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Exercise 1

Films
Title Director Actor
The Imitation Game Tyldum Cumberbatch
The Imitation Game Tyldum Knightley
. . . . . . . . .
The Internet’s Own Boy Knappenberger Swartz
The Internet’s Own Boy Knappenberger Lessig
The Internet’s Own Boy Knappenberger Berners-Lee
. . . . . . . . .
Dogma Smith Damon
Dogma Smith Affleck
Dogma Smith Morissette
Dogma Smith Smith

Venues
Cinema Address Phone
UFA St. Petersburger Str. 24 4825825
Schauburg Königsbrücker Str. 55 8032185
CinemaxX Hüblerstr. 8 3158910
. . . . . . . . .

Program
Cinema Title Time
Schauburg The Imitation Game 19:30
Schauburg Dogma 20:45
UFA The Imitation Game 22:45
CinemaxX The Imitation Game 19:30

1. Who is the director of “The Imitation Game”?

πDirector(σTitle=“The Imitation Game”(Films))
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Exercise 2
Exercise. We use ε to denote the empty function, i.e., the function with the empty domain, which is defined for no
value. We use ∅ to denote the empty table with no rows and no columns.
Now for a table R, what are the results of the following expressions?

(1) R ▷◁ R (2) R ▷◁ ∅ (3) R ▷◁ {ε}

Solution.

Recall the definition of the natural join (Lecture 1, Slide 22):

R ▷◁ S = { f : U ∪ V → dom | fU ∈ R and fV ∈ S },

where fU and fV are the restriction of f to elements in U and V , respectively, i.e., f (u) = fU(u) for all u ∈ U and
f (v) = fV (v) for all v ∈ V .
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Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

R ▷◁ S = { f : U ∪ V → dom | fU ∈ R and fV ∈ S },

where fU and fV are the restriction of f to elements in U and V , respectively, i.e., f (u) = fU(u) for all u ∈ U and
f (v) = fV (v) for all v ∈ V .

(3)
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Exercise 3
Exercise. Express the following operations using other operations presented in the lecture:

1. Intersection R ∩ S.

2. Cartesian product R × S.

3. Selection σn=a(R) with a a constant.

4. Arbitrary constant tables in queries.

Solution.

1. Note that R ∩ S is well-defined only if the attributes of R and S coincide. Suppose that the common set of
attributes is U. Then we have

R ∩ S = { f : U → dom | f ∈ R and f ∈ S }

= { f : U → dom | fU ∈ R and fU ∈ S }

= { f : U ∪ U → dom | fU ∈ R and fU ∈ S }

= R ▷◁ S

2. Suppose R has attributes U and S has attributes V . Let W be a set of fresh attributes with |W | = |V | and
W ∩ U = ∅. Then, R × S = R ▷◁ δV⃗→W⃗ (S).

3. σn=a(R) = R ▷◁ {{n 7→ a}}

4. To create a constant table with a single row and many attribute-value pairs, simply join several single
attribute-value pair constant tables (cf. query 7 in Exercise 1). Then use union to create a table with several rows.
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Exercise 4
Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer
using the definitions from the lecture; if false, give a counterexample.

1. R ▷◁ S = S ▷◁ R

2. R ▷◁ (S ▷◁ T ) = (R ▷◁ S) ▷◁ T

3. πX (R ◦ S) = πX (R) ◦ πX (S) for all ◦ ∈ {∪,∩,−, ▷◁}

4. σn=m(R ◦ S) = σn=m(R) ◦ σn=m(S) for all ◦ ∈ {∪,∩,−}.

5. σn=m(R ▷◁ S) = σn=m(R) ▷◁ S, for n and m attributes of R only.

Why are these identities of interest?

Solution.

These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive
smaller inputs.
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3.1

πX (R ∪ S) = πX (R) ∪ πX (S)

Let f ∈ πX (R ∪ S). Then there is some f ′ ∈ R ∪ S with f ′X = f and hence f ∈ πX (R) ∪ πX (S).
Conversely, let f ∈ πX (R) ∪ πX (S). Then f ∈ πX (R) or f ∈ πX (S), and there is some f ′ ∈ R ∪ S such that f ′X = f .
Thus f ∈ πX (R ∪ S).
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Conversely, let f ∈ πX (R) ∪ πX (S). Then f ∈ πX (R) or f ∈ πX (S), and there is some f ′ ∈ R ∪ S such that f ′X = f .
Thus f ∈ πX (R ∪ S).
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Exercise 4
Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer
using the definitions from the lecture; if false, give a counterexample.

