontexts and their sizes are defined in exactly the same way as for
OCC0, see Definitions 2.2 and 2.3.

3.2 TCINNI-OCC1

We extend Definition 2.4 to cover the new syntactic constructs of OCC1.

Definition 3.2. On those OCC1 pseudoterms which are not also OCC0 pseu-
doterms, substitutions behave as follows:

ϑApp([y : S]T,A, B) = App([y : ϑS] (⇑(y : ϑA))T, ϑA, ϑB)
ϑ(λy : A.B) = λy : ϑA.(⇑(y : ϑA))B
ϑ(Πy : A.B) = Πy : ϑA.(⇑(y : ϑA))B
ϑ StrEqS(A,B) = StrEqϑS(ϑA, ϑB)
ϑσ(M,A) = σ(ϑM,ϑA)

Lemma 2.6 and Lemma 2.8 carry over unchanged, although the latter has to be
strengthened to cover all substitutions composed entirely of shifting and lifting
operations.

28

3.3 Formal System

Definition 3.3. An OCC1 judgement is either an OCC0 judgement or it is of
the form

Γ ` ||(M = N) : A

where Γ is a pseudocontext, M and N are pseudoterms, and A is a pseudotype;
this judgement expresses that in context Γ, M and N are equal atoms of type
A.

A valid OCC1 judgement is any judgement that can be derived by the rules
of OCC0 complemented with the following new rules:

Γ ` M : A
(StrRefl)

Γ ` ||(M = M) : A

Γ ` ||(M = N) : A
(StrSymm)

Γ ` ||(N = M) : A

Γ ` ||(P = Q) : A Γ ` ||(Q = R) : A
(StrTrans)

Γ ` ||(P = R) : A

Γ ` M : S Γ ` ||(S = T) : s
(TypeConv) , s ∈ S

Γ ` M : T

Γ ` Q : unit
(UnitElim)

Γ ` ||(Q = ∗) : unit

Γ ` S : s1 Γ, x : S ` T : s2
(Pi) ,R(s1, s2) = s3

Γ ` Πx : S.T : s3

Γ ` S : s Γ, x : S ` M : T
(Lda) , s ∈ S

Γ ` λx : S.M : Πx : S.T

Γ ` M : Πx : S.T Γ ` N : S
(App)

Γ ` App([x : S]T,M,N) : [x := S : N]T

Γ ` ||(S = S′) : s1 Γ, x : S ` ||(T = T ′) : s2
(StrPi) ,R(s1, s2) = s3

Γ ` ||(Πx : S.T = Πx : S′.T ′) : s3

Γ ` ||(S = S′) : s1 Γ, x : S ` ||(M = M ′) : T
(StrLda) , s1 ∈ S

Γ ` ||(λx : S.M = λx : S′.M ′) : Πx : S.T

Γ ` ||(M = M ′) : Πx : S.T Γ ` ||(N = N ′) : S
(StrApp)

Γ ` ||(App([x : S]T,M,N) = App([x : S]T,M ′, N ′)) : [x := N : S]T

Γ ` N : S Γ, x : S ` M : T
(BetaRed)

Γ ` ||(App([x : S]T, λx : S.M,N) = [x := N : S]M) : [x := N : S]T

Γ ` M : S Γ ` N : S
(StrEqTyForm)

Γ ` StrEqS(M,N) : Prop

Γ ` ||(M = N) : S
(StrEqTyIntro)

Γ ` σ(M,S) : StrEqS(M,N)

Γ ` P : StrEqA(M,N)
(StrEqTyElim)

Γ ` ||(M = N) : A

29

3.4 OCC1 Structures

An OCC1 structure M is an OCC0 structure with some extra conditions.

Definition 3.4. In order for an OCC0-structure M to be an OCC1-structure,
there must be appropriate categorical type constructors, i.e. functors corre-
sponding to product and equality type formation:

• For any A ∈ E above C ∈ C and any x ∈ N , the reindexing functor Px(A)∗

must have a right adjoint Πx,A with vertical unit ηΠ and vertical counit
εΠ, which is compatible with reindexing, i.e. for f : D → C and B above
{A}x we have

f∗ ◦Πx,A = Πx,f∗(A) ◦ q(f, x,A)∗ (1)

and for g : K → {A}x,

g∗(εΠ(B)) = εΠ(g∗(B)) (2)

The requirement for compatibility with reindexing is a strong form of the
so-called Beck-Chevalley condition [10].

Note that the functor ΠA maps elements of B to elements of Πx,A(B).
Intuitively speaking, this means that the product functor takes a term
of type B depending on type A and abstracts out the dependency on
A, yielding a term of type Πx,A(B); hence it behaves similar to a λ-
abstraction (and is, indeed, used together with the adjunction’s unit ηΠ

to provide a semantics for abstractions later on).

• For any object A ∈ E and name x ∈ N , there must be an object StrEqx,A

above {Px(A)∗(A)}x such that the two morphisms

Px(Px(A)∗(A)) ◦ Py(StrEqx,A) (3)

and

q(Px(A), x, A) ◦ Py(StrEqx,A) (4)

are equal for any y ∈ N . As we will see below, these two morphisms can
be understood as “extraction” morphisms, which allow us to access the
atoms whose equality the type expresses.

Furthermore, we require the existence of an element sx(A) of
δ∗x,A(StrEqx,A), which will be used to model the canonical reflexivity wit-
ness.

Structural equality types are likewise required to be stable under substi-
tution, i.e. for f : D → p(A) we must have

q(q(f, x,A), x, Px(A)∗(A))∗(StrEqx,A) = StrEqx,f∗(A) (5)

and

30

q(f, x,A)∗(sx(A)) = sx(f∗(A)) (6)

Recall that the injection morphism δx,A : 1(A) → Px(A)∗(A) corresponds
to a section δx,A : {A}x → {Px(A)∗(A)}x. This section, in turn, induces
a reindexing functor δ∗x,A : E{Px(A)∗(A)}x

→ E{A}x
. It is possible to define

equality types via a left adjoint to this functor, see for example [10]. The
approach we use here is derived from Streicher’s account [21]; it generalizes
more smoothly to computational equality and rewriting types.

Using these two constructions, we can interpret product and equality types
as objects in E . But this is not enough: since we are dealing with a type theory
with universes, product and equality types can themselves be regarded as atoms
belonging to an appropriate universe. But atoms are semantically interpreted
as arrows, not objects, of E . Hence we need an additional set of operations to
construct the arrows corresponding to product and equality types:

• We require a partial operator Π̂ such that for

– C ∈ Ob(C)

– s1, s2 ∈ SC
– Â : 1(C) → C∗s1

– B̂ : 1({A}x) → {A}∗xs2, where A := UC(Â)

we have
Π̂x,Â(B̂) : 1(C) → C∗s3 (7)

for some s3 ∈ SC , and

UC(Π̂x,Â(B̂)) = Πx,A(U{A}x
(B̂)) (8)

The operator Π̂ is required to be stable under reindexing in the same way
as Π is, i.e. we have

f∗(Π̂x,Â(B̂)) = Π̂x,f∗(Â)(q(f, x,A)∗(B̂)) (9)

Since Π̂ is only partial, the arrow in (7) does not have to be defined for
all Â and B̂ satisfying the above conditions.

If there is a partial function R : SC × SC ; SC such that (7) is defined
whenever R(s1, s2) ↓, and if in that case s3 = R(s1, s2), then Π̂ is said to
be governed by R.

• We require a (total) operator ˆStrEq, such that for

– C ∈ C
– s ∈ SC
– Â : 1(C) → C∗s

31

we have (writing A for UC(Â) and A∗A for {Px(A)∗(A)}x):

ˆStrEqx,Â : 1(A∗A) → (A∗A)∗Prop (10)

and

UA∗A(ˆStrEqx,Â) = StrEqx,A (11)

Again, ˆStrEq is required to be stable under reindexing just like StrEq:

q(q(f, x,A), x, Px(A)∗(A))∗(ˆStrEqx,Â) = ˆStrEqx,f∗(A) (12)

3.5 The Interpretation Function

Let an OCC1-signature Σ = (S,Si,Sp,Prop,A,R,≤) be given. To model the
corresponding OCC1-instance, we need an OCC1-structure M such that the
OCC0-instance for Σ′ := (S,Prop,A) can be modelled in M and the operator
Π̂ is governed by R.

The interpretation functions to be defined are as with OCC0, and in fact
the definitions of the interpretation functions for contexts and types need not
be changed. Only the definition of the interpretation function for terms is
augmented by the following cases:

3.5.1 Interpretation of Terms

1. application:

JΓ ` App([x : A]B,M,N)K =
Sectx(JΓ ` NK)∗(εΠ(JΓ, x : A ` : BK) ◦ Px(JΓ ` : AK)∗(JΓ ` MK))

when

(a) JΓ ` MK is an element of Πx,JΓ` : AK(JΓ, x : A ` : BK)

(b) JΓ ` NK is an element of JΓ ` : AK, and hence Sectx(JΓ ` NK) is a
section of Px(Γ, x : A)

2. lambda abstraction:

JΓ ` λx : A.MK = Πx,JΓ` : AK(JΓ, x : A ` MK) · ηΠ(1(JΓK))

3. dependent product formation:

JΓ ` Πx : S.T K = (Π̂x,JΓ`SK(JΓ, x : S ` T K)), when

(a) C := JΓK ↓
(b) JΓ ` SK is an element of C∗s1 for some s1 ∈ SC
(c) JΓ, x : S ` T K is an element of C∗s2 for some s2 ∈ SC
(d) R(s1, s2) ↓

As is to be hoped, we have JΓ ` : Πx : S.T K = Πx,JΓ` : SK(JΓ, x : S ` : T K)

32

4. structural equality:

JΓ ` StrEqA(M,N)K =

Sectx(JΓ ` MK)∗(Sectx(Px(JΓ ` : AK)∗(JΓ ` NK))∗(ˆStrEqx,JΓ`AK))

where JΓ ` MK and JΓ ` NK are elements of JΓ ` : AK.

