Exercise 1: Relational Algebra

Database Theory 2023-04-11

Maximilian Marx, Markus Krötzsch

Films			Venues		
Title	Director	Actor	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Schauburg	Königsbrücker Str. 55	8032185
			CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	1		
The Internet's Own Boy	Knappenberger	Lessig	1		
The Internet's Own Boy	Knappenberger	Berners-Lee	Program		
			Cinema	Title	Time
Dogma	Smith	Damon	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	CinemaxX	The Imitation Game	19:30

1. Who is the director of "The Imitation Game"?

Films				Venues		
Title	Director	Actor	٦٢	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz] [
The Internet's Own Boy	Knappenberger	Lessig	יר			
The Internet's Own Boy	Knappenberger	Berners-Lee	Γ.	Program		
			ון	Cinema	Title	Time
Dogma	Smith	Damon	ון	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	ור	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	1 (UFA	The Imitation Game	22:45
Dogma	Smith	Smith	٦Í	CinemaxX	The Imitation Game	19:30

1. Who is the director of "The Imitation Game"?

 $\pi_{Director}(\sigma_{Title="The Imitation Game"}(Films))$

Films				Venues		
Title	Director	Actor	٦٢	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz] [
The Internet's Own Boy	Knappenberger	Lessig	יר			
The Internet's Own Boy	Knappenberger	Berners-Lee	Γ.	Program		
			ון	Cinema	Title	Time
Dogma	Smith	Damon	ון	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	ור	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	1 (UFA	The Imitation Game	22:45
Dogma	Smith	Smith	ו ר	CinemaxX	The Imitation Game	19:30

1. Who is the director of "The Imitation Game"?

 $\pi_{Director}(\sigma_{Title="The Imitation Game"}(Films))$

2. Which cinemas feature "The Imitation Game"?

Films				Venues		
Title	Director	Actor	ור	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	ון			
The Internet's Own Boy	Knappenberger	Lessig	ו			
The Internet's Own Boy	Knappenberger	Berners-Lee]	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	11	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

1. Who is the director of "The Imitation Game"?

 $\pi_{Director}(\sigma_{Title="The Imitation Game"}(Films))$

2. Which cinemas feature "The Imitation Game"?

 $\pi_{Cinema}(\sigma_{Title="The Imitation Game"}(Program))$

Films			Venues		
Title	Director	Actor	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Schauburg	Königsbrücker Str. 55	8032185
			CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz			
The Internet's Own Boy	Knappenberger	Lessig]		
The Internet's Own Boy	Knappenberger	Berners-Lee	Program		
			Cinema	Title	Time
Dogma	Smith	Damon	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	CinemaxX	The Imitation Game	19:30

3. What are the address and phone number of "Schauburg"?

Films				Venues		
Title	Director	Actor	٦٢	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz] [
The Internet's Own Boy	Knappenberger	Lessig	יר			
The Internet's Own Boy	Knappenberger	Berners-Lee	Γ.	Program		
			ון	Cinema	Title	Time
Dogma	Smith	Damon	ון	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	ור	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	1 (UFA	The Imitation Game	22:45
Dogma	Smith	Smith	٦Í	CinemaxX	The Imitation Game	19:30

3. What are the address and phone number of "Schauburg"?

 $\pi_{Address,Phone}(\sigma_{Cinema="Schauburg"}(Venues))$

Films				Venues		
Title	Director	Actor	۱۱	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz] [
The Internet's Own Boy	Knappenberger	Lessig	ין			
The Internet's Own Boy	Knappenberger	Berners-Lee].	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	1 [UFA	The Imitation Game	22:45
Dogma	Smith	Smith	1 [CinemaxX	The Imitation Game	19:30

3. What are the address and phone number of "Schauburg"?

 $\pi_{Address,Phone}(\sigma_{Cinema="Schauburg"}(Venues))$

4. Boolean query: Is a film directed by "Smith" playing in some cinema?

Films				Venues		
Title	Director	Actor	۱۱	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz] [
The Internet's Own Boy	Knappenberger	Lessig	ין			
The Internet's Own Boy	Knappenberger	Berners-Lee].	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	1 [UFA	The Imitation Game	22:45
Dogma	Smith	Smith	1 [CinemaxX	The Imitation Game	19:30

3. What are the address and phone number of "Schauburg"?

 $\pi_{Address,Phone}(\sigma_{Cinema="Schauburg"}(Venues))$

4. Boolean query: Is a film directed by "Smith" playing in some cinema?

 $\pi_{\emptyset}(\sigma_{\text{Director}="Smith"}(\text{Films}) \bowtie \text{Program})$

Films			Venues		
Title	Director	Actor	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Schauburg	Königsbrücker Str. 55	8032185
			CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz			
The Internet's Own Boy	Knappenberger	Lessig			
The Internet's Own Boy	Knappenberger	Berners-Lee	Program		
			Cinema	Title	Time
Dogma	Smith	Damon	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	CinemaxX	The Imitation Game	19:30

5. List the pairs of persons such that the first directed the second in a film, and vice versa.

Films				Venues		
Title	Director	Actor	ון	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
] [CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz				
The Internet's Own Boy	Knappenberger	Lessig] [
The Internet's Own Boy	Knappenberger	Berners-Lee]	Program		
			וו	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette] [UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

5. List the pairs of persons such that the first directed the second in a film, and vice versa.

 $\pi_{Director,D}(\sigma_{Director=A}(\sigma_{Actor=D}(\delta_{Title,Director,Actor\rightarrow T,D,A}(Films) \bowtie Films)))$

Films				Venues		
Title	Director	Actor	ור	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			ון	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	ון			
The Internet's Own Boy	Knappenberger	Lessig	ו			
The Internet's Own Boy	Knappenberger	Berners-Lee]	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	ור	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

5. List the pairs of persons such that the first directed the second in a film, and vice versa.

 $\pi_{Director,D}(\sigma_{Director=A}(\sigma_{Actor=D}(\delta_{Title,Director,Actor\rightarrow T,D,A}(Films) \bowtie Films)))$

6. List the names of directors who have acted in a film they directed.

Films				Venues		
Title	Director	Actor	ון	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
] [CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz				
The Internet's Own Boy	Knappenberger	Lessig] [
The Internet's Own Boy	Knappenberger	Berners-Lee]	Program		
			וו	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette] [UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

5. List the pairs of persons such that the first directed the second in a film, and vice versa.

 $\pi_{Director,D}(\sigma_{Director=A}(\sigma_{Actor=D}(\delta_{Title,Director,Actor\rightarrow T,D,A}(Films) \bowtie Films)))$

6. List the names of directors who have acted in a film they directed.

 $\pi_{Director}(\sigma_{Actor=Director}(Films))$

Films				Venues		
Title	Director	Actor	۱۱	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	11			
The Internet's Own Boy	Knappenberger	Lessig	1`			
The Internet's Own Boy	Knappenberger	Berners-Lee	1	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	ا ۱	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

7. Always return {Title \mapsto "Apocalypse Now", Director \mapsto "Coppola"} as the answer.

Films				Venues		
Title	Director	Actor	٦٢	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz] [
The Internet's Own Boy	Knappenberger	Lessig	יר			
The Internet's Own Boy	Knappenberger	Berners-Lee	Γ.	Program		
			ון	Cinema	Title	Time
Dogma	Smith	Damon	ון	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	ור	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	1 (UFA	The Imitation Game	22:45
Dogma	Smith	Smith	ו ר	CinemaxX	The Imitation Game	19:30