1. R ▷◁ S = S ▷◁ R

2. R ▷◁ (S ▷◁ T ) = (R ▷◁ S) ▷◁ T

3. πX (R ◦ S) = πX (R) ◦ πX (S) for all ◦ ∈ {∪,∩,−, ▷◁}

4. σn=m(R ◦ S) = σn=m(R) ◦ σn=m(S) for all ◦ ∈ {∪,∩,−}.

5. σn=m(R ▷◁ S) = σn=m(R) ▷◁ S, for n and m attributes of R only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive
smaller inputs.

3.2

πX (R ∩ S) = πX (R) ∩ πX (S)

Consider tables R = {{A 7→ 1,B 7→ 2 }} and S = {{A 7→ 1,B 7→ 3 }}.
Then πA(R ∩ S) = ∅ ⊊ πA(R) ∩ πA(S) = {{A 7→ 1 }}.
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Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer
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Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive
smaller inputs.

3.4

πX (R − S) = πX (R) − πX (S)

Consider tables R = {{A 7→ 1,B 7→ 2 }} and S = {{A 7→ 1,B 7→ 3 }}.
Then πA(R − S) = {{A 7→ 1 }} ⊋ πA(R) − πA(S) = ∅.
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Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer
using the definitions from the lecture; if false, give a counterexample.
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5. σn=m(R ▷◁ S) = σn=m(R) ▷◁ S, for n and m attributes of R only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive
smaller inputs.

4

σn=m(R ◦ S) = σn=m(R) ◦ σn=m(S) for all ◦ ∈ {∪,∩,−}

True, proof is analogous to 3.1.
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Exercise 5
Exercise. Let RI and SI be tables of schema R[U] and S[V ], respectively. The division of RI by SI, written as
(RI ÷ SI), is defined to be the maximal table over the attributes U \ V that satisfies (RI ÷ SI) ▷◁ SI ⊆ RI. Note that
the joined tables here do not have any attributes in common, so the natural join works as a cross product.
Consider the following table and use the division operator to (1) express a query for the cities that have been visited by
all people.

Visited
Person City
Tomas Berlin
Markus Santiago
Markus Berlin
Fred New York
Fred Berlin

Then, (2) express division using the standard relational algebra operators.

Solution.

(1)

Visited ÷ πPerson(Visited)

(2) Let X be the set of all attributes of R that are not attributes of S (i.e., X = U \ V ).

R ÷ S = πX (R) − πX [(πX (R) ▷◁ S) − R]
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Exercise 6
Exercise. Suggest how to write the relational algebra operations for using the unnamed perspective. What changes?

Solution.

▶ Natural join becomes cartesian product ×.
▶ No renaming.
▶ Order matters in projections.
▶ New set of operators: {σ, π,∪,−,×}.
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Exercise 7
Exercise. The set of operations {σ, π,∪,−, ▷◁, δ} can express all queries of relational algebra. Show that it is not
possible to reduce this set any further.
Solution.

▶ Operator δ is the only one that can rename attributes in tables.
▶ Operator π is the only one that can produce tables with less attributes.
▶ Operator ▷◁ is the only one that can produce tables with more attributes.
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Exercise. The set of operations {σ, π,∪,−, ▷◁, δ} can express all queries of relational algebra. Show that it is not
possible to reduce this set any further.
Solution.
▶ Operator δ is the only one that can rename attributes in tables.

▶ Operator π is the only one that can produce tables with less attributes.
▶ Operator ▷◁ is the only one that can produce tables with more attributes.
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Exercise 7
Exercise. The set of operations {σ, π,∪,−, ▷◁, δ} can express all queries of relational algebra. Show that it is not
possible to reduce this set any further.
Solution.
▶ Operator δ is the only one that can rename attributes in tables.
▶ Operator π is the only one that can produce tables with less attributes.
▶ Operator ▷◁ is the only one that can produce tables with more attributes.
▶ Operator ∪ cannot be removed:

1. Let D be the database containing the tables R = {{A 7→ 1}} and S = {{A 7→ 2}}.

2. Then, (R ∪ S)(D) = {{A 7→ 1}, {A 7→ 2}}.
3. Let q be a query constructed using only {σ, π,−, ▷◁, δ}.
4. Every intermediate table produced in the evaluation of q over D contains at most 1 row (proof via induction).
5. Then, q(D) , {{A 7→ 1}, {A 7→ 2}}.
6. The query language {σ, π,−, ▷◁, δ} is less expressive than {σ, π,∪,−, ▷◁, δ}.

98 / 114



Exercise 7
Exercise. The set of operations {σ, π,∪,−, ▷◁, δ} can express all queries of relational algebra. Show that it is not
possible to reduce this set any further.
Solution.
▶ Operator δ is the only one that can rename attributes in tables.
▶ Operator π is the only one that can produce tables with less attributes.
▶ Operator ▷◁ is the only one that can produce tables with more attributes.
▶ Operator ∪ cannot be removed:

1. Let D be the database containing the tables R = {{A 7→ 1}} and S = {{A 7→ 2}}.
2. Then, (R ∪ S)(D) = {{A 7→ 1}, {A 7→ 2}}.