This somewhat unwieldy definition can be simplified using the soundness
results for substitution proved in the next section:

By definition of substitutions we know that StrEqA(M,N) is the same as
[x := M][x := ↑xN] StrEq↑x↑xA(x1, x0), where type annotations have been
omitted to improve legibility.

The above definition can now be stated as

JΓ, x : A, x : ↑xA ` StrEq↑x↑xA(x1, x0)K = ˆStrEqx,JΓ`AK

The general case is then derived using Theorem 3.5 below:

JΓ ` StrEqA(M,N)K

= JΓ ` [x := M][x := ↑xN] StrEq↑xA(x1, x0)K

= JΓ ` [x := M]K∗JΓ, x : A ` [x := ↑xN] StrEq↑x↑xA(x1, x0)K

= JΓ ` [x := M]K∗

(JΓ, x : A ` [x := ↑xN]K∗JΓ, x : A, x : ↑xA ` StrEq↑x↑xA(x1, x0)K)

= Sectx(JΓ ` MK)∗(Sectx(JΓ, x : A ` ↑xK∗(JΓ ` NK))∗(ˆStrEqx,JΓ`AK)))

= Sectx(JΓ ` MK)∗(Sectx(Px(JΓ ` : AK)∗(JΓ ` NK))∗(ˆStrEqx,JΓ`AK))

It should be understood that this is only an explanation, and not a defini-
tion, since the proof of the soundness theorem for substitutions depends
on the definition of the interpretation function.

5. reflexivity of structural equality:

JΓ ` σ(M,A)K = Sectx(JΓ ` MK)∗(sx(JΓ ` : AK)), when

(a) A := JΓ ` : AK ↓
(b) M := JΓ ` MK ↓ and M is an element of A

3.6 Semantics of TCINNI-OCC1

TCINNI-OCC1 substitutions are interpreted in the same way as for TCINNI-
OCC0. To prove soundness of this interpretation, we have to extend the proof
of Theorem 2.23 by clauses for the new constructs.

Theorem 3.5 (Soundness of the semantics for TCINNI-OCC1). For a pseudo-
context Γ, a substitution ϑ and an OCC1 pseudoterm M , we have

(∗) JΓ ` ϑMK = JΓ ` ϑK∗(Jcod(Γ, ϑ) ` MK)

33

and

(∗∗) JΓ ` : ϑMK = JΓ ` ϑK∗(Jcod(Γ, ϑ) ` : MK)
whenever all the involved quantities are defined.
We then also have

(+) JΓ ` ϑK : JΓK → Jcod(Γ, ϑ)K

Proof. Let M be an OCC1 pseudoterm which is not an OCC0 pseudoterm, and
ϑ a substitution. Assume ϑ satisfies (+).

1. Case M ≡ App([x : A]B, T1, T2):
Writing ∆ for cod(Γ, ϑ), A for J∆ ` : AK and B for J∆, x : A ` : BK, we see
that

JΓ ` ϑMK
= JΓ ` App([x : ϑA] (⇑(x : ϑA))B,ϑT1, ϑT2)K
= Sectx(JΓ ` ϑT2K)∗(εΠ(JΓ, x : ϑA ` : (⇑(x : ϑA))BK)

◦Px(JΓ ` : ϑAK)∗(JΓ ` ϑT1K))
= Sectx(JΓ ` ϑK∗(J∆ ` T2K))∗(εΠ(q(JΓ ` ϑK, x, A)∗(B))◦

Px(JΓ ` ϑK∗(A))∗(JΓ ` ϑK∗(J∆ ` T1K)))
= Sectx(JΓ ` ϑK∗(J∆ ` T2K))∗(q(JΓ ` ϑK, x, A)∗(εΠ(B))◦

q(JΓ ` ϑK, x, A)∗(Px(A)∗(J∆ ` T1K))))
= (q(JΓ ` ϑK, x, A) ◦ Sectx(JΓ ` ϑK∗(J∆ ` T2K)))∗

(εΠ(B) ◦ Px(A)∗(J∆ ` T1K))
= (Sectx(J∆ ` T2K) ◦ JΓ ` ϑK)∗(εΠ(B) ◦ Px(A)∗(J∆ ` T1K))
= JΓ ` ϑK∗(Sectx(J∆ ` T2K)∗(εΠ(B) ◦ Px(A)∗(J∆ ` T1K)))
= JΓ ` ϑK∗(J∆ ` App([x : A]B, T1, T2)K)

2. Case M ≡ λx : A.B:
Again, write ∆ for cod(Γ, ϑ) and A for J∆ ` : AK.

JΓ ` ϑMK
= JΓ ` λx : ϑA.(⇑(x : ϑA))BK
= Πx,JΓ` : ϑAK(JΓ, x : ϑA ` (⇑(x : ϑA))BK) ◦ ηΠ(1(JΓK))
= Πx,JΓ`ϑK∗(A)(JΓ, x : ϑA ` ⇑(x : ϑA)K∗(J∆, x : A ` BK))◦

ηΠ(JΓ ` ϑK∗(1(J∆K)))
= Πx,JΓ`ϑK∗(A)(q(JΓ ` ϑK, x, A)∗(J∆, x : A ` BK))◦

JΓ ` ϑK∗(ηΠ(1(J∆K)))
= JΓ ` ϑK∗(Πx,A(J∆, x : A ` BK)) ◦ JΓ ` ϑK∗(ηΠ(1(J∆K)))
= JΓ ` ϑK∗(J∆ ` MK)

3. Case M ≡ Πx : A.B:
As above, write ∆ for cod(Γ, ϑ), A for J∆ ` AK, and B for J∆, x : A ` BK.

JΓ ` ϑMK
= JΓ ` Πx : ϑA.(⇑(x : ϑA))BK
= Π̂x,JΓ`ϑAK(JΓ, x : ϑA ` (⇑(x : ϑA))BK)
= Π̂x,JΓ`ϑK∗(A)(JΓ, x : ϑA ` ⇑(x : ϑA)K∗(B))
= Π̂x,JΓ`ϑK∗(A)(q(JΓ ` ϑK, x, A)∗(B))
= JΓ ` ϑK∗(Π̂x,A(B)))
= JΓ ` ϑK∗(J∆ ` MK)

34

4. Case M ≡ StrEqS(A,B):

Write ∆ := cod(Γ, ϑ), A := J∆ ` AK, B := J∆ ` BK, S := J∆ ` SK,
ϑ := J∆ ` ϑK.

Then

JΓ ` ϑ StrEqS(A,B)K
= JΓ ` StrEqϑS(ϑA, ϑB)K
= Sectx(JΓ ` ϑAK)∗(Sectx(Px(JΓ ` : ϑSK)∗(JΓ ` ϑBK))∗

(ˆStrEqx,JΓ`ϑSK))
= Sectx(JΓ ` ϑK∗(A))∗(Sectx(Px(JΓ ` ϑK∗(S))∗(JΓ ` ϑK∗(B)))∗

(ˆStrEqx,JΓ`ϑK∗(S)))
= JΓ ` ϑK∗(Sectx(A)∗((Px(S)∗(B)))∗(ˆStrEqx,S))
= JΓ ` ϑK∗J∆ ` StrEqS(A,B)K

5. Case M ≡ σ(M,A):

With the usual abbreviations, we derive

JΓ ` ϑσ(A,S)K
= JΓ ` σ(ϑA, ϑS)K
= Sectx(JΓ ` ϑAK)∗(sx(JΓ ` ϑSK))
= Sectx(JΓ ` ϑK∗(A))∗(q(JΓ ` ϑK, x, S)∗(sx(S)))
= (q(JΓ ` ϑK, x, S) ◦ Sectx(JΓ ` ϑK∗(A)))∗(sx(S))
= (Sectx(A) ◦ JΓ ` ϑK)∗(sx(S))
= JΓ ` ϑK∗(J∆ ` σ(A,S)K)

3.7 Soundness

Finally, we extend the proof of the soundness theorem to OCC1.

Theorem 3.6. The given interpretation of contexts, types, and terms is sound
in the sense that

• if Γ ` A : B and C := JΓK ↓, then A := JΓ ` AK ↓ and B := JΓ ` : BK ↓; A
is above C and A is an element of B.

• if Γ ` ||(A = B) : S and C := JΓK ↓, then A := JΓ ` AK ↓, B := JΓ ` : BK ↓
and S := JΓ ` : SK ↓, and A and B are equal elements of S, which is above
C.

Proof. Only the new rules need to be considered.

• Soundness of the rules (StrRefl), (StrSymm), and (StrTrans) is evident.

• Last rule used was

Γ ` M : S Γ ` ||(S = T) : s
(TypeConv)

Γ ` M : T

35

Assume C := JΓK ↓; then by IH M := JΓ ` MK ↓, S := JΓ ` SK ↓ and
T := JΓ ` T K ↓, M is an element of UC(S), and S and T are equal. Thus,
M is also an element of UC(T), and the conclusion is sound.

• Last rule used was

Γ ` Q : unit
(UnitElim)

Γ ` ||(Q = ∗) : unit

Assume C := JΓK ↓, then by IH Q := JΓ ` QK ↓, and Q is an element of
JΓ ` : unitK = 1(JΓK). But 1(JΓK) is terminal in the fiber over Γ, hence
we must have Q = id1(JΓK) = JΓ ` ∗K, verifying the conclusion.

• Last rule used was

Γ ` S : s1 Γ, x : S ` T : s2
(Pi) ,R(s1, s2) = s3

Γ ` Πx : S.T : s3

Assume JΓK ↓; then by IH S := JΓ ` SK is a uniquely defined element
of JΓ ` : s1K. This means that JΓ, x : SK ↓, hence again by IH that T :=
JΓ, x : S ` T K is a uniquely defined element of JΓ, x : S ` : s2K. But then,
JΓ ` Πx : S.T K = Π̂x,S(T) is an element of JΓ ` : s3K, since R(s1, s2) is
assumed to be defined.

• Last rule used was

Γ ` S : s Γ, x : S ` M : T
(Lda) , s ∈ S

Γ ` λx : S.M : Πx : S.T

Assume JΓK ↓. By the same reasoning as above, we find that S :=
JΓ ` : SK ↓, and also M := JΓ, x : S ` MK ↓, which is an element of
T := JΓ, x : S ` : T K ↓. Hence, JΓ ` λx : S.MK = Πx,S(M) ◦ ηΠ(1(JΓK)) is
an element of Πx,S(T) = JΓ ` : Πx : S.T K as required.