7. Always return {Title \mapsto "Apocalypse Now", Director \mapsto "Coppola"} as the answer.

{{ $Title \mapsto$ "Apocalypse Now"}} \bowtie {{ $Director \mapsto$ "Coppola"}}

Films				Venues		
Title	Director	Actor	ון	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley] [Schauburg	Königsbrücker Str. 55	8032185
] [CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz				
The Internet's Own Boy	Knappenberger	Lessig] [
The Internet's Own Boy	Knappenberger	Berners-Lee]	Program		
				Cinema	Title	Time
Dogma	Smith	Damon		Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck		Schauburg	Dogma	20:45
Dogma	Smith	Morissette] [UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

7. Always return {Title \mapsto "Apocalypse Now", Director \mapsto "Coppola"} as the answer.

{{ $Title \mapsto$ "Apocalypse Now"}} \bowtie {{ $Director \mapsto$ "Coppola"}}

8. Find the actors cast in at least one film by "Smith".

Films				Venues		
Title	Director	Actor	ון	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley] [Schauburg	Königsbrücker Str. 55	8032185
] [CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz				
The Internet's Own Boy	Knappenberger	Lessig] [
The Internet's Own Boy	Knappenberger	Berners-Lee]	Program		
				Cinema	Title	Time
Dogma	Smith	Damon		Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck		Schauburg	Dogma	20:45
Dogma	Smith	Morissette] [UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

7. Always return {Title \mapsto "Apocalypse Now", Director \mapsto "Coppola"} as the answer.

 $\{\{Title \mapsto "Apocalypse Now"\}\} \bowtie \{\{Director \mapsto "Coppola"\}\}$

8. Find the actors cast in at least one film by "Smith".

 $\pi_{Actor}(\sigma_{Director="Smith"}(Films))$

Films				Venues		
Title	Director	Actor	٦٢	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz] [
The Internet's Own Boy	Knappenberger	Lessig	יר			
The Internet's Own Boy	Knappenberger	Berners-Lee	Γ.	Program		
			ון	Cinema	Title	Time
Dogma	Smith	Damon	ון	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	ור	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	1 (UFA	The Imitation Game	22:45
Dogma	Smith	Smith	ו ר	CinemaxX	The Imitation Game	19:30

9.1 Find the actors for which there is a movie directed by "Smith" that they are not cast in.

Films				Venues		
Title	Director	Actor	۱ ۲	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	ו ר	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Ίſ	Schauburg	Königsbrücker Str. 55	8032185
			Ίſ	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz] [
The Internet's Own Boy	Knappenberger	Lessig] '			
The Internet's Own Boy	Knappenberger	Berners-Lee].	Program		
] [Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck] [Schauburg	Dogma	20:45
Dogma	Smith	Morissette] [UFA	The Imitation Game	22:45
Dogma	Smith	Smith	١ſ	CinemaxX	The Imitation Game	19:30

9.1 Find the actors for which there is a movie directed by "Smith" that they are not cast in.

 $q = \pi_{Actor}[(\pi_{Actor}(Films) \bowtie \pi_{Title}(\sigma_{Director="Smith"}(Films))) - \pi_{Actor,Title}(\sigma_{Director="Smith"}(Films))]$

Films				Venues		
Title	Director	Actor	۱ ۲	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	ו ר	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	1 [Schauburg	Königsbrücker Str. 55	8032185
			1 [CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz] [
The Internet's Own Boy	Knappenberger	Lessig	ין			
The Internet's Own Boy	Knappenberger	Berners-Lee].	Program		
			٦ſ	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Ίľ	Schauburg	Dogma	20:45
Dogma	Smith	Morissette] [UFA	The Imitation Game	22:45
Dogma	Smith	Smith	1 ľ	CinemaxX	The Imitation Game	19:30

9.1 Find the actors for which there is a movie directed by "Smith" that they are not cast in.

 $q = \pi_{Actor}[(\pi_{Actor}(Films) \bowtie \pi_{Title}(\sigma_{Director="Smith"}(Films))) - \pi_{Actor,Title}(\sigma_{Director="Smith"}(Films))]$

9 Find the actors cast in every film by "Smith."

Films				Venues		
Title	Director	Actor	ור	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	ון			
The Internet's Own Boy	Knappenberger	Lessig	ו			
The Internet's Own Boy	Knappenberger	Berners-Lee]	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	ור	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

9.1 Find the actors for which there is a movie directed by "Smith" that they are not cast in.

 $q = \pi_{Actor}[(\pi_{Actor}(Films) \bowtie \pi_{Title}(\sigma_{Director="Smith"}(Films))) - \pi_{Actor,Title}(\sigma_{Director="Smith"}(Films))]$

9 Find the actors cast in every film by "Smith."

 $\pi_{Actor}(Films) - q$

Films			Venues		
Title	Director	Actor	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Schauburg	Königsbrücker Str. 55	8032185
			CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	1		
The Internet's Own Boy	Knappenberger	Lessig	1		
The Internet's Own Boy	Knappenberger	Berners-Lee	Program		
			Cinema	Title	Time
Dogma	Smith	Damon	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	CinemaxX	The Imitation Game	19:30

10 Find the actors cast only in films by "Smith."

Films				Venues		
Title	Director	Actor	ור	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	ון			
The Internet's Own Boy	Knappenberger	Lessig	ו			
The Internet's Own Boy	Knappenberger	Berners-Lee]	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	11	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

10 Find the actors cast only in films by "Smith."

 $\pi_{Actor}(Films) - \pi_{Actor}[Films - \sigma_{Director="Smith"}(Films)]$

Films				Venues		
Title	Director	Actor	ור	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	ון			
The Internet's Own Boy	Knappenberger	Lessig	ו			
The Internet's Own Boy	Knappenberger	Berners-Lee]	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	11	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

10 Find the actors cast only in films by "Smith."

$$\pi_{Actor}(Films) - \pi_{Actor}[Films - \sigma_{Director="Smith"}(Films)]$$

11 Find all pairs of actors who act together in at least one film.

Films				Venues		
Title	Director	Actor	ור	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	ון			
The Internet's Own Boy	Knappenberger	Lessig	ו			
The Internet's Own Boy	Knappenberger	Berners-Lee]	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	11	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

10 Find the actors cast only in films by "Smith."

 $\pi_{Actor}(Films) - \pi_{Actor}[Films - \sigma_{Director="Smith"}(Films)]$

11 Find all pairs of actors who act together in at least one film.

 $\pi_{RA,Actor}[\delta_{Actor \rightarrow RA}(Films) \bowtie Films]$

Films				Venues		
Title	Director	Actor	11	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz] [
The Internet's Own Boy	Knappenberger	Lessig	ין			
The Internet's Own Boy	Knappenberger	Berners-Lee].	Program		
] [Cinema	Title	Time
Dogma	Smith	Damon] [Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	11	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

12.1 Find all pairs of actors a and a' such that a acts in a movie that does not feature a'.

Films				Venues		
Title	Director	Actor	ור	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	ון			
The Internet's Own Boy	Knappenberger	Lessig	ו			
The Internet's Own Boy	Knappenberger	Berners-Lee]	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	ור	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

12.1 Find all pairs of actors a and a' such that a acts in a movie that does not feature a'.

$$q_{1} = \pi_{Actor,RA}[(\pi_{Actor}(Films) \bowtie \delta_{Actor \rightarrow RA}(Films)) - (Films \bowtie \delta_{Actor \rightarrow RA}(\pi_{Actor}(Films)))]$$

Films				Venues		
Title	Director	Actor	11	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley] [Schauburg	Königsbrücker Str. 55	8032185
] [CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	ונ			
The Internet's Own Boy	Knappenberger	Lessig]			
The Internet's Own Boy	Knappenberger	Berners-Lee]	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette] [UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

12.1 Find all pairs of actors *a* and *a*' such that *a* acts in a movie that does not feature *a*'.

$$q_{1} = \pi_{Actor,RA}[(\pi_{Actor}(Films) \bowtie \delta_{Actor \rightarrow RA}(Films)) - (Films \bowtie \delta_{Actor \rightarrow RA}(\pi_{Actor}(Films)))]$$

If $\{\{Actor \mapsto a'\}, \{RA \mapsto a\}\} \in q_1(\mathcal{D})$, then *a* acts in a movie that does not feature *a'*.

