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Abstract. In Description Logics (DLs), both tableau-based and
automata-based algorithms are frequently used to show decidability and
complexity results for basic inference problems such as satisfiability of
concepts. Whereas tableau-based algorithms usually yield worst-case op-
timal algorithms in the case of PSpace-complete logics, it is often very
hard to design optimal tableau-based algorithms for ExpTime-complete
DLs. In contrast, the automata-based approach is usually well-suited
to prove ExpTime upper-bounds, but its direct application will usually
also yield an ExpTime-algorithm for a PSpace-complete logic since the
(tree) automaton constructed for a given concept is usually exponen-
tially large. In the present paper, we formulate conditions under which
an on-the-fly construction of such an exponentially large automaton can
be used to obtain a PSpace-algorithm. We illustrate the usefulness of
this approach by proving a new PSpace upper-bound for satisfiability
of concepts w.r.t. acyclic terminologies in the DL SI, which extends the
basic DL ALC with transitive and inverse roles.

1 Introduction

Description Logics (DLs) [2] are a successful family of logic-based knowledge rep-
resentation formalisms, which can be used to represent the conceptual knowledge
of an application domain in a structured and formally well-understood way. DL
systems provide their users with inference services that deduce implicit knowl-
edge from the explicitly represented knowledge. For these inference services to
be feasible, the underlying inference problems must at least be decidable, and
preferably of low complexity. For this reason, investigating the computational
complexity of reasoning in DLs of differing expressive power has been one of the
most important research topics in the field for the last 20 years. Since Descrip-
tion Logics are closely related to Modal Logics (MLs) [17], results and techniques
can be transferred between the two areas.

Two of the most prominent methods for showing decidability and complexity
results for DLs and MLs are the tableau-based [9, 5] and the automata-based
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[19, 8] approach. Both approaches basically depend on the tree-model property of
the DL/ML under consideration: if a concept/formula is satisfiable, then it is also
satisfiable in a tree-shaped model. They differ in how they test for the existence
of a tree-shaped model. Tableau-based algorithms try to generate such a model
in a top-down non-deterministic manner, starting with the root of the tree.
Automata-based algorithms construct a tree automaton that accepts exactly the
tree-shaped models of the concept/formula, and then test the language accepted
by this automaton for emptiness. The usual emptiness test for tree automata
is deterministic and works in a bottom-up manner. This difference between the
approaches also leads to different behaviour regarding elegance, complexity, and
practicability.

If the logic has the finite tree model property, then termination of tableau-
based algorithms is usually easy to achieve. If, in addition, the tree models these
algorithms are trying to construct are of polynomial depth (as is the case for
the PSpace-complete problem of satisfiability in the basic DL ALC, which cor-
responds to the multi-modal variant of the ML K), then one can usually modify
tableau-based algorithms such that they need only polynomial space: basically,
they must only keep one path of the tree in memory [18]. However, the automa-
ton constructed in the automata-based approach is usually exponential, and thus
constructing it explicitly before applying the emptiness test requires exponential
time and space. In [10], we formulate conditions on the constructed automaton
that ensure—in the case of finite tree models of polynomially bounded depth—
that an on-the-fly construction of the automaton during a non-deterministic
top-down emptiness test yields a PSpace algorithm.