• Last rule used was

Γ ` M : Πx : S.T Γ ` N : S
(App)

Γ ` App([x : S]T,M,N) : [x := N : S]T

Assume JΓK ↓. Then by IH

– P := JΓ ` : Πx : S.T K ↓, which implies that T := JΓ, x : S ` : T K ↓
– M := JΓ ` MK ↓ and it is an element of P

– S := JΓ ` : SK ↓
– N := JΓ ` NK ↓ and it is an element of S

Hence (Px(S))∗(M) is an element of (Px(S))∗(P) = (Px(S))∗(ΠS(T)).

By definition,
εΠ(T) : (Px(S))∗(ΠS(T)) → T

This allows us to conclude that εΠ(T) ◦ (Px(S))∗(M) is an element of T ,
and finally that

36

JΓ ` App([x : S]T,M,N)K = Sectx(N)∗(εΠ(T) ◦ (Px(S))∗(M))

is an element of Sectx(N)∗(JΓ, x : S ` : T K), which by Corollary 2.24 is the
same as JΓ ` : [x := N : S]T K.

• Last rule used was (StrPi), (StrLda), or (StrApp):

All these rules are easily proved sound since structural equality is mapped
to “real” equality between morphisms in the structure.

• Last rule used was

Γ ` N : S Γ, x : S ` M : T
(BetaRed)

Γ ` ||(App([x : S]T, λx : S.M,N) = [x := N : S]M) : [x := N : S]T

Assume C := JΓK ↓, then

– by IH N := JΓ ` NK ↓
– N is an element of S := JΓ ` : SK ↓
– JΓ, x : SK ↓, and again by IH, M := JΓ, x : S ` MK ↓
– M is an element of T := JΓ, x : S ` : T K ↓

Hence by definition of the interpretation function

– Jλx : S.MK = Πx,S(M) ◦ ηΠ(1(C)) is an element of Πx,S(T)

– JApp([x : S]T, λx : S.M,N)K = Sectx(N)∗(εΠT ◦ Px(S)∗(Πx,S(M) ◦
ηΠ(1(C)))) is an element of Sectx(N)∗T , which by Corollary 2.24
equals JΓ ` : [x := N : S]T K

– JΓ ` [x := N : S]MK = Sectx(N)∗M again by Corollary 2.24, and
this also is an element of Sectx(N)∗T = JΓ ` : [x := N : S]T K

Using the definition of product types, we can now infer

εΠ(T) ◦ Px(S)∗(Πx,S(M) ◦ ηΠ(1(C)))
= εΠ(T) ◦ Px(S)∗(Πx,S(M)) ◦ Px(S)∗(ηΠ(1(C)))
= M ◦ εΠ(Px(S)∗(1(C))) ◦ Px(S)∗(ηΠ(1(C)))
= M ◦ ((εΠPx(S)∗ ◦ Px(S)∗ηΠ)(1(C)))
= M

• Last rule used was

Γ ` M : S Γ ` N : S
(StrEqTyForm)

Γ ` StrEqS(M,N) : Prop

Assume JΓK ↓. Then by IH

– S := JΓ ` SK ↓
– M := JΓ ` MK ↓ and it is an element of S

– N := JΓ ` NK ↓ and it is an element of S

37

Thus by definition of ˆStrEq, JΓ ` StrEqS(M,N)K ↓ is an element of
JΓ ` : PropK.

• Last rule used was

Γ ` ||(M = N) : A
(StrEqTyIntro)

Γ ` σ(M,A) : StrEqA(M,N)

Assume JΓK ↓, then by IH M := JΓ ` MK ↓, A := JΓ ` : AK ↓, and
N := JΓ ` NK ↓, and M and N are equal elements of A.

Thus we have (again omitting obvious type annotations):

JΓ ` : StrEqA(M,N)K
= JΓ ` : StrEqA(M,M)K

= JΓ ` : [x := M] StrEq↑xA(x0, x0)K

= JΓ ` : [x := M][x := x0] StrEq↑x↑xA(x1, x0)K

= Sectx(M)∗(Sectx(JΓ, x : A ` x0K)∗(StrEqx,A))

= Sectx(M)∗(Sectx(δx,A)∗(StrEqx,A))

=: S

Also, R := JΓ ` σ(M,A)K = Sectx(M)∗(sx(A)), and because sx(A) is an
element of Sectx(δx,A)∗(StrEqx,A), we see that R is an element of S, as
required.

• Last rule used was

Γ ` Q : StrEqA(M,N)
(StrEqTyElim)

Γ ` ||(M = N) : A

Assume JΓK ↓, then by IH Q := JΓ ` QK ↓ and JΓ ` : StrEqA(M,N)K ↓.
By definition of the interpretation function, however, we can also deduce
that M := JΓ ` MK ↓, N := JΓ ` NK ↓, A := JΓ ` : AK ↓ and the former
two are sections of the latter. Setting P := Px(A), P ′ := Px(P ∗(A)),
P ′′ := Px(StrEqx,A), N ′ := P ∗(N), we find that

Sectx(M)
= P ′ ◦ P ′′ ◦ q(Sectx(N ′) ◦ Sectx(M),StrEqx,A) ◦ Sectx(Q)

= q(P, x,A) ◦ P ′′ ◦ q(Sectx(N ′) ◦ Sectx(M),StrEqx,A) ◦ Sectx(Q)

= Sectx(N)

and hence M = N .

38

4 OCC2: Rewriting

We now turn to our next system, OCC2, which features support for rewriting
types, i.e. types of proofs that some atom M can be rewritten to another atom
N . Since atoms are themselves represented as morphisms in the semantics, it
seems natural to represent rewrites as morphisms between morphisms, that is 2-
cells. Consequently, we will extend our notion of a structure to use 2-categories
as basis. The properties of a 2-category turn out to be a remarkably good
match for modelling rewriting: 2-cells can only exist between 1-cells with the
same source and target, just as rewritings can only exist between terms of the
same type, identity and composite 2-cells guarantee reflexivity and transitivity
of rewriting, and while vertical composition of 2-cells corresponds to sequential
composition of rewrites, horizontal composition is connected with rewriting in-
side a term. These parallels were already exploited in Meseguer’s 2-functorial
account of the semantics of rewrite theories [13], and one might view our defini-
tions as a step towards generalizing his “Lawvere 2-theories” to a dependently
typed setting.

In Stehr’s original presentation of OCC, rewriting is only available through
rewriting predicates, there is no rewriting judgement. The different kinds of
equality, on the other hand, are all modelled both by a type constructor and
a corresponding judgement. We feel that the system becomes more symmetric
with a new rewriting judgement, introduced below.

Our handling of rewriting in OCC2 is intensional: the existence of a rewrit-
ing between two atoms does not provide us with new ways to reason about them
(roughly speaking, rewriting types provide similar capabilities like Maude’s rl
rules). A more extensional version of rewriting is, in fact, computational equal-
ity, which we will introduce in the next section.

4.1 Syntax

An OCC2 signature is an OCC1 signature.
The set of OCC2 pseudoterms T Σ

2 , or simply T2 when the signature is un-
derstood from context, is defined as follows:

T2 ::= S | VN | unit | ∗
| λV : T2.T2 | ΠV : T2.T2 | App([V : T2] T2, T2, T2)
| StrEqT2

(T2, T2) | σ(T2, T2)

| T2
T2−→ T2 | ρ(T2, T2)

where V is a fixed set of syntactic variable names and N is the set of natural
numbers (including 0).

Besides the OCC2 pseudoterms encountered before, there are two new syn-
tactic constructions, namely rewriting types of the form A

S−→ B, understood
as the type of witnesses for rewrites from atom A to atom B (both of type
S), and the canonical atom ρ(A,S) which witnesses a rewrite from atom A to
itself. A more full-fledged term language for rewrites (expressing, for example,
transitivity or context closure like the one in [15]) would perhaps be desirable;
we omit it for simplicity’s sake.

39

Definition 4.1. The definition of the size of a pseudoterm is extended by two
new clauses:

1. for A,M, N ∈ T2: |M
A−→ N | = |M |+ |A|+ |N |+ 1

2. for A,M ∈ T2: |ρ(M,A)| = |M |+ |A|+ 1

4.2 TCINNI-OCC2

Definition 3.2 is extended once more to cover rewriting types.

Definition 4.2. On those OCC2 pseudoterms which are not also OCC1 pseu-
doterms, substitutions behave as follows:

ϑ(A S−→ B) = ϑA
ϑS−−→ ϑB

ϑρ(M,A) = ρ(ϑM,ϑA)

Not surprisingly, Lemma 2.6 and Lemma 2.8 carry over unchanged.

4.3 Formal System

There is one new judgement form:

Definition 4.3. An OCC2 judgement is either an OCC1 judgement or it is of
the form

Γ ` M → N : A

where Γ is a pseudocontext, M and N are pseudoterms, and A is a pseudotype;
this judgement expresses that in context Γ, M and N are atoms of type A, and
atom M rewrites to atom N .

A valid OCC2 judgement is any judgement that can be derived by the rules
of OCC1 complemented with these new rules:

Γ ` M : A
(RewRefl)

Γ ` M → M : A

Γ ` M → N : S Γ, x : S ` A : T

Γ ` ||([x := M : S]T = [x := N : S]T) : s
(RewCong) , s ∈ S

Γ ` [x := M : S]A → [x := N : S]A : [x := M : S]T

Γ ` M → M ′ : A Γ ` M ′ → M ′′ : A
(RewTrans)

Γ ` M → M ′′ : A

Γ ` M : S Γ ` N : S
(RwTyForm)

Γ ` M
S−→ N : Prop

Γ ` M : S
(RwTyIntro)

Γ ` ρ(M,S) : M
S−→ N

Γ ` R : M
A−→ N

(RwTyElim)
Γ ` M → N : A

40

A′

A B

f ′1

&&
f ′2

--

������ α
u1

��

u2

!!

oooos{
υ

f
//

p(A′)

p(A) p(B)

p(f ′1)

''
p(f ′2)

,,

������p(α)

v1

��
v2

��

oooos{
β

p(f)
//

E

C

Figure 3: Deep Cartesian Arrow

Reflexivity and transitivity are natural properties of rewritings, and we will
see that they arise equally naturally from our semantic model. In [20], it is
emphasized that OCC does not stipulate any congruence closure properties of
rewritings, and indeed our model does not a priori provide such properties; a
simple extension of the semantics, though, will suffice to accommodate the above
congruence rule (RewCong).