Films				Venues		
Title	Director	Actor	ור	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	ון			
The Internet's Own Boy	Knappenberger	Lessig	ו			
The Internet's Own Boy	Knappenberger	Berners-Lee]	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	ור	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

12.1 Find all pairs of actors a and a' such that a acts in a movie that does not feature a'.

 $q_{1} = \pi_{Actor,RA}[(\pi_{Actor}(Films) \bowtie \delta_{Actor \rightarrow RA}(Films)) - (Films \bowtie \delta_{Actor \rightarrow RA}(\pi_{Actor}(Films)))]$

If $\{\{Actor \mapsto a'\}, \{RA \mapsto a\}\} \in q_1(\mathcal{D})$, then *a* acts in a movie that does not feature *a'*.

12.2 Find all pairs of actors a and a' such that a acts in all the movies that feature a'.

Films				Venues		
Title	Director	Actor	۱۱	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz] [
The Internet's Own Boy	Knappenberger	Lessig	ין			
The Internet's Own Boy	Knappenberger	Berners-Lee].	Program		
			ור	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	11	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

12.1 Find all pairs of actors *a* and *a*' such that *a* acts in a movie that does not feature *a*'.

$$q_{1} = \pi_{Actor,RA}[(\pi_{Actor}(Films) \bowtie \delta_{Actor \rightarrow RA}(Films)) - (Films \bowtie \delta_{Actor \rightarrow RA}(\pi_{Actor}(Films)))]$$

If $\{\{Actor \mapsto a'\}, \{RA \mapsto a\}\} \in q_1(\mathcal{D})$, then *a* acts in a movie that does not feature *a'*.

12.2 Find all pairs of actors *a* and *a*' such that *a* acts in all the movies that feature *a*'.

$$q_2 = (\pi_{Actor}(Films) \bowtie \delta_{Actor \rightarrow RA}(\pi_{Actor}(Films))) - q_1$$

Films				Venues		
Title	Director	Actor	٦٢	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	11			
The Internet's Own Boy	Knappenberger	Lessig	1`			
The Internet's Own Boy	Knappenberger	Berners-Lee	1	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	11	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

12.1 Find all pairs of actors a and a' such that a acts in a movie that does not feature a'.

$$q_{1} = \pi_{Actor,RA}[(\pi_{Actor}(Films) \bowtie \delta_{Actor \rightarrow RA}(Films)) - (Films \bowtie \delta_{Actor \rightarrow RA}(\pi_{Actor}(Films)))]$$

If $\{\{Actor \mapsto a'\}, \{RA \mapsto a\}\} \in q_1(\mathcal{D})$, then a acts in a movie that does not feature a'.

12.2 Find all pairs of actors a and a' such that a acts in all the movies that feature a'.

$$q_2 = (\pi_{Actor}(Films) \bowtie \delta_{Actor \rightarrow RA}(\pi_{Actor}(Films))) - q_1$$

If $\{\{Actor \mapsto a\}, \{RA \mapsto a'\}\} \in q_2(\mathcal{D})$, then *a* acts in all the movies that feature *a'*.

Films				Venues		
Title	Director	Actor	٦٢	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	11			
The Internet's Own Boy	Knappenberger	Lessig	יר			
The Internet's Own Boy	Knappenberger	Berners-Lee	1	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	ו ר	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	1 (UFA	The Imitation Game	22:45
Dogma	Smith	Smith] [CinemaxX	The Imitation Game	19:30

12 Find all pairs of actors cast in exactly the same films.

$$q_{1} = \pi_{Actor,RA}[(\pi_{Actor}(Films) \bowtie \delta_{Actor \rightarrow RA}(Films)) - (Films \bowtie \delta_{Actor \rightarrow RA}(\pi_{Actor}(Films)))]$$
$$q_{2} = (\pi_{Actor}(Films) \bowtie \delta_{Actor \rightarrow RA}(\pi_{Actor}(Films))) - q_{1}$$

Films				Venues		
Title	Director	Actor	٦٢	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	11			
The Internet's Own Boy	Knappenberger	Lessig	יר			
The Internet's Own Boy	Knappenberger	Berners-Lee	1	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	ו ר	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	1 (UFA	The Imitation Game	22:45
Dogma	Smith	Smith] [CinemaxX	The Imitation Game	19:30

12 Find all pairs of actors cast in exactly the same films.

$$q_{1} = \pi_{Actor,RA}[(\pi_{Actor}(Films) \bowtie \delta_{Actor \rightarrow RA}(Films)) - (Films \bowtie \delta_{Actor \rightarrow RA}(\pi_{Actor}(Films)))]$$
$$q_{2} = (\pi_{Actor}(Films) \bowtie \delta_{Actor \rightarrow RA}(\pi_{Actor}(Films))) - q_{1}$$

 $q_2 \bowtie \delta_{Actor, RA \rightarrow RA, Actor}(q_2)$

Films				Venues		
Title	Director	Actor	11	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz] [
The Internet's Own Boy	Knappenberger	Lessig	ין			
The Internet's Own Boy	Knappenberger	Berners-Lee].	Program		
] [Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	11	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

13.1 Find all pairs of directors *d* and actors *a* such that *d* directs some movie that features *a*.

Films				Venues		
Title	Director	Actor	۱۱	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	11			
The Internet's Own Boy	Knappenberger	Lessig	ין			
The Internet's Own Boy	Knappenberger	Berners-Lee].	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	11	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

13.1 Find all pairs of directors *d* and actors *a* such that *d* directs some movie that features *a*.

 $q_1 = \pi_{Director,Actor}(Films)$

Films				Venues		
Title	Director	Actor	ור	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	11			
The Internet's Own Boy	Knappenberger	Lessig	1			
The Internet's Own Boy	Knappenberger	Berners-Lee	1	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	11	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

13.1 Find all pairs of directors d and actors a such that d directs some movie that features a.

 $q_1 = \pi_{Director,Actor}(Films)$

13.2 Find the directors who do not direct all actors.
Films				Venues		
Title	Director	Actor	ור	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	11			
The Internet's Own Boy	Knappenberger	Lessig	1			
The Internet's Own Boy	Knappenberger	Berners-Lee	1	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	11	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	11	CinemaxX	The Imitation Game	19:30

13.1 Find all pairs of directors d and actors a such that d directs some movie that features a.

 $q_1 = \pi_{Director,Actor}(Films)$

13.2 Find the directors who do not direct all actors.

$$q_2 = \pi_{Director}((\pi_{Director}(Film) \bowtie \pi_{Actor}(Film)) - q_1)$$

Films				Venues		
Title	Director	Actor	ור	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	ון			
The Internet's Own Boy	Knappenberger	Lessig	ו			
The Internet's Own Boy	Knappenberger	Berners-Lee]	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	ור	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	ור	CinemaxX	The Imitation Game	19:30

13 Find the directors such that every actor is cast in one of their films.

$$q_{1} = \pi_{Director,Actor}(Films)$$
$$q_{2} = \pi_{Director}((\pi_{Director}(Film) \bowtie \pi_{Actor}(Film)) - q_{1})$$

Films				Venues		
Title	Director	Actor	ור	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	11	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	11	Schauburg	Königsbrücker Str. 55	8032185
			11	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	ון			
The Internet's Own Boy	Knappenberger	Lessig	ו			
The Internet's Own Boy	Knappenberger	Berners-Lee]	Program		
			11	Cinema	Title	Time
Dogma	Smith	Damon	11	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	11	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	ור	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	ור	CinemaxX	The Imitation Game	19:30

13 Find the directors such that every actor is cast in one of their films.

$$q_{1} = \pi_{Director,Actor}(Films)$$
$$q_{2} = \pi_{Director}((\pi_{Director}(Film) \bowtie \pi_{Actor}(Film)) - q_{1})$$

 $\pi_{Director}(Film) - q_2$

Exercise. We use ε to denote the *empty function*, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns. Now for a table *R*, what are the results of the following expressions?