If the logic does not have the finite tree model property, then applying the
tableau-based approach in a straightforward manner leads to a non-terminating
procedure. To ensure termination of tableau-based algorithms in this case, one
must apply an appropriate cycle-checking technique, called “blocking” in the DL
literature [5]. This is, for example, the case for satisfiability in ALC w.r.t. so-
called general concept inclusions (GCIs) [1]. Since blocking usually occurs only
after an exponential number of steps and since tableau-based algorithms are
non-deterministic, the best complexity upper-bound that can be obtained this
way is NExpTime. This is not optimal since satisfiability in ALC w.r.t. GCIs
is “only” ExpTime-complete. The ExpTime upper-bound can easily be shown
with the automata-based approach: the constructed automaton is of exponential
size, and the (bottom-up) emptiness test for tree automata runs in time polyno-
mial in the size of the automaton. Although the automata-based approach yields
a worst-case optimal algorithm in this case, the obtained algorithm is not prac-
tical since it is also exponential in the best case: before applying the emptiness
test, the exponentially large automaton must be constructed. In contrast, op-
timised implementations of tableau-based algorithms usually behave quite well
in practice [11], in spite of the fact that they are not worst-case optimal. There
have been some attempts to overcome this mismatch between practical and
worst-case optimal algorithms for ExpTime-complete DLs. In [6] we show that
the so-called inverse tableau method [20] can be seen as an on-the-fly implemen-



tation of the emptiness test in the automata-based approach, which avoids the
a priori construction of the exponentially large automaton. Conversely, we show
in [3] that the existence of a sound and complete so-called ExpTime-admissible
tableau-based algorithm for a logic always implies the existence of an ExpTime

automata-based algorithm. This allows us to construct only the (practical, but
not worst-case optimal) tableau-based algorithm, and get the optimal ExpTime

upper-bound for free.
In the present paper, we extend the approach from [10] mentioned above such

that it can also deal with PSpace-complete logics that do not have the finite
tree model property. A well-known example of such a logic is ALC extended
with transitive roles [15]. To illustrate the power of our approach, we use the
more expressive DL SI as an example, which extends ALC with transitive and
inverse roles. In addition, we also allow for acyclic concept definitions. To the
best of our knowledge, the result that satisfiability in SI w.r.t. acyclic concept
definitions is in PSpace is new.

For lack of space we must omit most of the proofs of our results. Detailed
proofs can be found in [4].

2 The description logic SI

In Description Logics, concepts are built from concept names (unary predicates)
and role names (binary predicates) with the help of concept constructors. In
addition, one sometimes has additional restrictions on the interpretation of role
names. A particular DL is determined by the available constructors and restric-
tions. The DL SI has the same concept constructors as the basic DL ALC [18],
but it additionally allows to restrict roles to being transitive and to being in-
verses of each other.3 A typical example of a role that should be interpreted as
transitive is has-offspring. In addition, has-ancestors should be interpreted as the
inverse of has-offspring.

Definition 1 (Syntax and semantics of SI). Let NC be a set of concept
names and NR be a set of role names, where NT ⊆ NR is the set of transitive
role names. Then the set of SI roles is defined as NR ∪ {r− | r ∈ NR}, and the
set of SI concepts is the smallest set that satisfies the following conditions:

– all concept names are SI concepts;
– if C and D are SI concepts, then ¬C, C t D and C u D are SI concepts;
– if C is an SI concept and r an SI role, then ∃r.C and ∀r.C are SI concepts.

An interpretation I is a pair (∆I , ·I), where ∆I is a non-empty set (the domain
of I) and ·I is a function that assigns to every concept name A a set AI ⊆ ∆I ,
and to every role name r a binary relation rI ⊆ ∆I×∆I such that rI is transitive
for all r ∈ NT . This function is extended to SI roles and concepts by defining

– (r−)I := {(y, x) | (x, y) ∈ rI};

3 SI thus corresponds to the multi-modal logic S4m with converse modalities.



– (C u D)I := CI ∩ DI , (C t D)I := CI ∪ DI , (¬C)I := ∆I \ CI ;
– (∃r.C)I := {x ∈ ∆I | there is a y ∈ ∆I with (x, y) ∈ rI and y ∈ CI};
– (∀r.C)I := {x ∈ ∆I | for all y ∈ ∆I , (x, y) ∈ rI implies y ∈ CI}.

The following notation will turn out to be useful later on: for an SI role s,
the inverse of s (denoted by s) is s− if s is a role name, and r if s = r−. Since a
role is interpreted as transitive iff its inverse is interpreted as transitive, we will
use the predicate trans(r) on SI roles to express that r or r belongs to NT .