3. Let q be a query constructed using only {σ, π,−, ▷◁, δ}.
4. Every intermediate table produced in the evaluation of q over D contains at most 1 row (proof via induction).
5. Then, q(D) , {{A 7→ 1}, {A 7→ 2}}.
6. The query language {σ, π,−, ▷◁, δ} is less expressive than {σ, π,∪,−, ▷◁, δ}.

99 / 114



Exercise 7
Exercise. The set of operations {σ, π,∪,−, ▷◁, δ} can express all queries of relational algebra. Show that it is not
possible to reduce this set any further.
Solution.
▶ Operator δ is the only one that can rename attributes in tables.
▶ Operator π is the only one that can produce tables with less attributes.
▶ Operator ▷◁ is the only one that can produce tables with more attributes.
▶ Operator ∪ cannot be removed:

1. Let D be the database containing the tables R = {{A 7→ 1}} and S = {{A 7→ 2}}.
2. Then, (R ∪ S)(D) = {{A 7→ 1}, {A 7→ 2}}.
3. Let q be a query constructed using only {σ, π,−, ▷◁, δ}.

4. Every intermediate table produced in the evaluation of q over D contains at most 1 row (proof via induction).
5. Then, q(D) , {{A 7→ 1}, {A 7→ 2}}.
6. The query language {σ, π,−, ▷◁, δ} is less expressive than {σ, π,∪,−, ▷◁, δ}.

100 / 114



Exercise 7
Exercise. The set of operations {σ, π,∪,−, ▷◁, δ} can express all queries of relational algebra. Show that it is not
possible to reduce this set any further.
Solution.
▶ Operator δ is the only one that can rename attributes in tables.
▶ Operator π is the only one that can produce tables with less attributes.
▶ Operator ▷◁ is the only one that can produce tables with more attributes.
▶ Operator ∪ cannot be removed:

1. Let D be the database containing the tables R = {{A 7→ 1}} and S = {{A 7→ 2}}.
2. Then, (R ∪ S)(D) = {{A 7→ 1}, {A 7→ 2}}.
3. Let q be a query constructed using only {σ, π,−, ▷◁, δ}.
4. Every intermediate table produced in the evaluation of q over D contains at most 1 row (proof via induction).

5. Then, q(D) , {{A 7→ 1}, {A 7→ 2}}.
6. The query language {σ, π,−, ▷◁, δ} is less expressive than {σ, π,∪,−, ▷◁, δ}.

101 / 114



Exercise 7
Exercise. The set of operations {σ, π,∪,−, ▷◁, δ} can express all queries of relational algebra. Show that it is not
possible to reduce this set any further.
Solution.
▶ Operator δ is the only one that can rename attributes in tables.
▶ Operator π is the only one that can produce tables with less attributes.
▶ Operator ▷◁ is the only one that can produce tables with more attributes.
▶ Operator ∪ cannot be removed:

1. Let D be the database containing the tables R = {{A 7→ 1}} and S = {{A 7→ 2}}.
2. Then, (R ∪ S)(D) = {{A 7→ 1}, {A 7→ 2}}.
3. Let q be a query constructed using only {σ, π,−, ▷◁, δ}.
4. Every intermediate table produced in the evaluation of q over D contains at most 1 row (proof via induction).
5. Then, q(D) , {{A 7→ 1}, {A 7→ 2}}.

6. The query language {σ, π,−, ▷◁, δ} is less expressive than {σ, π,∪,−, ▷◁, δ}.

102 / 114



Exercise 7
Exercise. The set of operations {σ, π,∪,−, ▷◁, δ} can express all queries of relational algebra. Show that it is not
possible to reduce this set any further.
Solution.
▶ Operator δ is the only one that can rename attributes in tables.
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▶ Operator ▷◁ is the only one that can produce tables with more attributes.
▶ Operator ∪ cannot be removed:
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2. Then, (R ∪ S)(D) = {{A 7→ 1}, {A 7→ 2}}.
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1. Suppose for a contradiction that there is some query q over {σ, π,∪, ▷◁, δ} that is equivalent to R − S.

2. Let D be a database containing the tables R = {{A 7→ +}, {A 7→ ∗}} and S = {{A 7→ +}} where + and ∗ are two fresh
constants that do not occur in q.

3. Then, (R − S)(D) = {{A 7→ ∗}}
4. Every intermediate tables produced in the evaluation of q over D contains some row in which every attribute is mapped to +

(proof via induction).
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