(1)
$$R \bowtie R$$
 (2) $R \bowtie \emptyset$ (3) $R \bowtie \{\varepsilon\}$

Solution.

Exercise. We use ε to denote the *empty function*, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns. Now for a table *R*, what are the results of the following expressions?

(1)
$$R \bowtie R$$
 (2) $R \bowtie \emptyset$ (3) $R \bowtie \{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

 $R \bowtie S = \{ f : U \cup V \rightarrow \text{dom} \mid f_U \in R \text{ and } f_V \in S \},\$

where f_U and f_V are the restriction of f to elements in U and V, respectively, i.e., $f(u) = f_U(u)$ for all $u \in U$ and $f(v) = f_V(v)$ for all $v \in V$.

Exercise. We use ε to denote the *empty function*, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns. Now for a table *R*, what are the results of the following expressions?

(1)
$$R \bowtie R$$
 (2) $R \bowtie \emptyset$ (3) $R \bowtie \{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$R \bowtie S = \{ f : U \cup V \rightarrow \text{dom} \mid f_U \in R \text{ and } f_V \in S \},\$$

where f_U and f_V are the restriction of f to elements in U and V, respectively, i.e., $f(u) = f_U(u)$ for all $u \in U$ and $f(v) = f_V(v)$ for all $v \in V$. (1)

$$R \bowtie R = \{ f : U \cup U \rightarrow \text{dom} \mid f_U \in R \text{ and } f_U \in R \}$$

Exercise. We use ε to denote the *empty function*, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns. Now for a table *R*, what are the results of the following expressions?

(1)
$$R \bowtie R$$
 (2) $R \bowtie \emptyset$ (3) $R \bowtie \{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$R \bowtie S = \{ f : U \cup V \rightarrow \text{dom} \mid f_U \in R \text{ and } f_V \in S \},\$$

where f_U and f_V are the restriction of f to elements in U and V, respectively, i.e., $f(u) = f_U(u)$ for all $u \in U$ and $f(v) = f_V(v)$ for all $v \in V$. (1)

$$R \bowtie R = \{ f : U \cup U \rightarrow \text{dom} \mid f_U \in R \text{ and } f_U \in R \}$$
$$= \{ f : U \rightarrow \text{dom} \mid f_U \in R \}$$

Exercise. We use ε to denote the *empty function*, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns. Now for a table *R*, what are the results of the following expressions?

(1)
$$R \bowtie R$$
 (2) $R \bowtie \emptyset$ (3) $R \bowtie \{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$R \bowtie S = \{ f : U \cup V \rightarrow \text{dom} \mid f_U \in R \text{ and } f_V \in S \},\$$

where f_U and f_V are the restriction of f to elements in U and V, respectively, i.e., $f(u) = f_U(u)$ for all $u \in U$ and $f(v) = f_V(v)$ for all $v \in V$. (1)

$$R \bowtie R = \{ f : U \cup U \rightarrow \text{dom} \mid f_U \in R \text{ and } f_U \in R \}$$
$$= \{ f : U \rightarrow \text{dom} \mid f_U \in R \}$$
$$= \{ f_U \mid f_U \in R \}$$

Exercise. We use ε to denote the *empty function*, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns. Now for a table *R*, what are the results of the following expressions?

(1)
$$R \bowtie R$$
 (2) $R \bowtie \emptyset$ (3) $R \bowtie \{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$R \bowtie S = \{ f : U \cup V \rightarrow \text{dom} \mid f_U \in R \text{ and } f_V \in S \},\$$

where f_U and f_V are the restriction of f to elements in U and V, respectively, i.e., $f(u) = f_U(u)$ for all $u \in U$ and $f(v) = f_V(v)$ for all $v \in V$.

(1)

$$R \bowtie R = \{f : U \cup U \rightarrow \text{dom} \mid f_U \in R \text{ and } f_U \in R \}$$
$$= \{f : U \rightarrow \text{dom} \mid f_U \in R \}$$
$$= \{f_U \mid f_U \in R \}$$
$$= R$$

Exercise. We use ε to denote the *empty function*, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns. Now for a table *R*, what are the results of the following expressions?

(1)
$$R \bowtie R$$
 (2) $R \bowtie \emptyset$ (3) $R \bowtie \{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$R \bowtie S = \{ f : U \cup V \rightarrow \text{dom} \mid f_U \in R \text{ and } f_V \in S \},\$$

where f_U and f_V are the restriction of f to elements in U and V, respectively, i.e., $f(u) = f_U(u)$ for all $u \in U$ and $f(v) = f_V(v)$ for all $v \in V$. (2)

$$R \bowtie \emptyset = \{ f : U \cup \emptyset \rightarrow \text{dom} \mid f_U \in R \text{ and } f_\emptyset \in \emptyset \}$$

Exercise. We use ε to denote the *empty function*, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns. Now for a table *R*, what are the results of the following expressions?

(1)
$$R \bowtie R$$
 (2) $R \bowtie \emptyset$ (3) $R \bowtie \{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$R \bowtie S = \{ f : U \cup V \rightarrow \text{dom} \mid f_U \in R \text{ and } f_V \in S \},\$$

where f_U and f_V are the restriction of f to elements in U and V, respectively, i.e., $f(u) = f_U(u)$ for all $u \in U$ and $f(v) = f_V(v)$ for all $v \in V$. (2)

$$R \bowtie \emptyset = \{ f : U \cup \emptyset \to \text{dom} \mid f_U \in R \text{ and } f_\emptyset \in \emptyset \}$$
$$= \emptyset$$

Exercise. We use ε to denote the *empty function*, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns. Now for a table *R*, what are the results of the following expressions?

(1)
$$R \bowtie R$$
 (2) $R \bowtie \emptyset$ (3) $R \bowtie \{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$R \bowtie S = \{ f : U \cup V \rightarrow \text{dom} \mid f_U \in R \text{ and } f_V \in S \},\$$

where f_U and f_V are the restriction of f to elements in U and V, respectively, i.e., $f(u) = f_U(u)$ for all $u \in U$ and $f(v) = f_V(v)$ for all $v \in V$. (3)

$$R \bowtie \{\epsilon\} = \{f : U \cup \emptyset \rightarrow \mathsf{dom} \mid f_U \in R \text{ and } f_\emptyset \in \{\epsilon\}\}$$

Exercise. We use ε to denote the *empty function*, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns. Now for a table *R*, what are the results of the following expressions?

(1)
$$R \bowtie R$$
 (2) $R \bowtie \emptyset$ (3) $R \bowtie \{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$R \bowtie S = \{ f : U \cup V \rightarrow \text{dom} \mid f_U \in R \text{ and } f_V \in S \},\$$

where f_U and f_V are the restriction of f to elements in U and V, respectively, i.e., $f(u) = f_U(u)$ for all $u \in U$ and $f(v) = f_V(v)$ for all $v \in V$. (3)

$$R \bowtie \{\epsilon\} = \{f : U \cup \emptyset \to \mathsf{dom} \mid f_U \in R \text{ and } f_\emptyset \in \{\epsilon\}\}$$
$$= \{f : U \to \mathsf{dom} \mid f_U \in R \text{ and } f_\emptyset \in \{\epsilon\}\}$$

Exercise. We use ε to denote the *empty function*, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns. Now for a table *R*, what are the results of the following expressions?