Knowledge about the domain of interest is stored in TBoxes. TBoxes can
contain concept definitions, which introduce abbreviations for complex concepts,
and general concept inclusions, which restrict the possible interpretations.

Definition 2 (Syntax and semantics of TBoxes). A general concept in-
clusion (GCI) has the form C v D, where C and D are SI concepts, and a
concept definition has the form A

.
= C, where A is a concept name and C is an

SI concept.
An acyclic TBox is a finite set of concept definitions such that every concept

name occurs at most once as a left-hand side, and there is no cyclic dependency
between the definitions, i.e. there is no sequence of concept definitions A1

.
=

C1, . . . , An
.
= Cn such that Ci contains Ai+1 for 1 ≤ i < n and Cn contains A1.

A general TBox is an acyclic TBox extended with a finite set of GCIs.
An interpretation I is called a model of the (general or acyclic) TBox T if

AI = CI (CI ⊆ DI) holds for for every concept definition A
.
= C ∈ T (GCI

C v D ∈ T ).

A concept name is called defined if it occurs on the left-hand side of a concept
definition, and primitive otherwise. The definition of acyclic TBoxes ensures
that the concept definitions simply introduce abbreviations (macro definitions),
which could in principle be completely expanded by repeatedly replacing defined
names by their definitions. Thus, acyclic TBoxes do not increase the expressive
power, but they increase succinctness: it is well-known that expansion can lead
to an exponential blow-up [14]. Obviously, the concept definition A

.
= C can be

expressed by the two GCIs A v C and C v A. Nevertheless, it makes sense to
distinguish between an acyclic set of concept definitions and GCIs within general
TBoxes since acyclic concept definitions can be treated in a more efficient way
when deciding the satisfiability problem.

Definition 3 (The satisfiability problem). The SI concept C is satisfiable
w.r.t. the (general or acyclic) TBox T if there is a model I of T with CI 6= ∅.
In this case, we call I also a model of C w.r.t. T .

For the DL ALC (i.e. SI without transitive and inverse roles), it is known
that the satisfiability problem is PSpace-complete w.r.t. acyclic TBoxes [13]
and ExpTime-complete w.r.t. general TBoxes [17]. We will show in this paper
that the same is true for SI.

Tree models of satisfiable SI concepts can be obtained by applying the well-
known technique of unravelling [7]. For example, the SI concept A is satisfiable



w.r.t. the general TBox {A v ∃r.A} in a one-element model whose single element
belongs to A and is related to itself via r. The corresponding unravelled model
consists of a sequence d0, d1, d2, . . . of elements, all belonging to A, where di

is related to di+1 via r. Intuitively, Hintikka trees are tree models where every
node is labelled with the concepts to which the element represented by the node
belongs. These concepts are taken from the set of subconcepts of the concept
to be tested for satisfiability and of the concepts occurring in the TBox. In our
example, the nodes di would be labelled by A and ∃r.A since each di belongs to
these concepts.

To simplify the formal definitions, we assume in the following that all con-
cepts are in negation normal form (NNF), i.e. negation appears only directly in
front of concept names. Any SI concept can be transformed into NNF in linear
time using de Morgan’s laws, duality of quantifiers, and elimination of double
negation. We denote the NNF of a concept C by nnf(C) and nnf(¬C) by vC.