Observe that the third premise of this rule ensures that rewriting does not
change the type of an object, even in the presence of dependent types. In
the categorical interpretation, this will make sure that two source objects are
mapped to the same target object by a functor.

The rule (RewCong) should not be confused with the following one (which
is admissible in OCC2):

Γ, x : S ` A → B : T Γ ` M : S
(RewSubst)

Γ ` [x := M : S]A → [x := M : S]B : [x := M : S]T

4.4 OCC2 Structures

Since we want to extend our structures to be based on 2-categories, we have to
adapt some of our earlier definitions.

Definition 4.4. Let p be a 2-functor from E to C. An arrow f : A → B
in E is called deep cartesian if, for any arrow f ′1 : A′ → B in E and an arrow
v1 : p(A′) → p(A) such that p(f ′1) = p(f)◦v1, there is a unique arrow u1 : A′ → A
with p(u1) = v1 and f ′1 = f ◦ u1 (i.e., it is cartesian). Furthermore, if there
is another arrow f ′2 : A′ → B in E and an arrow v2 : p(A′) → p(A) such that,
again, p(f ′2) = p(f) ◦ v2, and there are 2-cells α : f ′1 ⇒ f ′2 and β : v1 ⇒ v2 such
that p(f) ∗ β = p(α), then there is a unique 2-cell υ : u1 ⇒ u2 with p(υ) = β
and α = f ∗ υ.

The situation discussed in the definition is depicted in Figure 3.

41

Definition 4.5. A 2-functor p from E to C is called a deep cloven fibration if
for every object A of E and every morphism f : B → p(A) in C there is a chosen
deep cartesian arrow (called the deep cartesian lifting of f) f(A) above f . The
domain of this arrow is written f∗(A).

Definition 4.6. p is called a deep split fibration if it is a deep cloven fibration
which is also split.

Deep split fibrations make it possible to extend reindexing functors to 2-
functors:

Definition 4.7. Given a deep split fibration p from E to C, every arrow f : D →
C in C induces a 2-functor f∗ from EC to ED, called a deep reindexing or deep
pullback functor .

On objects, it is defined by the cleavage. For a vertical arrow k : A → B, we
can see that both k◦f(A) and f(B) are above f and the latter is deep cartesian.
Thus, there must be a unique vertical arrow from f∗(A) to f∗(B), which we
will call f∗(k), such that f(B) ◦ f∗(k) = k ◦ f(A).

Also, if there is another vertical arrow h : A → B and a 2-cell r : h → k, then
r ∗ f(A) is a 2-cell from h ◦ f(A) to k ◦ f(A), thus there must be a unique 2-cell
from f∗(h) to f∗(k), which we will call f∗(r), such that f(B)∗f∗(r) = r ∗f(A).

Now we can define OCC2-structures.

Definition 4.8. An OCC2-structure M is an OCC1-structure fulfilling the
following additional requirements:

• C and E are 2-categories (since every 2-category is also a 1-category this
does not prevent M from being an OCC1-structure).

• p is a deep split fibration.

• For x ∈ N , {−}x is a 2-functor and Px is a 2-natural transformation.

• 1x and Πx,A are 2-functors for every x ∈ N and A ∈ E ; the corresponding
adjunctions are 2-adjunctions.

• For any object A ∈ E and name x ∈ N , there must be an object Rwx,A

above {Px(A)∗(A)}x such that between the two morphisms

Px(Px(A)∗(A)) ◦ Py(Rwx,A)

and

q(Px(A), x, A) ◦ Py(Rwx,A)

there is a 2-cell for any y ∈ N 8. Furthermore, there must be an element
rx(A) of δ∗x,A(Rwx,A).

Given this definition, we can see rewriting types as a “lax” kind of equal-
ity types, where we do not require the two extraction morphisms to be
identical (i.e., connected by an identity 2-cell) but only to be connected

8This condition closely parallels the one for structural equality types.

42

1({S}x)

A

��

1(p(S))

M∗(A)

��
N∗(A)

��
____ks

r′

E T M∗(T) = N∗(T)

C {S}x p(S)
M

kk

N
ss � �� �KSr

Figure 4: Congruence Closure

by some 2-cell; conversely, we can understand structural equality types
as rewriting types where the 2-cell in question is not only guaranteed to
exist, but guaranteed to be an identity 2-cell.

Like all other type constructors, rewriting types must be stable under
substitution, i.e. for f : D → p(A) we must have

q(q(f, x,A), x, Px(A)∗(A))∗(RwA) = Rwf∗(A)

and

q(f, x,A)∗(rx(A)) = rx(f∗(A))

As before, we need an operator R̂w to mirror Rw’s workings on the
level of types: for C ∈ C, s ∈ SC , Â : 1(C) → C∗s, A := UC(Â),
A∗A := {Px(A)∗(A)}x, we have R̂wx,Â : 1(A∗A) → (A∗A)∗Prop, and
UA∗A(R̂wx,A) = Rwx,A. Again, this operator needs to be stable under
substitutions.

• An OCC2-structure has to support congruence closure, that is, for any
S ∈ E and T above {S}x, any element A of T , two sections M,N of {S}x

with M∗(T) = N∗(T) and a 2-cell r between them we can choose a 2-cell
r∗(A) such that

r∗(A) : M∗(A) ⇒ N∗(A)

The situation is illustrated in Figure 4 (where for technical reasons we
abbreviate r∗(A) as r′).

For comparison, Figure 5 shows the situation corresponding to the rule
(RewSubst) mentioned above. Notice that the symmetry between the two
rules (somewhat obscured in the syntax) is very clear here.

The correspondence between sections and elements introduced in Lemma 2.17
extends to 2-cells:

43

1({S}x)

A

��
B

��
____ks
r

1(p(S))

M∗(A)

��
M∗(B)

��
____ks

r′

E T M∗(T)

C {S}x p(S)Moo

Figure 5: Rewriting under Substitution

Lemma 4.9. For an object A of E and a name x ∈ N , let Sectionsx(A) be the
full subcategory of C(p(A), {A}x) comprising all sections of Px(A). Then there
is a bijective functor Sectx from E(1(p(A)), A) to Sectionsx(A).

Proof. On objects (i.e., elements of A), we define the functor to simply be the
mapping Sectx seen before. For an arrow α : m ⇒ n, where m and n are elements
of A, define Sectx(α) := {α}x ∗ η1(p(A)).

This mapping preserves identities

Sectx(idm) = {idm}x ∗ η1(p(A))
= id{m}x

∗ idη1(p(A))

= id{m}x◦η1(p(A))

= idSectx(m)

and composites

Sectx(β ◦ α) = {β ◦ α}x ∗ η1(p(A))
= ({β}x ◦ {α}x) ∗ (idη1(p(A)) ◦ idη1(p(A)))
= ({β}x ∗ idη1(p(A))) ◦ ({α}x ∗ idη1(p(A)))
= Sectx(β) ◦ Sectx(α)

Bijectivity is established by giving an inverse functor: The mapping Sect−1
x

on elements was given before, for a 2-cell γ : k ⇒ l (where k, l ∈ Sectx(A)),
we define Sect−1

x (γ) := ε1(A) ∗ 1x(γ). It is easily established that this, too,
gives a functor; mutual inverseness follows from the triangular equations of the
2-adjunction.

In the same way that a 1-category can be turned into a 2-category, we can
turn an OCC1-structure into an OCC2-structure.

Theorem 4.10. Every OCC1-structure can be extended to an OCC2-structure.

Proof. An identity 2-cell is adjoined to every arrow in C and E , which makes both
of them 2-categories. The functors p and {−}x are extended to 2-functors in

44

the canonical way (by mapping identity 2-cells to identity 2-cells), which makes
p into a deep split fibration. Since there are only identity 2-cells, every natural
transformation and adjoint becomes a 2-natural transformation resp. 2-adjoint.
To complete the construction, set Rw := StrEq, rx := sx, and R̂w := ˆStrEq,
which is easily seen to fulfill the conditions.

4.5 The Interpretation Function

After these preparations, extending the interpretation function to cover the new
syntactic constructs is easy. Let an OCC2-signature

Σ = (S,Si,Sp,Prop,A,R,≤)

be given. To model the corresponding OCC2-instance, we need an OCC2-
structure M such that the OCC1-instance for Σ can be modelled in M.

Again, only the interpretation function for terms needs to be extended:

4.5.1 Interpretation of Terms

1. rewriting types:

JΓ ` M
A−→ NK =

Sectx(JΓ ` MK)∗(Sectx(Px(JΓ ` : AK)∗(JΓ ` NK))∗(R̂wx,JΓ`AK))

where JΓ ` MK and JΓ ` NK are elements of JΓ ` : AK.

Note that this definition exactly parallels the interpretation of structural
equality types.

2. reflexivity of rewriting:

JΓ ` ρ(M,A)K = Sectx(JΓ ` MK)∗(rx(JΓ ` : AK)), when

(a) A := JΓ ` : AK ↓
(b) M := JΓ ` MK ↓ and M is an element of A

4.6 Semantics of TCINNI-OCC2

The soundness proof for the interpretation of TCINNI-OCC2 substitutions is a
straightforward extension of the corresponding proof for OCC1 in the same way
as done for structural equality.

4.7 Soundness

Once more, we extend the proof of the soundness theorem.

Theorem 4.11. The given interpretation of contexts, types, and terms is sound
in the sense that

• if Γ ` A : B and C := JΓK ↓, then A := JΓ ` AK ↓ and B := JΓ ` : BK ↓; A
is above C and A is an element of B.