(1)
$$R \bowtie R$$
 (2) $R \bowtie \emptyset$ (3) $R \bowtie \{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$R \bowtie S = \{ f : U \cup V \rightarrow \text{dom} \mid f_U \in R \text{ and } f_V \in S \},\$$

where f_U and f_V are the restriction of f to elements in U and V, respectively, i.e., $f(u) = f_U(u)$ for all $u \in U$ and $f(v) = f_V(v)$ for all $v \in V$.

(3)

$$R \bowtie \{\epsilon\} = \{ f : U \cup \emptyset \to \text{dom} \mid f_U \in R \text{ and } f_\emptyset \in \{\epsilon\} \}$$
$$= \{ f : U \to \text{dom} \mid f_U \in R \text{ and } f_\emptyset \in \{\epsilon\} \}$$
$$= \{ f : U \to \text{dom} \mid f_U \in R \}$$

Exercise. We use ε to denote the *empty function*, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns. Now for a table *R*, what are the results of the following expressions?

(1)
$$R \bowtie R$$
 (2) $R \bowtie \emptyset$ (3) $R \bowtie \{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$R \bowtie S = \{ f : U \cup V \rightarrow \text{dom} \mid f_U \in R \text{ and } f_V \in S \},\$$

where f_U and f_V are the restriction of f to elements in U and V, respectively, i.e., $f(u) = f_U(u)$ for all $u \in U$ and $f(v) = f_V(v)$ for all $v \in V$.

(3)

$$R \bowtie \{\epsilon\} = \{f : U \cup \emptyset \to \text{dom} \mid f_U \in R \text{ and } f_\emptyset \in \{\epsilon\}\}$$
$$= \{f : U \to \text{dom} \mid f_U \in R \text{ and } f_\emptyset \in \{\epsilon\}\}$$
$$= \{f : U \to \text{dom} \mid f_U \in R\}$$
$$= R$$

Exercise. Express the following operations using other operations presented in the lecture:

- 1. Intersection $R \cap S$.
- 2. Cartesian product $R \times S$.
- 3. Selection $\sigma_{n=a}(R)$ with *a* a constant.
- 4. Arbitrary constant tables in queries.

Solution.

Exercise. Express the following operations using other operations presented in the lecture:

- 1. Intersection $R \cap S$.
- 2. Cartesian product $R \times S$.
- 3. Selection $\sigma_{n=a}(R)$ with *a* a constant.
- 4. Arbitrary constant tables in queries.

Solution.

1. Note that $R \cap S$ is well-defined only if the attributes of R and S coincide. Suppose that the common set of attributes is U. Then we have

 $R \cap S = \{ f : U \to \mathbf{dom} \mid f \in R \text{ and } f \in S \}$

Exercise. Express the following operations using other operations presented in the lecture:

- 1. Intersection $R \cap S$.
- 2. Cartesian product $R \times S$.
- 3. Selection $\sigma_{n=a}(R)$ with *a* a constant.
- 4. Arbitrary constant tables in queries.

Solution.

1. Note that $R \cap S$ is well-defined only if the attributes of R and S coincide. Suppose that the common set of attributes is U. Then we have

 $R \cap S = \{f : U \to \text{dom} \mid f \in R \text{ and } f \in S\}$ $= \{f : U \to \text{dom} \mid f_U \in R \text{ and } f_U \in S\}$

Exercise. Express the following operations using other operations presented in the lecture:

- 1. Intersection $R \cap S$.
- 2. Cartesian product $R \times S$.
- 3. Selection $\sigma_{n=a}(R)$ with *a* a constant.
- 4. Arbitrary constant tables in queries.

Solution.

1. Note that $R \cap S$ is well-defined only if the attributes of R and S coincide. Suppose that the common set of attributes is U. Then we have

 $R \cap S = \{f : U \to \text{dom} \mid f \in R \text{ and } f \in S\}$ $= \{f : U \to \text{dom} \mid f_U \in R \text{ and } f_U \in S\}$ $= \{f : U \cup U \to \text{dom} \mid f_U \in R \text{ and } f_U \in S\}$

Exercise. Express the following operations using other operations presented in the lecture:

- 1. Intersection $R \cap S$.
- 2. Cartesian product $R \times S$.
- 3. Selection $\sigma_{n=a}(R)$ with *a* a constant.
- 4. Arbitrary constant tables in queries.

Solution.

1. Note that $R \cap S$ is well-defined only if the attributes of R and S coincide. Suppose that the common set of attributes is U. Then we have

$$R \cap S = \{ f : U \to \text{dom} \mid f \in R \text{ and } f \in S \}$$
$$= \{ f : U \to \text{dom} \mid f_U \in R \text{ and } f_U \in S \}$$
$$= \{ f : U \cup U \to \text{dom} \mid f_U \in R \text{ and } f_U \in S \}$$
$$= R \bowtie S$$

Exercise. Express the following operations using other operations presented in the lecture:

- 1. Intersection $R \cap S$.
- 2. Cartesian product $R \times S$.
- 3. Selection $\sigma_{n=a}(R)$ with *a* a constant.
- 4. Arbitrary constant tables in queries.

Solution.

1. Note that $R \cap S$ is well-defined only if the attributes of R and S coincide. Suppose that the common set of attributes is U. Then we have

$$R \cap S = \{ f : U \to \text{dom} \mid f \in R \text{ and } f \in S \}$$
$$= \{ f : U \to \text{dom} \mid f_U \in R \text{ and } f_U \in S \}$$
$$= \{ f : U \cup U \to \text{dom} \mid f_U \in R \text{ and } f_U \in S \}$$
$$= R \bowtie S$$

2. Suppose *R* has attributes *U* and *S* has attributes *V*. Let *W* be a set of fresh attributes with |W| = |V| and $W \cap U = \emptyset$. Then, $R \times S = R \bowtie \delta_{\vec{V} \to \vec{W}}(S)$.

Exercise. Express the following operations using other operations presented in the lecture:

- 1. Intersection $R \cap S$.
- 2. Cartesian product $R \times S$.
- 3. Selection $\sigma_{n=a}(R)$ with *a* a constant.
- 4. Arbitrary constant tables in queries.

Solution.

1. Note that $R \cap S$ is well-defined only if the attributes of R and S coincide. Suppose that the common set of attributes is U. Then we have

$$R \cap S = \{ f : U \to \text{dom} \mid f \in R \text{ and } f \in S \}$$
$$= \{ f : U \to \text{dom} \mid f_U \in R \text{ and } f_U \in S \}$$
$$= \{ f : U \cup U \to \text{dom} \mid f_U \in R \text{ and } f_U \in S$$
$$= R \bowtie S$$

- 2. Suppose *R* has attributes *U* and *S* has attributes *V*. Let *W* be a set of fresh attributes with |W| = |V| and $W \cap U = \emptyset$. Then, $R \times S = R \bowtie \delta_{\vec{V} \to \vec{W}}(S)$.
- 3. $\sigma_{n=a}(R) = R \bowtie \{\{n \mapsto a\}\}$

Exercise. Express the following operations using other operations presented in the lecture:

- 1. Intersection $R \cap S$.
- 2. Cartesian product $R \times S$.
- 3. Selection $\sigma_{n=a}(R)$ with *a* a constant.
- 4. Arbitrary constant tables in queries.

Solution.