Definition 4 (Subconcepts, Hintikka sets). The set of subconcepts of an
SI concept C (sub(C)) is the least set S that contains C and has the following
properties: if S contains ¬A for a concept name A, then A ∈ S; if S contains
D tE or D uE, then {D,E} ⊆ S; if S contains ∃r.D or ∀r.D, then D ∈ S. For
a TBox T , sub(C, T ) is defined as follows:

sub(C) ∪
⋃

A
.
=D∈T

({A,¬A} ∪ sub(D) ∪ sub(vD)) ∪
⋃

DvE∈T

sub(vD t E)

A set H ⊆ sub(C, T ) is called a Hintikka set for C if the following three con-
ditions are satisfied: if D u E ∈ H, then {D,E} ⊆ H; if D t E ∈ H, then
{D,E} ∩ H 6= ∅; and there is no concept name A with {A,¬A} ⊆ H. For a
TBox T , a Hintikka set H is called T -expanded if for every GCI D v E ∈ T , it
holds that vD t E ∈ H, and for every concept definition A

.
= D ∈ T , it holds

that, if A ∈ H then D ∈ H, and if ¬A ∈ H then vD ∈ H.4

Hintikka trees for C and T are infinite trees of a fixed arity k, which is
determined by the number of existential restrictions, i.e. concepts of the form
∃r.D, in sub(C, T ). For a positive integer k, we denote the set {1, . . . , k} by
K. The nodes of a k-ary tree can be denoted by the elements of K∗, with the
empty word ε denoting the root, and ui the ith successor of u. In the case of
labelled trees, we will refer to the label of the node u in the tree t by t(u).
In the definition of Hintikka trees, we need to know which successor in the tree
corresponds to which existential restriction. For this purpose, we fix a linear order
on the existential restrictions in sub(C, T ). Let ϕ : {∃r.D ∈ sub(C, T )} → K be
the corresponding ordering function, i.e. ϕ(∃r.D) determines the successor node
corresponding to ∃r.D. In general, such a successor node need not exist in a tree
model. To obtain a full k-ary tree, Hintikka trees contain appropriate dummy

4 This technique of handling concept definitions is called lazy unfolding. Note that, in
contrast to GCIs, concept definitions are only applied if A or ¬A is explicitly present
in H.



nodes. For technical reasons, which will become clear later on, the nodes of the
Hintikka trees defined below are not simply labelled by Hintikka sets, but by
quadruples (Γ,Π,Ω, %), where % is the role which connects the node with the
father node, Ω is the complete Hintikka set for the node, Γ ⊆ Ω consists of the
unique concept D contained in Ω because of an existential restriction ∃%.D in
the father node, and Π contains only those concepts that are contained in Ω
because of universal restrictions ∀%.E in the father node. We will use a special
new role name λ for nodes that are not connected to the father node by a role,
i.e. the root node and those (dummy) nodes which are labelled with an empty
set of concepts.

Definition 5 (Hintikka trees). The tuple ((Γ0, Π0, Ω0, %0), (Γ1, Π1, Ω1, %1),
. . ., (Γk, Πk, Ωk, %k)) is called C, T -compatible if, for all i, 0 ≤ i ≤ k, Γi∪Πi ⊆ Ωi,
Ωi is a T -expanded Hintikka set, and the following holds for every existential
concept ∃r.D ∈ sub(C, T ):

– if ∃r.D ∈ Ω0, then
1. Γϕ(∃r.D) consists of D;
2. Πϕ(∃r.D) consists of all concepts E for which there is a universal restric-

tion ∀r.E ∈ Ω0, and it additionally contains ∀r.E if trans(r);
3. for every concept ∀r.F ∈ Ωϕ(∃r.D), Ω0 contains F , and additionally ∀r.F

if trans(r);
4. %ϕ(∃r.D) = r;

– if ∃r.D /∈ Ω0, then Γϕ(∃r.D) = Πϕ(∃r.D) = Ωϕ(∃r.D) = ∅ and %ϕ(∃r.D) = λ.

A k-ary tree t is called a Hintikka tree for C and T if, for every node v ∈ K∗,
the tuple (t(v), t(v1), . . . , t(vk)) is C, T -compatible, and t(ε) has empty Γ - and
Π-components, an Ω-component containing C, and λ as its %-component.