45

• if Γ ` ||(A = B) : S and C := JΓK ↓, then A := JΓ ` AK ↓, B := JΓ ` : BK ↓
and S := JΓ ` : SK ↓, and A and B are equal elements of S, which is above
C.

• if Γ ` A → B : S and C := JΓK ↓, then A := JΓ ` AK ↓, B := JΓ ` : BK ↓
and S := JΓ ` : SK ↓, and A and B are elements of S, which is above C,
and there exists a 2-cell α : A ⇒ B.

Proof. Only the new rules need to be considered.

1. Last rule used was

Γ ` M : A
(RewRefl)

Γ ` M → M : A

Assume JΓK ↓, then by IH JΓ ` MK ↓ is an element of JΓ ` : AK ↓. Since
E(1(JΓK), JΓ ` : AK) is a category itself, it must have identity arrows, in
particular there must be an identity 2-cell on JΓ ` MK, which validates
the conclusion.

2. Last rule used was

Γ ` M → N : S Γ, x : S ` A : T

Γ ` ||([x := M : S]T = [x := N : S]T) : s
(RewCong) , s ∈ S

Γ ` [x := M : S]A → [x := N : S]A : [x := M : S]T

Assume JΓK ↓. From the premises, we obtain by induction hypothesis

• S := JΓ ` : SK ↓
• M := JΓ ` MK ↓, N := JΓ ` NK ↓
• M and N are elements of S and there is a 2-cell r : M ⇒ N

• T := JΓ, x : S ` : T K ↓
• A := JΓ, x : S ` AK is an element of T

• Sectx(M)∗(T) = JΓ ` [x := T : M]K = JΓ ` [x := T : N]K =
Sectx(N)∗(T) (see Corollary 2.24)

To summarize, we have an object S, another object T above {S}x, an
element A of T , two sections Sectx(M) and Sectx(N) of {S}x such that
Sectx(M)∗(T) = Sectx(N)∗(T), and a 2-cell between them. The definition
of congruence closure then assures us that there is a 2-cell

r∗(A) : Sectx(M)∗(A) ⇒ Sectx(N)∗(A)

And since Sectx(M)∗(A) = JΓ ` [x := M : S]AK and Sectx(N)∗(A) = JΓ `
[x := N : S]AK, the conclusion is sound.

3. Last rule used was

Γ ` M → M ′ : A Γ ` M ′ → M ′′ : A
(RewTrans)

Γ ` M → M ′′ : A

46

Assuming JΓK ↓, we get M := JΓ ` MK ↓, M ′ := JΓ ` M ′K ↓, M ′′ :=
JΓ ` M ′′K ↓, all of them are elements of JΓ ` : AK ↓, and there are 2-cells
between M and M ′ and between M ′ and M ′′, respectively. Of course, this
entails the existence of a 2-cell between M and M ′′ by category laws.

4. Last rule used was

Γ ` M : S Γ ` N : S
(RwTyForm)

Γ ` M
S−→ N : Prop

Assume JΓK ↓. Then by IH

• S := JΓ ` SK ↓
• M := JΓ ` MK ↓ and it is an element of S

• N := JΓ ` NK ↓ and it is an element of S

Thus by the definition of R̂w, JΓ ` M
S−→ NK is an element of JΓ ` : PropK.

5. Last rule used was

Γ ` M : A
(RwTyIntro)

Γ ` ρ(M,A) : M
A−→ M

Assume JΓK ↓, then by IH M := JΓ ` MK ↓, A := JΓ ` : AK ↓, and M is
an element of A.
An argument nearly identical to the case of structural equality types gives
the desired result.

6. Last rule used was

Γ ` Q : M
A−→ N

(RwTyElim)
Γ ` M → N : A

Assume JΓK ↓, then by IH Q := JΓ ` QK ↓ and JΓ ` : M
A−→ NK ↓. By

definition of the interpretation function, however, we can also deduce that
M := JΓ ` MK ↓, N := JΓ ` NK ↓, A := JΓ ` : AK ↓ and the former two
are sections of the latter.
Setting P := Px(A), P ′ := Px(P ∗(A)), P ′′ := Px(Rwx,A), N ′ := P ∗(N),
we find that

Sectx(M) = P ′ ◦ P ′′ ◦ q(Sectx(N ′) ◦ Sectx(M), x,Rwx,A) ◦ Sectx(Q)

and

Sectx(N) = q(P, x,A) ◦P ′′ ◦ q(Sectx(N ′) ◦Sectx(M), x,Rwx,A) ◦Sectx(Q)

By the definition of rewriting types, there must be a 2-cell α : (P ′ ◦P ′′) ⇒
(q(P, x,A)◦P ′′); but then, α∗(q(Sectx(N ′)◦Sectx(M),Rwx,A)◦Sectx(Q))
is a 2-cell between Sectx(M) and Sectx(N), which by Lemma 4.9 entails
the existence of a 2-cell between M and N .

47

5 OCC3: Computational Equality

Our last and most complicated system introduces computational equality, a
rather peculiar feature of OCC. Computational equalities are reduction rules to
be applied left-to-right, hence they can be understood as rewritings. Indeed, in
our categorical model we will treat computational equality as a special class of
2-cells. In the formal system, some elimination rules for type constructors are
relaxed from structural to computational equality. In the semantics this means
relaxing an equality, which can be seen as requiring the existence of an identity
2-cell, to some (not necessarily identity) 2-cell. Category theorists have long
been doing this in their investigation of 2-categories, creating “lax” versions
of many categorical constructions such as functors, natural transformations, or
adjoints [11].

Of course, this means that computationally equal terms are not always in-
terpreted as equal elements in the semantics. We do, however, have to require
that computationally equal types do in fact correspond to the same object:
otherwise, the type conversion rule would become unsound.

5.1 Syntax

An OCC3 signature is again nothing more than an OCC2 signature.
The set of pseudoterms is extended by one new type constructor for compu-

tational equality and a canonical inhabitant:

T3 ::= S | VN | unit | ∗
| λV : T3.T3 | ΠV : T3.T3 | App([V : T3] T3, T3, T3)
| StrEqT3

(T3, T3) | σ(T3, T3)

| T3
T3−→ T3 | ρ(T3, T3)

| CompEqT3
(T3, T3) | κ(T3, T3)

where V is a fixed set of syntactic variable names and N is the set of natural
numbers (including 0).

As before, we introduce one new pseudotype former for computational equal-
ity types (CompEq−(−,−)) and one pseudoterm former for the canonical wit-
ness of reflexivity of computational equality, both of which are used in the same
way as the corresponding constructs for structural equality. Again, one might
consider including more term formers here.

Definition 5.1. The new clause in the definition of the size of a pseudoterm
should not be a surprise:

1. for A,M,N ∈ T3: |CompEqA(M,N)| = |M |+ |A|+ |N |+ 1

2. for A,M ∈ T3: |κ(M,A)| = |M |+ |A|+ 1

5.2 TCINNI-OCC3

Definition 3.2 is extended one last time to deal with computational equality
types.

48

Definition 5.2. On those OCC3 pseudoterms which are not also OCC2 pseu-
doterms, substitutions behave as follows:

ϑ CompEqS(A,B) = CompEqϑS(ϑA, ϑB)
ϑκ(M,A) = κ(ϑM,ϑA)

Lemma 2.6 and Lemma 2.8 carry over unchanged.

5.3 Formal System

There is one new judgement form:

Definition 5.3. An OCC3 judgement is either an OCC2 judgement or it is of
the form

Γ `!!(M = N) : A

where Γ is a pseudocontext, M and N are pseudoterms, and A is a pseudotype;
this judgement expresses that in context Γ, M and N are atoms of type A, and
atom M is computationally equal to atom N .

A valid OCC3 judgement is any judgement that can be derived by the rules
of OCC2 other than (BetaRed) and (TypeConv) or any of the following rules,
which include new versions of the former two rules; observe that in the new
(BetaRed) rule, the contractum is no longer structurally, but only computa-
tionally equal to the redex (as in OCC), while in (TypeRed), computational
equality of types is now sufficient (again, as in OCC):

Γ ` M : A
(RedRefl)

Γ `!!(M = M) : A

Γ `!!(P = Q) : A Γ `!!(Q = R) : A
(RedTrans)

Γ `!!(P = R) : A

Γ ` M : S Γ `!!(S = T) : s
(TypeRed)

Γ ` M : T

Γ ` N : S Γ, x : S ` M : T
(BetaRed)

Γ `!!(App([x : S]T, λx : S.M,N) = [x := N : S]M) : [x := N : S]T

Γ ` M : S Γ ` N : S
(CompEqTyForm)

Γ ` CompEqS(M,N) : Prop

Γ ` ||(M = N) : S
(CompEqTyIntro)

Γ ` κ(M,S) : CompEqS(M,N)

Γ ` P : CompEqA(M,N)
(CompEqTyElim)

Γ `!!(M = N) : A

49

5.4 OCC3 Structures

Definition 5.4. An OCC3 structure M is an OCC2 structure fulfilling the
following extra conditions:

• There is a distinguished class Ξ of 2-cells, called reduction 2-cells in the
total category. This class is closed under identity, vertical composition,
and reindexing.

• Computationally equal types should correspond to the same object: For
C ∈ C, s ∈ SC and two elements A,B of C∗s with ξ : A ⇒ B, ξ ∈ Ξ, we
must have UC(A) = UC(B).

• For any object A ∈ E and name x ∈ N , there is an object CompEqx,A

above {Px(A)∗(A)}x such that between the two morphisms

Px(Px(A)∗(A)) ◦ Py(CompEqx,A)

and

q(Px(A), x, A) ◦ Py(CompEqx,A)

there is a reduction 2-cell for any y ∈ N . Furthermore, we require the
existence of an element cx(A) of δ∗x,A(CompEqx,A).

Thus, the type constructor for computational equality is located in be-
tween the very strict structural equality type constructor (which requires
existence of an identity 2-cell between the two morphisms), and the very
lax rewrite type constructor (where any 2-cell will do).