1. Note that $R \cap S$ is well-defined only if the attributes of R and S coincide. Suppose that the common set of attributes is U. Then we have

$$R \cap S = \{f : U \to \text{dom} \mid f \in R \text{ and } f \in S\}$$
$$= \{f : U \to \text{dom} \mid f_U \in R \text{ and } f_U \in S\}$$
$$= \{f : U \cup U \to \text{dom} \mid f_U \in R \text{ and } f_U \in S$$
$$= R \bowtie S$$

- 2. Suppose *R* has attributes *U* and *S* has attributes *V*. Let *W* be a set of fresh attributes with |W| = |V| and $W \cap U = \emptyset$. Then, $R \times S = R \bowtie \delta_{\vec{V} \to \vec{W}}(S)$.
- 3. $\sigma_{n=a}(R) = R \bowtie \{\{n \mapsto a\}\}$
- 4. To create a constant table with a single row and many attribute-value pairs, simply join several single attribute-value pair constant tables (cf. query 7 in Exercise 1). Then use union to create a table with several rows.

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2. $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$
3. $\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$ for all $\circ \in \{\cup, \cap, -, \bowtie\}$
4. $\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in \{\cup, \cap, -\}$.
5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution.

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

$$R \bowtie S = \{ f : U \cup V \rightarrow \text{dom} \mid f_U \in R \text{ and } f_V \in S \}$$

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2. $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

$$R \bowtie S = \{f : U \cup V \to \text{dom} \mid f_U \in R \text{ and } f_V \in S \}$$
$$= \{f : V \cup U \to \text{dom} \mid f_V \in S \text{ and } f_U \in R \}$$

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2. $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

$$R \bowtie S = \{f : U \cup V \to \text{dom} \mid f_U \in R \text{ and } f_V \in S\}$$
$$= \{f : V \cup U \to \text{dom} \mid f_V \in S \text{ and } f_U \in R\}$$
$$= S \bowtie R$$

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

$$R \bowtie (S \bowtie T) = R \bowtie \{ f : V \cup W \rightarrow \text{dom} \mid f_V \in S \text{ and } f_W \in T \}$$

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2. $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

$$R \bowtie (S \bowtie T) = R \bowtie \{f : V \cup W \to \text{dom} \mid f_V \in S \text{ and } f_W \in T\}$$
$$= \{f : U \cup (V \cup W) \to \text{dom} \mid f_U \in R \text{ and } (f_V \in S \text{ and } f_W \in T)\}$$

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2. $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$
3. $\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$ for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

$$R \bowtie (S \bowtie T) = R \bowtie \{f : V \cup W \to \text{dom} \mid f_V \in S \text{ and } f_W \in T\}$$
$$= \{f : U \cup (V \cup W) \to \text{dom} \mid f_U \in R \text{ and } (f_V \in S \text{ and } f_W \in T)$$
$$= \{f : (U \cup V) \cup W \to \text{dom} \mid (f_U \in R \text{ and } f_V \in S) \text{ and } f_W \in T\}$$

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2. $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$
3. $\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$ for all $\circ \in \{\cup, \cap, -, \bowtie\}$
4. $\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

$$R \bowtie (S \bowtie T) = R \bowtie \{f : V \cup W \to \text{dom} \mid f_V \in S \text{ and } f_W \in T\}$$
$$= \{f : U \cup (V \cup W) \to \text{dom} \mid f_U \in R \text{ and } (f_V \in S \text{ and } f_W \in T)\}$$
$$= \{f : (U \cup V) \cup W \to \text{dom} \mid (f_U \in R \text{ and } f_V \in S) \text{ and } f_W \in T\}$$
$$= \{f : (U \cup V) \to \text{dom} \mid f_U \in R \text{ and } f_V \in S\} \bowtie T$$

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2. $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$
3. $\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$ for all $\circ \in \{\cup, \cap, -, \bowtie\}$
4. $\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

$$R \bowtie (S \bowtie T) = R \bowtie \{f : V \cup W \to \text{dom} \mid f_V \in S \text{ and } f_W \in T\}$$

= { f : U \cdot (V \cdot W) \rightarrow dom | f_U \in R and (f_V \in S and f_W \in T) }
= { f : (U \cdot V) \cdot W \rightarrow dom | (f_U \in R and f_V \in S) and f_W \in T }
= { f : (U \cdot V) \cdot W \rightarrow dom | f_U \in R and f_V \in S } \sqrt{M} T
= (R \sqrt{M} S) \sqrt{T}

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

3.1

 $\pi_X(R\cup S)=\pi_X(R)\cup\pi_X(S)$

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

3.1

$$\pi_X(R\cup S)=\pi_X(R)\cup\pi_X(S)$$

Let $f \in \pi_X(R \cup S)$. Then there is some $f' \in R \cup S$ with $f'_X = f$ and hence $f \in \pi_X(R) \cup \pi_X(S)$.

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

3.1

$$\pi_X(R\cup S)=\pi_X(R)\cup\pi_X(S)$$

Let $f \in \pi_X(R \cup S)$. Then there is some $f' \in R \cup S$ with $f'_X = f$ and hence $f \in \pi_X(R) \cup \pi_X(S)$. Conversely, let $f \in \pi_X(R) \cup \pi_X(S)$. Then $f \in \pi_X(R)$ or $f \in \pi_X(S)$, and there is some $f' \in R \cup S$ such that $f'_X = f$. Thus $f \in \pi_X(R \cup S)$.
Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

3.2

 $\pi_X(R\cap S)=\pi_X(R)\cap\pi_X(S)$

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

3.2

$$\pi_X(R\cap S)=\pi_X(R)\cap\pi_X(S)$$

Consider tables $R = \{\{A \mapsto 1, B \mapsto 2\}\}$ and $S = \{\{A \mapsto 1, B \mapsto 3\}\}$.

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

3.2

$$\pi_X(R\cap S)=\pi_X(R)\cap\pi_X(S)$$

Consider tables $R = \{\{A \mapsto 1, B \mapsto 2\}\}$ and $S = \{\{A \mapsto 1, B \mapsto 3\}\}$. Then $\pi_A(R \cap S) = \emptyset \subsetneq \pi_A(R) \cap \pi_A(S) = \{\{A \mapsto 1\}\}$.

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

3.3

$$\pi_X(R\bowtie S)=\pi_X(R)\bowtie\pi_X(S)$$

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

3.3

$$\pi_X(R\bowtie S)=\pi_X(R)\bowtie\pi_X(S)$$

Consider tables $R = \{\{A \mapsto 1, B \mapsto 2\}\}$ and $S = \{\{A \mapsto 1, B \mapsto 3\}\}$.

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

3.3

$$\pi_X(R\bowtie S)=\pi_X(R)\bowtie\pi_X(S)$$

Consider tables $R = \{\{A \mapsto 1, B \mapsto 2\}\}$ and $S = \{\{A \mapsto 1, B \mapsto 3\}\}$. Then $\pi_A(R \bowtie S) = \emptyset \subsetneq \pi_A(R) \bowtie \pi_A(S) = \{\{A \mapsto 1\}\}$.

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

3.4

$$\pi_X(R-S) = \pi_X(R) - \pi_X(S)$$

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

3.4

$$\pi_X(R-S) = \pi_X(R) - \pi_X(S)$$

Consider tables $R = \{\{A \mapsto 1, B \mapsto 2\}\}$ and $S = \{\{A \mapsto 1, B \mapsto 3\}\}$.

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

3.4

$$\pi_X(R-S) = \pi_X(R) - \pi_X(S)$$

Consider tables $R = \{\{A \mapsto 1, B \mapsto 2\}\}$ and $S = \{\{A \mapsto 1, B \mapsto 3\}\}$. Then $\pi_A(R - S) = \{\{A \mapsto 1\}\} \supseteq \pi_A(R) - \pi_A(S) = \emptyset$.

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

4

$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S) \qquad \text{for all } o \in \{\cup, \cap, -\}$$

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2.
$$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

4

$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S) \qquad \text{for all } o \in \{\cup, \cap, -\}$$

True, proof is analogous to 3.1.