Our definition of a Hintikka tree ensures that the existence of such a tree char-
acterises satisfiability of SI concepts. It basically combines the technique for
handling transitive and inverse roles introduced in [12]5 with the technique for
dealing with acyclic TBoxes employed in [10]. A full proof of the next theorem
can be found in [4].

Theorem 6. The SI concept C is satisfiable w.r.t. the general TBox T iff there
exists a Hintikka tree for C and T .

3 Tree automata

The existence of a Hintikka tree can be decided with the help of so-called looping
automata, i.e. automata on infinite trees without a special acceptance condition.
After introducing these automata, we will first show how they can be used to
decide satisfiability in SI w.r.t. general TBoxes in exponential time. Then we
will introduce a restricted class of looping automata and use it to show that
satisfiability in SI w.r.t. acyclic TBoxes can be decided in polynomial space.

5 there used in the context of tableau-based algorithms.



3.1 Looping automata

The following definition of looping tree automata does not include an alphabet
for labelling the nodes of the trees. In fact, when deciding the emptiness problem
for such automata, only the existence of a tree accepted by the automaton is
relevant, and not the labels of its nodes. For our reduction this implies that
the automaton we construct for a given input C, T has as its successful runs all
Hintikka trees for C, T rather than actually accepting all Hintikka trees for C, T .

Definition 7 (Automaton, run). A looping tree automaton over k-ary trees
is a tuple (Q,∆, I), where Q is a finite set of states, ∆ ⊆ Qk+1 is the transition
relation, and I ⊆ Q is the set of initial states. A run of this automaton on the
(unique) unlabelled k-ary tree t is a labelled k-ary tree r : K∗ → Q such that
(r(v), r(v1), . . . , r(vk)) ∈ ∆ for all v ∈ K∗. The run is successful if r(ε) ∈ I. The
emptiness problem for looping tree automata is the problem of deciding whether
a given looping tree automaton has a successful run or not.

In order to decide the emptiness problem in time polynomial in the size of the
automaton, one computes the set of all bad states, i.e. states that do not occur
in any run, in a bottom-up manner [19, 6]: states that do not occur as first
component in a transition are bad, and if all transitions that have the state q
as first component contain a state already known to be bad, then q is also bad.
The automaton has a successful run iff there is an initial state that is not bad.

For an SI concept C and a general TBox T , we can construct a looping tree
automaton whose successful runs are exactly the Hintikka trees for C and T .

Definition 8 (Automaton AC,T ). For an SI concept C and a TBox T , let
k be the number of existential restrictions in sub(C, T ). Then the looping au-
tomaton AC,T = (Q,∆, I) is defined as follows:

– Q consists of all 4-tuples (Γ,Π,Ω, %) such that Γ ∪ Π ⊆ Ω ⊆ sub(C, T ), Γ
is a singleton set, Ω is a T -expanded Hintikka set for C, and % is a role that
occurs in C or T or is equal to λ;

– ∆ consists of all C, T -compatible tuples ((Γ0, Π0, Ω0, %0), (Γ1, Π1, Ω1, %1),
. . . , (Γk, Πk, Ωk, %k));

– I := {(∅, ∅, Ω, λ) ∈ Q | C ∈ Ω}.

Lemma 9. AC,T has a successful run iff C is satisfiable w.r.t. T .

Since the cardinality of sub(C, T ) and the size of each of its elements is linear
in the size of C, T , the size of the automaton AC,T is exponential in the size
of C, T . Together with the fact that the emptiness problem for looping tree
automata can be decided in polynomial time, this yields:

Theorem 10. Satisfiability in SI w.r.t. general TBoxes is in ExpTime.

This complexity upper-bound is optimal since ExpTime-hardness follows
from the known hardness result for ALC with general TBoxes [17].