Computational equality types must be stable under substitution, i.e. for
f : D → p(A) we must have

q(q(f, x,A), x, Px(A)∗(A))∗(CompEqA) = CompEqf∗(A)

and

q(f, x,A)∗(cx(A)) = cx(f∗(A))

Additionally, there is an operator ˆCompEq to mirror CompEq’s workings
on the level of types: for C ∈ C, s ∈ SC , Â : 1(C) → C∗s, A := UC(Â),
A∗A := {Px(A)∗(A)}x, we have ˆCompEqx,Â : 1(A∗A) → (A∗A)∗Prop,
and UA∗A(ˆCompEqx,A) = CompEqx,A. This operator is required to be
stable under substitutions in the same sense as ˆStrEq.

• Product types in OCC3 are no longer modelled by the strict product type
former introduced before, but by a lax product former . Its definition is
almost identical to the strict product types, and we will use the same
notation for it. The only difference is that instead of requiring Πx,A to be
a (strict) 2-adjoint to Px(A)∗, we only need it to be a lax 2-adjoint, which

50

(for our purposes9) means that the triangular equations are only fulfilled
up to reduction 2-cells:

For A,B ∈ E with B above {A}x and X, Y ∈ E with X above p(A) and
Y above {A}x, there must be 2-cells L(X), R(Y) ∈ Ξ such that

L(X) : εΠ(Px(A)∗(X)) ◦ Px(A)∗(ηΠ(X)) ⇒ idPx(A)

and

R(Y) : idΠx,A(Y) ⇒ Πx,A(εΠ(Y)) ◦ ηΠ(Πx,A(Y))

Theorem 5.5. Every OCC2-structure can be extended to an OCC3-structure.

Proof. We identify computational and structural equality, letting Ξ be the set of
all identity 2-cells, and setting CompEq := StrEq, cx := sx, ˆCompEq := ˆStrEq.
Due to the definition of Ξ, lax product types are the same as strict product
types in this case.

5.5 The Interpretation Function

Extending the interpretation function is routine. Let an OCC3-signature Σ =
(S,Si,Sp,Prop,A,R,≤) be given. To model the corresponding OCC3-instance,
we need an OCC3-structure M such that the OCC2-instance for Σ can be
modelled in M.

Here are the interpretations of the new terms:

5.5.1 Interpretation of Terms

1. computational equality types:

JΓ ` CompEqA(M,N)K =

Sectx(JΓ ` MK)∗(Sectx(Px(JΓ ` : AK)∗(JΓ ` NK))∗(ˆCompEqx,JΓ`AK))

where JΓ ` MK and JΓ ` NK are elements of JΓ ` : AK.

Note that this definition (again) exactly parallels the interpretation of
structural equality types.

2. reflexivity of computational equality:

JΓ ` κ(M,A)K = Sectx(JΓ ` MK)∗(cx(JΓ ` : AK)), when

(a) A := JΓ ` : AK ↓
(b) M := JΓ ` MK ↓ and M is an element of A

5.6 Semantics of TCINNI-OCC3

The soundness proof for the interpretation of TCINNI-OCC3 substitutions is
again nothing but an easy extension of the corresponding proof for OCC2, which
we will skip.

9In most definitions, lax 2-adjoints are even more flexible, requiring only lax functors and
lax natural transformations; we will not need this extra flexibility.

51

5.7 Soundness

Here is the final version of the soundness theorem:

Theorem 5.6. The given interpretation of contexts, types, and terms is sound
in the sense that

• if Γ ` A : B and C := JΓK ↓, then A := JΓ ` AK ↓ and B := JΓ ` : BK ↓; A
is above C and A is an element of B.

• if Γ ` ||(A = B) : S and C := JΓK ↓, then A := JΓ ` AK ↓, B := JΓ ` : BK ↓
and S := JΓ ` : SK ↓, and A and B are equal elements of S, which is above
C.

• if Γ `!!(A = B) : S and C := JΓK ↓, then A := JΓ ` AK ↓, B := JΓ ` : BK ↓
and S := JΓ ` : SK ↓, and A and B are elements of S, which is above C,
and there exists a reduction 2-cell α : A ⇒ B

• if Γ ` A → B : S and C := JΓK ↓, then A := JΓ ` AK ↓, B := JΓ ` : BK ↓
and S := JΓ ` : SK ↓, and A and B are elements of S, which is above C,
and there exists a 2-cell α : A ⇒ B.

Proof. Only the new rules need to be considered.

1. Last rule was

Γ ` M : A
(RedRefl)

Γ `!!(M = M) : A

This case is handled like (RewRefl), noting that Ξ is closed under identity.

2. Last rule was

Γ `!!(P = Q) : A Γ `!!(Q = R) : A
(RedTrans)

Γ `!!(P = R) : A

Again, Ξ’s closure under transitivity allows us to handle this case like
(RewTrans).

3. Last rule was

Γ ` M : S Γ `!!(S = T) : s
(TypeRed)

Γ ` M : T

Assume C := JΓK ↓, then by IH M := JΓ ` MK ↓ is an element of
JΓ ` : SK ↓. Also by IH, S := JΓ ` SK ↓ and T := JΓ ` T K ↓ are elements
of JΓ ` : sK ↓ with a reduction 2-cell ξ ∈ Ξ between them. Thus, of course,
JΓ ` : SK = UC(S) = UC(T) = JΓ ` : T K, and the conclusion is sound.

4. Last rule was

Γ ` N : S Γ, x : S ` M : T
(BetaRed)

Γ `!!(App([x : S]T, λx : S.M,N) = [x := N : S]M) : [x := N : S]T

52

Going back to the proof of the original (BetaRed) rule, we can see that
it carries over to the case of lax product types almost completely. How-
ever, the last equality is only fulfilled up to the 2-cell L(S) ∈ Ξ, proving
soundness of the new (BetaRed) rule.

5. Last rule was

Γ ` M : S Γ ` N : S
(CompEqTyForm)

Γ ` CompEqS(M,N) : Prop

This is proved in the same way as (RewTyForm).

6. Last rule was

Γ ` ||(M = N) : S
(CompEqTyIntro)

Γ ` κ(M,S) : CompEqS(M,N)

See (RewTyIntro) and the soundness theorem for OCC1.

7. Last rule was

Γ ` P : CompEqA(M,N)
(CompEqTyElim)

Γ `!!(M = N) : A

See (RewTyElim) and the definition of computational equality types.

53

6 Conclusion

We have presented four type theories, similar in spirit to Stehr’s Open Calculus
of Constructions, gradually widening our focus from a very simple framework of
atoms, types, and universes to a rich system with support for dependent types,
rewriting, and different forms of equality.

For every system, we have defined a class of structures in which they can be
interpreted, and proved that this interpretation is sound. We have not, however,
given any examples of such structures. In fact, both a set-theoretic model,
similar to the set-theoretic model in [9], and a term model can be given for (a
slight extension of) OCC3. The construction is not particularly difficult, but
the proofs are long-winded and the notation somewhat heavy, so we decided not
to include them in this presentation. Based on the term model, a completeness
result is easily proved, which in turn might open the way for proofs of further
meta-theoretic results.

We also want to point out that although our last system, OCC3, comes close
to the original OCC in many respects, it falls short of it or takes different paths in
others. Generally speaking, our systems are stricter than OCC, for example by
requiring explicit typing annotations for function application and equality types.
As Stehr remarks, “the ... semantics [of OCC] is inherently untyped” [20], so
the original system relies on dynamic typechecking conditions. This is reflected
in Stehr’s set-based semantics, where all functions are “totalized” so that they
are applicable to arbitrary arguments.

While such a measure of freedom is certainly interesting, it is very hard to
support in a category theory based approach. Category theory, it has been
remarked, is a very “strongly typed” formalism; for example, each morphism
has a fixed domain and codomain, unlike in set-theory, where we can assign
different codomains to the same function. As usual in categorical semantics, we
interpret atoms as elements resp. sections of their types (which are interpreted
as objects). But this means that an object can only belong to one type, which
makes it very hard to model, e.g., subtyping (as provided by OCC’s “→ : ”
typing judgement) in a satisfactory manner.

In the end we found it more important to retain the general flavor of OCC, in
particular the combination of dependent types, rewriting, and multiple kinds of
equality, than to try and stick as closely as possible to one particular formulation
of the system.

We feel that the approach of modelling rewritings and non-structural equal-
ities using 2-categorical features is quite elegant and perhaps warrants further
investigation, especially the connection between lax 2-categorical constructions
and datatypes like the lax product, which allow elimination only up to a com-
putational equality.

Another intriguing question is whether one can derive an abstract machine
for type checking and reducing OCC terms from our semantics in the way it
was done for CC by Ritter [18]. Our semantics, like Ritter’s, is based on a
D-Category structure, but it remains to be seen whether features like computa-
tional equality can be integrated into his approach.

Of course, OCC is not the only system aiming at a unification of type theory
and rewriting. A recent system under active research is the Rho-Calculus [5]
developed by Kirchner and his colleagues, which embeds term rewriting capa-
bilities into lambda calculus by allowing abstraction not only on variables but

54

also on patterns, which are given first-class status. This calculus is wider in
scope than OCC in that it can be instantiated to different type systems and
more powerful in that it allows the encoding of rewriting strategies. So far,
however, the investigation of its semantics seems to be confined to operational
semantics as presented in [4], and it might be interesting to see whether the
approach of this thesis could be extended to yield a categorical semantics for
the Rho-Calculus.

55

A Basic Category Theory

This appendix does not try to give an introduction to category theory, we just
recall some of the basic concepts in an informal manner. The standard ref-
erence on (1-)category theory still seems to be Mac Lane’s book [12], a good
introduction for computer scientists is Pierce’s short treatise [16]. An overview
of 2-category theory is given in Kelly and Street’s paper [11]. We stick closely
to the notational conventions used in these references.

A.1 1-Category Theory

A.1.1 (1-)Categories

A (1-)category C consists of a collection Ob(C) of objects and a collection Mor(C)
of morphisms (or arrows). Each morphism f has a source object or domain
dom(f) and a target object or codomain cod(f), both of which must be unique;
to express that A = dom(f) and B = cod(f), we also write f : A → B. The
collection of all arrows between two objects A and B is written C(A,B) and
called the homset between A and B. For each object A, there is an identity
morphism idA : A → A.