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2. $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$
3. $\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$ for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

5

$$\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$$
 for *n* and *m* attributes of *R* only

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1.
$$R \bowtie S = S \bowtie R$$

2. $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$

3.
$$\pi_X(R \circ S) = \pi_X(R) \circ \pi_X(S)$$
 for all $\circ \in \{\cup, \cap, -, \bowtie\}$

4.
$$\sigma_{n=m}(R \circ S) = \sigma_{n=m}(R) \circ \sigma_{n=m}(S)$$
 for all $\circ \in \{\cup, \cap, -\}$.

5. $\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$, for *n* and *m* attributes of *R* only.

Why are these identities of interest?

Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

5

$$\sigma_{n=m}(R \bowtie S) = \sigma_{n=m}(R) \bowtie S$$

for *n* and *m* attributes of *R* only

True, proof is analogous to 3.1.

Exercise. Let R^I and S^I be tables of schema R[U] and S[V], respectively. The *division* of R^I by S^I , written as $(R^I \div S^I)$, is defined to be the maximal table over the attributes $U \setminus V$ that satisfies $(R^I \div S^I) \bowtie S^I \subseteq R^I$. Note that the joined tables here do not have any attributes in common, so the natural join works as a cross product. Consider the following table and use the division operator to (1) express a query for the cities that have been visited by all people.

Visited	
Person	City
Tomas	Berlin
Markus	Santiago
Markus	Berlin
Fred	New York
Fred	Berlin

Then, (2) express division using the standard relational algebra operators.

Exercise. Let R^I and S^I be tables of schema R[U] and S[V], respectively. The *division* of R^I by S^I , written as $(R^I \div S^I)$, is defined to be the maximal table over the attributes $U \setminus V$ that satisfies $(R^I \div S^I) \bowtie S^I \subseteq R^I$. Note that the joined tables here do not have any attributes in common, so the natural join works as a cross product. Consider the following table and use the division operator to (1) express a query for the cities that have been visited by all people.

Visited	
Person	City
Tomas	Berlin
Markus	Santiago
Markus	Berlin
Fred	New York
Fred	Berlin

Then, (2) express division using the standard relational algebra operators. Solution.

(1)

Visited $\div \pi_{Person}$ (Visited)

Exercise. Let R^I and S^I be tables of schema R[U] and S[V], respectively. The *division* of R^I by S^I , written as $(R^I \div S^I)$, is defined to be the maximal table over the attributes $U \setminus V$ that satisfies $(R^I \div S^I) \bowtie S^I \subseteq R^I$. Note that the joined tables here do not have any attributes in common, so the natural join works as a cross product. Consider the following table and use the division operator to (1) express a query for the cities that have been visited by all people.

Visited	
Person	City
Tomas	Berlin
Markus	Santiago
Markus	Berlin
Fred	New York
Fred	Berlin

Then, (2) express division using the standard relational algebra operators. Solution.

(1)

Visited $\div \pi_{Person}$ (Visited)

(2) Let X be the set of all attributes of R that are not attributes of S (i.e., $X = U \setminus V$).

$$R \div S = \pi_X(R) - \pi_X[(\pi_X(R) \bowtie S) - R]$$

Exercise. Suggest how to write the relational algebra operations for using the unnamed perspective. What changes? Solution.

Exercise. Suggest how to write the relational algebra operations for using the unnamed perspective. What changes?

Solution.

► Natural join becomes cartesian product ×.

Exercise. Suggest how to write the relational algebra operations for using the unnamed perspective. What changes?

Solution.

- ► Natural join becomes cartesian product ×.
- No renaming.

Exercise. Suggest how to write the relational algebra operations for using the unnamed perspective. What changes?

Solution.

- ► Natural join becomes cartesian product ×.
- No renaming.
- Order matters in projections.

Exercise. Suggest how to write the relational algebra operations for using the unnamed perspective. What changes?

Solution.

- Natural join becomes cartesian product ×.
- No renaming.
- Order matters in projections.
- New set of operators: $\{\sigma, \pi, \cup, -, \times\}$.

Exercise. The set of operations $\{\sigma, \pi, \cup, -, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further. **Solution.**

• Operator δ is the only one that can rename attributes in tables.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- ▶ Operator ⋈ is the only one that can produce tables with more attributes.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- ▶ Operator ⋈ is the only one that can produce tables with more attributes.
- ► Operator ∪ cannot be removed:
 - 1. Let \mathcal{D} be the database containing the tables $R = \{\{A \mapsto 1\}\}\$ and $S = \{\{A \mapsto 2\}\}$.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- ▶ Operator ⋈ is the only one that can produce tables with more attributes.
- ► Operator ∪ cannot be removed:
 - 1. Let \mathcal{D} be the database containing the tables $R = \{\{A \mapsto 1\}\}\$ and $S = \{\{A \mapsto 2\}\}$.
 - 2. Then, $(R \cup S)(\mathcal{D}) = \{\{A \mapsto 1\}, \{A \mapsto 2\}\}.$

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- ▶ Operator ⋈ is the only one that can produce tables with more attributes.
- ► Operator ∪ cannot be removed:
 - 1. Let \mathcal{D} be the database containing the tables $R = \{\{A \mapsto 1\}\}\$ and $S = \{\{A \mapsto 2\}\}$.
 - 2. Then, $(R \cup S)(\mathcal{D}) = \{\{A \mapsto 1\}, \{A \mapsto 2\}\}.$
 - 3. Let *q* be a query constructed using only $\{\sigma, \pi, -, \bowtie, \delta\}$.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- ▶ Operator ⋈ is the only one that can produce tables with more attributes.
- ► Operator ∪ cannot be removed:
 - 1. Let \mathcal{D} be the database containing the tables $R = \{\{A \mapsto 1\}\}\$ and $S = \{\{A \mapsto 2\}\}$.
 - 2. Then, $(R \cup S)(\mathcal{D}) = \{\{A \mapsto 1\}, \{A \mapsto 2\}\}.$
 - 3. Let *q* be a query constructed using only $\{\sigma, \pi, -, \bowtie, \delta\}$.
 - 4. Every intermediate table produced in the evaluation of q over \mathcal{D} contains at most 1 row (proof via induction).

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- ▶ Operator ⋈ is the only one that can produce tables with more attributes.
- ► Operator ∪ cannot be removed:
 - 1. Let \mathcal{D} be the database containing the tables $R = \{\{A \mapsto 1\}\}\$ and $S = \{\{A \mapsto 2\}\}$.
 - 2. Then, $(R \cup S)(\mathcal{D}) = \{\{A \mapsto 1\}, \{A \mapsto 2\}\}.$
 - 3. Let *q* be a query constructed using only $\{\sigma, \pi, -, \bowtie, \delta\}$.
 - 4. Every intermediate table produced in the evaluation of q over D contains at most 1 row (proof via induction).
 - 5. Then, $q(\mathcal{D}) \neq \{\{A \mapsto 1\}, \{A \mapsto 2\}\}.$