One could also try to solve the emptiness problem by constructing a successful
run in a top-down manner : label the root with an element q0 of I, then apply a
transition with first component q0 to label the successor nodes, etc. There are,
however, two problems with this approach. Firstly, it yields a non-deterministic
algorithm since I may contain more than one element, and in each step more
than one transition may be applicable. Secondly, one must employ an appropriate
cycle-checking technique (similar to blocking in tableau-based algorithms) to
obtain a terminating algorithm. Applied to the automaton AC,T , this approach
would at best yield a (non-optimal) NExpTime satisfiability test.

3.2 Blocking-invariant automata

In order to obtain a PSpace result for satisfiability w.r.t. acyclic TBoxes, we use
the top-down emptiness test sketched above. In fact, in this case non-determinism
is unproblematic since NPSpace is equal to PSpace by Savitch’s theorem [16].
The advantage of the top-down over the bottom-up emptiness test is that it is not
necessary to construct the whole automaton before applying the emptiness test.
Instead, the automaton can be constructed on-the-fly. However, we still need
to deal with the termination problem. For this purpose, we adapt the blocking
technique known from the tableau-based approach. In the following, when we
speak about a path in a k-ary tree, we mean a sequence of nodes v1, . . . , vm such
that v1 is the root ε and vi+1 is a direct successor of vi.

Definition 11 (¾-invariant, m-blocking). Let A = (Q,∆, I) be a looping
tree automaton and¾ be a binary relation over Q, called the blocking relation.
If q ¾ p, then we say that q is blocked by p. The automaton A is called ¾-
invariant if, for every q¾ p, and (q0, q1, . . ., qi−1, q, qi+1, . . ., qk) ∈ ∆, it holds
that (q0, q1, . . ., qi−1, p, qi+1, . . .,qk) ∈ ∆. A ¾-invariant automaton A is called
m-blocking if, for every successful run r of A and every path v1, . . . , vm of length
m in r, there are 1 ≤ i < j ≤ m such that r(vj)¾ r(vi).

Obviously, any looping automaton A = (Q,∆, I) is =-invariant (i.e. the blocking
relation is equality) and m-blocking for every m > #Q (where “#Q” denotes the
cardinality of Q). However, we are interested in automata and blocking relations
where blocking occurs earlier than after a linear number of transitions.

To test an m-blocking automaton for emptiness, it is sufficient to construct
partial runs of depth m. More formally, we define K≤n :=

⋃n
i=0 Ki. A partial run

of depth m is a mapping r : K≤m−1 → Q such that (r(v), r(v1), . . . , r(vk)) ∈ ∆
for all v ∈ K≤m−2. It is successful if r(ε) ∈ I.

Lemma 12. An m-blocking automaton A = (Q,∆, I) has a successful run iff
it has a successful partial run of depth m.

For k > 1, the size of a successful partial run of depth m is still exponential
in m. However, when checking for the existence of such a run, one can perform
a depth-first traversal of the run while constructing it. To do this, it is basically



1: if I 6= ∅ then

2: guess an initial state q ∈ I

3: else

4: return “empty”
5: if there is a transition from q then

6: guess such a transition (q, q1, . . . , qk) ∈ ∆

7: push(SQ, (q1, . . . , qk)), push(SN, 0)
8: else

9: return “empty”
10: while SN is not empty do

11: (q1, . . . , qk) := pop(SQ), n := pop(SN) + 1
12: if n ≤ k then

13: push(SQ, (q1, . . . , qk)), push(SN, n)
14: if length(SN) < m − 1 then

15: if there is a transition from qn then

16: guess a transition (qn, q′1, . . . , q
′

k) ∈ ∆

17: push(SQ, (q′

1, . . . , q
′

k)), push(SN, 0)
18: else

19: return “empty”
20: return “not empty”

Fig. 1. The non-deterministic top-down emptiness test for m-blocking automata.

enough to have at most one path of length up to m in memory.6 The algorithm
that realizes this idea is shown in Figure 1. It uses two stacks: the stack SQ

stores, for every node on the current path, the right-hand side of the transition
which led to this node, and the stack SN stores, for every node on the current
path, on which component of this right-hand side we are currently working. The
entries of SQ and SN are elements of Qk and K ∪ {0}, respectively, and the
number of entries is bounded by m for each stack.