Two morphisms f and g with cod(f) = dom(g) can be composed to yield
g ◦f : dom(f) → cod(g). This composition must be associative, i.e. h◦ (g ◦f) =
(h ◦ g) ◦ f , and identity arrows are neutral elements, i.e. idcod(f) ◦f = f =
f ◦ iddom(f).

The paradigmatic example of a category is the category Set of sets and typed
functions, whose objects are sets, and whose arrows are functions annotated
with explicit domain and codomain (recall that in set theory every function has
a unique domain, but its codomain is not fixed).

Any individual set can also be viewed as a category, with the set’s elements
as objects, and as morphisms just one identity morphism for each element. This
arrangement also satisfies the category laws and is known as a discrete category .

A.1.2 Diagrams

Facts about objects and morphisms in a category are often expressed by commu-
tative diagrams. For example, the associativity law corresponds to the following
diagram:

A

f

��

g◦f

 @
@@

@@
@@

B
g //

h◦g @
@@

@@
@@

C

h

��
D

Note that not all composites are depicted in the diagram, and identity arrows
are omitted, except if we want to give them special emphasis as in this depiction
of the identity laws, where they appear doubly stroked:

56

A

f

��

idB ◦f

 @
@@

@@
@@

A

idA
~~~~~~~

~~~~~~~

f◦idA

// B
idB

B

Often, we will not explicitly label identity arrows.
For emphasis or clarity, we will sometimes say C-diagram for a diagram

expressing some fact concerning a category C.

A.1.3 Isomorphisms and Sections

An arrow f : A → B is called an isomorphism if it has an inverse arrow
f−1 : B → A such that f ◦ f−1 = idB and f−1 ◦ f = idA.

A right inverse to f is also called a section of f .

A.1.4 Initial and Terminal Objects

An object 0 of C is called initial if for any object A, there is exactly one arrow
from 0 to A. Symmetrically, 1 ∈ Ob(C) is called terminal if there is exactly one
arrow !A : A → 1 from any object A to 1.

While not unique, initial and terminal objects are determined up to isomor-
phism, i.e. if there are two terminal objects 1 and 1′, then there is a unique
isomorphism i : 1 → 1′.

In Set, the (only) initial object is the empty set, while any one-element
set is a terminal object. Note that an arrow from a terminal object to any
other object A (i.e., a function from some one-element set to A) can be seen
as “picking out” one element of A. Analogously, in any category C, we call an
arrow from a terminal object 1 to another object A a (global) element of A.

A.1.5 Subcategories

A subcategory C of a category D contains some of D’s objects and morphisms
such that it is itself a category under the same composition and with the same
identities.

In particular, C is called full if for any A,B ∈ Ob(C) we have C(A,B) =
D(A,B).

A.1.6 Pullbacks

Out of the plethora of constructions that can be performed in a category, we
only need the notion of a pullback.

A pullback for two arrows f : C → A and g : B → A is given by

• an object C ×
f,g B

• two arrows f ′ : C ×
f,g B → B and g′ : C ×

f,g B → C such that f ◦ g′ = g ◦ f ′

• for any object P and arrows h1 : P → B, k1 : P → C such that f ◦ k1 =
g ◦h1, there is a unique mediating arrow 〈h1

=, k1〉 with f ′ ◦〈h1
=, k1〉 = h1

and g′ ◦ 〈h1
=, k1〉 = k1

57

The situation is summarized in the following diagram:

P

h1

**UUUUUUUUUUUUUUUUUUUUUUUU

k1

��2
22

22
22

22
22

22
22

2

〈h1
=, k1〉""D

D
D

D

C ×
f,g B

f ′
//

g′

��

B

g

��
C

f
// A

A.1.7 (1-)Functors

A (1-)functor F between categories C and D consists of two mappings F0 and
F1, the first one mapping objects of C to objects of D, and the second one
mapping arrows f : A → B in C to arrows F1(f) : F0(A) → F0(B) such that
composition is preserved, i.e. F1(g ◦ f) = F1(g) ◦F1(f), and identity arrows are
also preserved, i.e. F1(idA) = idF0(A). Normally, we write F for both F0 and
F1.

For example, if C is a subcategory of D, then there is an inclusion functor
ιC,D from C to D.

For any category C, there is an identity functor 1C from C to itself, and two
functors can be composed in the expected way; it is readily checked that this
composition is associative and has identity functors as neutral elements. Thus,
glossing over some cardinality considerations, we can speak of the category Cat
of categories, which has categories as objects and functors as morphisms.

For a category C, Sub(C) is the category of all full subcategories of C, which
itself is a full subcategory of Cat.

An example of a functor from Set to itself (i.e. an endofunctor on Set) is
the powerset functor P which takes each set to its powerset and each function
f : A → B to the function P(f) defined by

P(f)(A′) = {f(a) | a ∈ A′}

for any A′ ⊆ A.

A.1.8 (1-)Natural Transformations

A (1-)natural transformation between two functors F and G, both between the
same categories C and D, is a map ζ : Ob(C) → Mor(C) such that for any arrow
f : A → B in C we have

F (A)
ζ(A) //

F (f)

��

G(A)

G(f)

��
F (B)

ζ(B)
// G(B)

We write this as ζ : F •→ G.

58

For any functor F , there is an identity natural transformation 1F : F •→ F ,
given by 1F (A) = idA. Natural transformations ζ : F •→ G and ϑ : G •→ H can
be composed in the obvious way to yield ζ ◦ ϑ : F •→ H.

Perhaps unexpectedly, natural transformations can also be composed with
functors. Indeed, if we have a pair of functors F,G between categories C and
D with a natural transformation ζ : F •→ G, and another pair of functors H,K
between categories D and E with another natural transformation ϑ : H •→ K,
then we can form composites Hζ : H ◦ F •→ H ◦ G and ϑF : H ◦ F •→ K ◦ F
defined as

Hζ(B) = H(ζ(B))

and

ϑF (A) = ϑ(F (A))

A.1.9 (1-)Adjoints

A (1-)adjunction between two categories C and D is a quadruple (F,G, η, ε)
where

• F : C → D is a functor

• G : D → C is a functor

• η : 1C
•→ G ◦ F is a natural transformation

• ε : F ◦G •→ 1D is a natural transformation

• we have:
(Gε) ◦ (ηG) = 1G

(εF) ◦ (Fη) = 1F

More succinctly, this can be understood as a bijective correspondence be-
tween certain pairs of arrows, suggestively written as

F (A) u−→ B

A
v−→ U(B)

A.2 2-Category Theory

A.2.1 2-Categories

A 2-category C has 0-cells/objects like A, 1-cells/arrows like f : A → B between
objects A,B and 2-cells like α : f ⇒ g between arrows f, g : A → B, more fully
written as α : f ⇒ g : A → B.

A

f
&&

g

88
�� ��
�� α B

Objects and arrows form a (1-)category C0 (often just written C). For two
objects A,B, all the arrows between A and B form a (1-)category C(A,B), called

59

the hom-category between A and B. In particular, there must be an identity
2-cell idf for any arrow f : A → B, and for α : f ⇒ g and β : g ⇒ h there must
be a composite β ◦ α : f ⇒ h, called the vertical composite of α and β.

A

f

""
�� ��
�� α

<<

h

�� ��
�� β

g
// B ; A

f
((

h

66
�� ��
�� β◦α B

Where there is a vertical composition, there is also a horizontal composition:
2-cells α : f ⇒ g : A → B and γ : u ⇒ v : B → C have a horizontal composite
γ ∗ α : u ◦ f ⇒ v ◦ g : A → C.

A

f
&&

g

88
�� ��
�� α B

u
&&

v

88
�� ��
�� γ C ; A

u◦f
((

v◦g
66

�� ��
�� γ∗α C

These two compositions must be compatible in the sense that for α : f ⇒
g : A → B, β : g ⇒ h : A → B, γ : u ⇒ v : B → C, δ : v ⇒ w : B → C we have

(δ ∗ β) ◦ (γ ∗ α) = (δ ◦ γ) ∗ (β ◦ α) =: m

A

f

""
�� ��
�� α

<<

h

�� ��
�� β

g
// B

u

""
�� ��
�� γ

<<

w

�� ��
�� δ

v
// C ; A

u◦f
((

w◦h

66
�� ��
�� m C

and

idu ∗ idf = idu◦f

A

f
((

f

66
�� ��
�� idf B

u

((

u

66
�� ��
�� idu C ; A

u◦f
((

u◦f

66
�� ��
�� idu◦f C

When drawing diagrams, identity 2-cells are usually omitted; instead of

A

f
((

f

66
�� ��
�� idf B

u

((

v

66
�� ��
�� γ C

g

))

g

55
�� ��
�� idg D

just use

A
f // B

u

((

v

66
�� ��
�� γ C

g // D

60

The paradigmatic example of a 2-category is Cat, with categories as 0-cells,
functors as 1-cells, and natural transformations as 2-cells. This shows that a
1-category can, of course, be a 2-category at the same time.

Every 1-category itself can also be considered as a 2-category in which there
are only identity 2-cells; such a 2-category is called discrete.

A.2.2 2-Functors, 2-Natural Transformations, and 2-Adjoints

A 2-functor F : C → D sends objects of C to objects of D, arrows of C to arrows
of D, and 2-cells of C to 2-cells of D, preserving domains, codomains, identities,
and compositions.

A 2-natural transformation η : F •→ G : C → D gives for every A ∈ Ob(C)
an arrow η(A) : F (A) → G(A) such that for all f, g : A → B and α : f ⇒ g, we
have both

η(B) ◦ F (f) = G(f) ◦ η(A)

and

idη(B) ∗F (α) = G(α) ∗ idη(A)

F (A)
η(A) //

F (f)

		

F (g)

��

____ks
F (α)

G(A)

G(f)

		

G(g)

��

____ks
G(α)

F (B)
η(B)

// G(B)

A 2-adjunction, finally, is simply a 1-adjointness with 1-functors replaced by
2-functors, and 1-natural transformations by 2-natural transformations.

61

B Formal System of OCC3

For purposes of reference, we list here again the complete formal system of
OCC3.