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- ▶ Operator ⋈ is the only one that can produce tables with more attributes.
- ► Operator ∪ cannot be removed:
 - 1. Let \mathcal{D} be the database containing the tables $R = \{\{A \mapsto 1\}\}\$ and $S = \{\{A \mapsto 2\}\}$.
 - 2. Then, $(R \cup S)(\mathcal{D}) = \{\{A \mapsto 1\}, \{A \mapsto 2\}\}.$
 - 3. Let *q* be a query constructed using only $\{\sigma, \pi, -, \bowtie, \delta\}$.
 - 4. Every intermediate table produced in the evaluation of q over D contains at most 1 row (proof via induction).
 - 5. Then, $q(\mathcal{D}) \neq \{\{A \mapsto 1\}, \{A \mapsto 2\}\}$.
 - 6. The query language $\{\sigma, \pi, -, \bowtie, \delta\}$ is less expressive than $\{\sigma, \pi, \cup, -, \bowtie, \delta\}$.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- ▶ Operator ⋈ is the only one that can produce tables with more attributes.
- ▶ Operator ∪ cannot be removed.
- Operator σ cannot be removed:
 - 1. Let \mathcal{D} be the database containing the table $R = \{\{A \mapsto 1\}, \{A \mapsto 2\}\}$.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- ▶ Operator ⋈ is the only one that can produce tables with more attributes.
- ▶ Operator ∪ cannot be removed.
- Operator σ cannot be removed:
 - 1. Let \mathcal{D} be the database containing the table $R = \{\{A \mapsto 1\}, \{A \mapsto 2\}\}$.
 - 2. Then, $\sigma_{A=B}(R \bowtie \delta_{A \rightarrow B}(R))(\mathcal{D}) = \{\{A \mapsto 1, B \mapsto 1\}, \{A \mapsto 2, B \mapsto 2\}\}.$

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator w is the only one that can produce tables with more attributes.
- ▶ Operator ∪ cannot be removed.
- Operator σ cannot be removed:
 - 1. Let \mathcal{D} be the database containing the table $R = \{\{A \mapsto 1\}, \{A \mapsto 2\}\}$.
 - 2. Then, $\sigma_{A=B}(R \bowtie \delta_{A \rightarrow B}(R))(\mathcal{D}) = \{\{A \mapsto 1, B \mapsto 1\}, \{A \mapsto 2, B \mapsto 2\}\}.$
 - 3. Let *q* be a query constructed using only $\{\pi, \cup, -, \bowtie, \delta\}$.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator w is the only one that can produce tables with more attributes.
- ► Operator ∪ cannot be removed.
- Operator σ cannot be removed:
 - 1. Let \mathcal{D} be the database containing the table $R = \{\{A \mapsto 1\}, \{A \mapsto 2\}\}$.
 - 2. Then, $\sigma_{A=B}(R \bowtie \delta_{A \rightarrow B}(R))(\mathcal{D}) = \{\{A \mapsto 1, B \mapsto 1\}, \{A \mapsto 2, B \mapsto 2\}\}.$
 - 3. Let *q* be a query constructed using only $\{\pi, \cup, -, \bowtie, \delta\}$.
 - 4. Via induction, we can show that every intermediate table *T* produced in the evaluation of *q* over *D* satisfies the following property: if *T* has *n* attributes, then *T* contains 2ⁿ rows featuring every single combination of the symbols 1 and 2.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator w is the only one that can produce tables with more attributes.
- ► Operator ∪ cannot be removed.
- Operator σ cannot be removed:
 - 1. Let \mathcal{D} be the database containing the table $R = \{\{A \mapsto 1\}, \{A \mapsto 2\}\}$.
 - 2. Then, $\sigma_{A=B}(R \bowtie \delta_{A \rightarrow B}(R))(\mathcal{D}) = \{\{A \mapsto 1, B \mapsto 1\}, \{A \mapsto 2, B \mapsto 2\}\}.$
 - 3. Let *q* be a query constructed using only $\{\pi, \cup, -, \bowtie, \delta\}$.
 - 4. Via induction, we can show that every intermediate table T produced in the evaluation of q over D satisfies the following property: if T has n attributes, then T contains 2ⁿ rows featuring every single combination of the symbols 1 and 2.
 - 5. Then, $q(\mathcal{D}) \neq \{\{A \mapsto 1, B \mapsto 1\}, \{A \mapsto 2, B \mapsto 2\}\}.$
- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator w is the only one that can produce tables with more attributes.
- ► Operator ∪ cannot be removed.
- Operator σ cannot be removed:
 - 1. Let \mathcal{D} be the database containing the table $R = \{\{A \mapsto 1\}, \{A \mapsto 2\}\}$.
 - 2. Then, $\sigma_{A=B}(R \bowtie \delta_{A \rightarrow B}(R))(\mathcal{D}) = \{\{A \mapsto 1, B \mapsto 1\}, \{A \mapsto 2, B \mapsto 2\}\}.$
 - 3. Let *q* be a query constructed using only $\{\pi, \cup, -, \bowtie, \delta\}$.
 - 4. Via induction, we can show that every intermediate table *T* produced in the evaluation of *q* over *D* satisfies the following property: if *T* has *n* attributes, then *T* contains 2ⁿ rows featuring every single combination of the symbols 1 and 2.
 - 5. Then, $q(\mathcal{D}) \neq \{\{A \mapsto 1, B \mapsto 1\}, \{A \mapsto 2, B \mapsto 2\}\}.$
 - 6. The query language $\{\pi, \cup, -, \bowtie, \delta\}$ is less expressive than $\{\sigma, \pi, \cup, -, \bowtie, \delta\}$.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- ▶ Operator ⋈ is the only one that can produce tables with more attributes.
- ▶ Operator ∪ cannot be removed.
- Operator σ cannot be removed.
- Operator cannot be removed:
 - 1. Suppose for a contradiction that there is some query q over $\{\sigma, \pi, \cup, \bowtie, \delta\}$ that is equivalent to R S.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- ▶ Operator ⋈ is the only one that can produce tables with more attributes.
- ▶ Operator ∪ cannot be removed.
- Operator σ cannot be removed.
- Operator cannot be removed:
 - 1. Suppose for a contradiction that there is some query q over $\{\sigma, \pi, \cup, \bowtie, \delta\}$ that is equivalent to R S.
 - Let D be a database containing the tables R = {{A ↦ +}, {A ↦ *}} and S = {{A ↦ +}} where + and * are two fresh constants that do not occur in q.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator w is the only one that can produce tables with more attributes.
- ▶ Operator ∪ cannot be removed.
- Operator σ cannot be removed.
- Operator cannot be removed:
 - 1. Suppose for a contradiction that there is some query q over $\{\sigma, \pi, \cup, \bowtie, \delta\}$ that is equivalent to R S.
 - Let D be a database containing the tables R = {{A ↦ +}, {A ↦ *}} and S = {{A ↦ +}} where + and * are two fresh constants that do not occur in q.
 - 3. Then, $(R S)(\mathcal{D}) = \{\{A \mapsto *\}\}$

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator w is the only one that can produce tables with more attributes.
- ▶ Operator ∪ cannot be removed.
- Operator σ cannot be removed.
- Operator cannot be removed:
 - 1. Suppose for a contradiction that there is some query q over $\{\sigma, \pi, \cup, \bowtie, \delta\}$ that is equivalent to R S.
 - Let D be a database containing the tables R = {{A ↦ +}, {A ↦ *}} and S = {{A ↦ +}} where + and * are two fresh constants that do not occur in q.
 - 3. Then, $(R S)(\mathcal{D}) = \{\{A \mapsto *\}\}$
 - 4. Every intermediate tables produced in the evaluation of *q* over D contains some row in which every attribute is mapped to + (proof via induction).

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator w is the only one that can produce tables with more attributes.
- ▶ Operator ∪ cannot be removed.
- Operator σ cannot be removed.
- Operator cannot be removed:
 - 1. Suppose for a contradiction that there is some query q over $\{\sigma, \pi, \cup, \bowtie, \delta\}$ that is equivalent to R S.
 - Let D be a database containing the tables R = {{A ↦ +}, {A ↦ *}} and S = {{A ↦ +}} where + and * are two fresh constants that do not occur in q.
 - 3. Then, $(R S)(\mathcal{D}) = \{\{A \mapsto *\}\}$
 - 4. Every intermediate tables produced in the evaluation of *q* over D contains some row in which every attribute is mapped to + (proof via induction).
 - 5. The query language $\{\sigma, \pi, \cup, \bowtie, \delta\}$ is less expressive than $\{\sigma, \pi, \cup, -, \bowtie, \delta\}$.