Note that the algorithm does not require the automaton A to be explicitly
given. It can be constructed on-the-fly during the run of the algorithm.

Definition 13. Assume that we have a set of inputs I and a construction that
yields, for every i ∈ I, an mi-blocking automaton Ai = (Qi,∆i, Ii) working on
ki-ary trees. We say that this construction is a PSpace on-the-fly construction
if there is a polynomial P such that, for every input i of size n we have

– mi ≤ P (n) and ki ≤ P (n);
– every element of Qi is of a size bounded by P (n);
– one can non-deterministically guess in time bounded by P (n) an element of

Ii and, for a state q ∈ Qi, a transition from ∆i with first component q.

The algorithms guessing an initial state (a transition starting with q) are assumed
to yield the answer “no” if there is no initial state (no such transition).

The following theorem is an easy consequence of the correctness of the top-down
emptiness test described in Figure 1 and Savitch’s theorem [16].

6 This is similar to the so-called trace technique for tableau-based algorithms [18].



Theorem 14. If the automata Ai are obtained from the inputs i ∈ I by a
PSpace on-the-fly construction, then the emptiness problem for Ai can be de-
cided by a deterministic algorithm in space polynomial in the size of i.

3.3 Satisfiability in SI w.r.t. acyclic TBoxes

It is easy to see that the construction of the automaton AC,T from a given
SI concept C and a general TBox T satisfies all but one of the conditions
of a PSpace on-the-fly construction. The condition that is violated is the one
requiring that blocking must occur after a polynomial number of steps. In the
case of general TBoxes, this is not surprising since we know that the satisfiability
problem is ExpTime-hard. Unfortunately, this condition is also violated if T is
an acyclic TBox. The reason is that successor states may contain new concepts
that are not really required by the definition of C, T -compatible tuples, but
are also not prevented by this definition. In the case of acyclic TBoxes, we can
construct a subautomaton that avoids such unnecessary concepts. It has fewer
runs than AC,T , but it does have a successful run whenever AC,T has one. The
construction of this subautomaton follows the following general pattern.

Definition 15 (Faithful). Let A = (Q,∆, I) be a looping tree automaton on
k-ary trees. The family of functions fq : Q → QS for q ∈ QS is faithful w.r.t. A
if I ⊆ QS ⊆ Q, and the following two conditions are satisfied for every q ∈ QS:

1. if (q, q1, . . . , qk) ∈ ∆, then (q, fq(q1), . . . , fq(qk)) ∈ ∆;
2. if (q0, q1, . . . , qk) ∈ ∆, then (fq(q0), fq(q1), . . . , fq(qk)) ∈ ∆.7

The subautomaton AS = (QS,∆S, I) of A induced by this family has the transi-
tion relation ∆S := {(q, fq(q1), . . . , fq(qk)) | (q, q1, . . . , qk) ∈ ∆ and q ∈ QS}.

Lemma 16. Let A be a looping tree automaton and AS its subautomaton in-
duced by the faithful family of functions fq : Q → QS for q ∈ QS. Then A has a
successful run iff AS has a successful run.

Intuitively, the range of fq contains the states that are allowed after state q
has been reached. Before we can define an appropriate family of functions for
AC,T , we must introduce some notation. For an SI concept C and an acyclic
TBox T , the role depth rdT (C) of C w.r.t. T is the maximal nesting of (universal
and existential) role restrictions in the concept obtained by expanding C w.r.t.
T . Obviously, rdT (C) is polynomially bounded by the size of C, T . For a set of SI
concepts S, its role depth rdT (S) w.r.t. T is the maximal role depth w.r.t. T of
the elements of S. We define sub6n(C, T ) := {D | D ∈ sub(C, T ) and rdT (D) ≤
n}, and S/r := {D ∈ S | there is an E such that D = ∀r.E}.