(Ax) ,A(s1) = s2
Γ ` s1 : s2

(Start1)
Γ, x : A ` x0 : ↑(x : A)A

Γ ` xi : A
(Start2)

Γ, x : B ` xi+1 : ↑(x : B)A

Γ ` ym : A
(Start3) , x 6≡ y

Γ, x : B ` ym : ↑(x : B)A

(UnitForm)
Γ ` unit : Prop

(UnitIntro)
Γ ` ∗ : unit

Γ ` Q : unit
(UnitElim)

Γ ` ||(Q = ∗) : unit

Γ ` M : A
(StrRefl)

Γ ` ||(M = M) : A

Γ ` ||(M = N) : A
(StrSymm)

Γ ` ||(N = M) : A

Γ ` ||(P = Q) : A Γ ` ||(Q = R) : A
(StrTrans)

Γ ` ||(P = R) : A

Γ ` S : s1 Γ, x : S ` T : s2
(Pi) ,R(s1, s2) = s3

Γ ` Πx : S.T : s3

Γ ` S : s Γ, x : S ` M : T
(Lda) , s ∈ S

Γ ` λx : S.M : Πx : S.T

Γ ` M : Πx : S.T Γ ` N : S
(App)

Γ ` App([x : S]T,M,N) : [x := N : S]T

Γ ` ||(S = S′) : s1 Γ, x : S ` ||(T = T ′) : s2
(StrPi) ,R(s1, s2) = s3

Γ ` ||(Πx : S.T = Πx : S′.T ′) : s3

Γ ` ||(S = S′) : s Γ, x : S ` ||(M = M ′) : S
(StrLda) , s ∈ S

Γ ` ||(λx : S.M = λx : S′.M ′) : Πx : S.T

Γ ` ||(M = M ′) : Πx : S.T Γ ` ||(N = N ′) : S
(StrApp)

Γ ` ||(App([x : S]T,M,N) = App([x : S]T,M ′, N ′)) : [x := N : S]T

62

Γ ` N : S Γ, x : S ` M : T
(BetaRed)

Γ `!!(App([x : S]T, λx : S.M,N) = [x := N : S]M) : [x := N : S]T

Γ ` M : S Γ ` N : S
(StrEqTyForm)

Γ ` StrEqS(M,N) : Prop

Γ ` M : S
(StrEqTyIntro)

Γ ` σ(M,S) : StrEqS(M,M)

Γ ` P : StrEqA(M,N)
(StrEqTyElim)

Γ ` ||(M = N) : A

Γ ` M : A
(RewRefl)

Γ ` M → M : A

Γ ` M → N : S Γ, x : S ` A : T

Γ ` ||([x := M : S]T = [x := N : S]T) : s
(RewCong) , s ∈ S

Γ ` [x := M : S]A → [x := N : S]A : [x := M : S]T

Γ ` M → M ′ : A Γ ` M ′ → M ′′ : A
(RewTrans)

Γ ` M → M ′′ : A

Γ ` M : S Γ ` N : S
(RwTyForm)

Γ ` M
S−→ N : Prop

Γ ` M : S
(RwTyIntro)

Γ ` ρ(M,S) : M
S−→ M

Γ ` R : M
A−→ N

(RwTyElim)
Γ ` M → N : A

Γ ` M : A
(RedRefl)

Γ `!!(M = M) : A

Γ `!!(P = Q) : A Γ `!!(Q = R) : A
(RedTrans)

Γ `!!(P = R) : A

Γ ` M : S Γ `!!(S = T) : s
(TypeRed) , s ∈ S

Γ ` M : T

Γ ` M : S Γ ` N : S
(CompEqTyForm)

Γ ` CompEqS(M,N) : Prop

Γ ` ||(M = N) : S
(CompEqTyIntro)

Γ ` κ(M,S) : CompEqS(M,N)

Γ ` P : CompEqA(M,N)
(CompEqTyElim)

Γ `!!(M = N) : A

63

References

[1] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean J. Lèvy. Ex-
plicit substitutions. In Conference Record of the Seventeenth Annual ACM
Symposium on Principles of Programming Languages, San Francisco, Cal-
ifornia, pages 31–46. ACM, 1990.

[2] Henk Barendregt. Lambda calculi with types. In Abramsky, Gabbay,
and Maibaum, editors, Handbook of Logic in Computer Science, volume 2.
Clarendon Press, Oxford, 1992.

[3] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-
gram Development. Texts in Theoretical Computer Science. Springer-
Verlag, 2004.

[4] Horatiu Cirstea, Claude Kirchner, and Luigi Liquori. Rewriting calculus
with(out) types. In Fabio Gadducci and Ugo Montanari, editors, Proceed-
ings of the fourth workshop on rewriting logic and applications, Pisa (Italy),
2002. Electronic Notes in Theoretical Computer Science.

[5] Horatiu Cirstea, Luigi Liquori, and Benjamin Wack. Rewriting calculus
with fixpoints: Untyped and first-order systems. In Types for Proofs and
Programs, volume 3085 of Lecture Notes in Computer Science. Springer-
Verlag, 2003.

[6] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart́ı-Oliet, José Meseguer, and José F. Quesada. The Maude system.
In P. Narendran and M. Rusinowitch, editors, Rewriting Techniques and
Applications, 10th International Conference, RTA’99, Trento, Italy, July
2–4, 1999, Proceedings, volume 1631 of Lecture Notes in Computer Science,
pages 240–243. Springer-Verlag, 1999.

[7] Thierry Coquand and Gerard Huet. The calculus of constructions. Infor-
mation and Computation, 76(2–3), 1988.

[8] Thierry Coquand and Christine Paulin-Mohring. Inductively defined types.
In Proceedings of Colog’88, volume 417 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1990.

[9] Martin Hofmann. Syntax and semantics of dependent types. In A. M. Pitts
and P. Dybjer, editors, Semantics and Logics of Computation, volume 14,
pages 79–130. Cambridge University Press, Cambridge, 1997.

[10] Bart Jacobs. Categorical Type Theory. PhD thesis, University of Nijmegen,
The Netherlands, September 1991.

[11] G. M. Kelly and Ross Street. Review of the elements of 2-categories, volume
420 of Lecture Notes in Mathematics, pages 75–103. Springer-Verlag, 1974.

[12] Saunders Mac Lane. Categories for the Working Mathematician. Graduate
Texts in Mathematics. Springer-Verlag, 1971.

[13] José Meseguer. Functorial semantics of rewrite theories. Lecture Notes in
Computer Science : Formal Methods in Software and Systems Modeling,
pages 220–235, 2005.

64

[14] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in
Martin-Löf ’s Type Theory, volume 7 of International Series of Monographs
on Computer Science. Clarendon Press, Oxford, 1990.

[15] Mart́ı N. Oliet and J. Meseguer. Rewriting logic as a logical and semantic
framework, 1993.

[16] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. Foun-
dations of Computing. The MIT Press, 1991.

[17] John C. Reynolds. Polymorphism is not set-theoretic. In Semantics of Data
Types, volume 173 of Lecture Notes in Computer Science, pages 145–156.
Springer-Verlag, 1984.

[18] Eike Ritter. Categorical Abstract Machines for Higher-Order Type Lambda
Calculi. PhD thesis, University of Cambridge, September 1992.

[19] Mark-Oliver Stehr. Cinni - a generic calculus of explicit substitutions and
its application to lambda-, sigma- and pi-calculi. Electronic Notes in The-
oretical Computer Science, 36, 2000.

[20] Mark-Oliver Stehr. Programming, Specification, and Interactive Theorem
Proving. PhD thesis, University of Hamburg, September 2002.

[21] Thomas Streicher. Semantics of Type Theory: Correctness and Complete-
ness. Progress in Theoretical Computer Science. Birkhäuser, December
1991.

[22] Benjamin Werner. Sets in types, types in sets. In Proceedings of
TACS’97, volume 1281 of Lecture Notes in Computer Science, pages 530–
546. Springer-Verlag, 1997.

65

Index

OCC1

judgement forms, 31
pseudoterm size, 30
pseudoterm syntax, 30
signature, 29
structure, 32
valid judgement, 31

OCC2, 43
judgement forms, 44
pseudoterm size, 44
pseudoterm syntax, 43
signature, 43
structure, 46
valid judgement, 44

OCC3, 54
judgement forms, 55
pseudoterm size, 54
pseudoterm syntax, 54
signature, 54
structure, 56
valid judgement, 55

OCC0, 10, 29
judgement forms, 14
pseudoterm size, 11
pseudoterm syntax, 10
signature, 10
structure, 17
valid judgement, 14

0-cell, 66
1-cell, 66
2-cell, 66

horizontal composition, 66
reduction, 56
vertical composition, 66

Adjoint
1-Adjoint, 65
2-Adjoint, 68

Arrow, 62
above another arrow, 16
cartesian, 16
deep cartesian, 45
injection, 19
vertical, 16

Atom, 10

Base category, 18

Category
Cat, 64
Set, 62
Sub, 64
1-Category, 62
2-Category, 66
discrete, 62

Congruence closure, 47

Display map, 18

Element, 63

Fiber, 16
Fibration

cloven, 17
deep cloven, 45
deep split, 45
split, 17

Functor
1-Functor, 64
2-Functor, 67
endofunctor, 64
powerset functor, 64

Hom-Category, 66
Homset, 62

Interpretation relations, 21

Lifting
along a display map, 20
cartesian, 17
deep cartesian, 45

Morphism, 62
codomain, 62
domain, 62
identity, 62
isomorphism, 63
section, 63
source object, 62
target object, 62

Natural Transformation
1-Natural Transformation, 65
2-Natural Transformation, 67
composition with functor, 65

66

Object, 62
initial, 63
terminal, 63

Product
lax, 57
strict, 32

Pseudocontext, 11
entry, 11
label, 11
size, 11

Pseudotype, 11
Pullback, 63
Pullback functor, 17

deep, 46

Reindexing functor, 17
deep, 46

Subcategory, 63
full, 63

TCINNI
lifting, 12
replacement, 12
shifting, 12
substitution size, 13

Total category, 18
Type, 10

Universe, 10

67