The main idea underlying the next definition is the following. If T is acyclic
then, since we use lazy unfolding of concept definitions, the definition of C, T -
compatibility requires, for a transition (q, q1, . . . , qk) of AC,T , only the existence

7 Note that this condition does neither imply nor follow from condition 1, since q0

need not be equal to q, and it is not required that fq(q) equals q.



of concepts in qi = (Γi, Πi, Ωi, %i) that are of a smaller depth than the maximal
depth n of concepts in q if %i is not transitive. If %i is transitive, then Πi may
also contain universal restrictions of depth n. We can therefore remove from the
states qi all concepts with a higher depth and still maintain C, T -compatibility.

Definition 17 (Functions fq). For two states q = (Γ,Π,Ω, %) and q′ =
(Γ ′, Π ′, Ω′, %′) of AC,T with rdT (Ω) = n, we define the function fq(q

′) as follows:

– if rdT (Γ ′) ≥ rdT (Ω), then fq(q
′) := (∅, ∅, ∅, λ);

– otherwise, fq(q
′) := (Γ ′, Π ′′, Ω′′, %′), where

• P = sub6n(C, T )/%′, if trans(%′); otherwise P = ∅;
• Π ′′ = Π ′ ∩ (sub6n−1(C, T ) ∪ P );
• Ω′′ = Ω′ ∩ (sub6n−1(C, T ) ∪ Π ′′).

If T is acyclic, then the set Ω′′ defined above is still a T -expanded Hintikka set.

Lemma 18. The family of mappings fq (for states q of AC,T ) introduced in
Definition 17 is faithful w.r.t. AC,T .

Consequently, AC,T has a successful run iff the induced subautomaton AS
C,T has

a successful run.

Lemma 19. The construction of AS
C,T from an input consisting of an SI con-

cept C and an acyclic TBox T is a PSpace on-the-fly construction.

The main thing to show in the proof is that blocking always occurs after a
polynomial number of steps. To show this, we use the following blocking relation:
(Γ1, Π1, Ω1, %1)¾SI (Γ2, Π2, Ω2, %2) if Γ1 = Γ2, Π1 = Π2, Ω1/%1 = Ω2/%2, and
%1 = %2. If m := #sub(C, T ), then AS

C,T is m4-blocking w.r.t. ¾SI . The main
reasons for this to hold are the following: (i) if a successor node is reached w.r.t.
a non-transitive role, then the role depth of the Ω-component decreases, and
the same is true if within two steps two different transitive roles are used; (ii) if
a successor node is reached w.r.t. a transitive role, then there is an inclusion
relationship between the Π-components of the successor node and its father; the
same is true (though in the other direction) for the Ω/%-components.

Since we know that C is satisfiable w.r.t. T iff AC,T has a successful run iff
AS

C,T has a successful run, Theorem 14 yields the desired PSpace upper-bound.
PSpace-hardness for this problem follows directly from the known PSpace-
hardness of satisfiability w.r.t. the empty TBox in ALC [18].

Theorem 20. Satisfiability in SI w.r.t. acyclic TBoxes is PSpace-complete.

4 Conclusion

We have developed a framework for automata that adapts the notion of blocking
from tableau algorithms and makes it possible to show tight complexity bounds
for PSpace logics using the automata approach. In order to achieve this result,
we replace the deterministic bottom-up emptiness test with a nondeterministic



top-down test that can be interleaved with the construction of the automaton
and aborted after a “blocked” state is reached. If the number of transitions before
this happens is polynomial in the size of the input, emptiness of the automaton
can be tested using space polynomial in the size of the input rather than time
exponential in the size of the input. This illustrates the close relationship between
tableau and automata algorithms.

As an application of this method, we have shown how blocking automata can
be used to decide satisfiability of SI concepts w.r.t. acyclic TBoxes in PSpace.
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