
DATABASE THEORY

Lecture 1: Introduction / Relational data model

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 4th April 2022

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2022)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

Course information

• Lectures: Monday at DS 2 and Tuesday DS 2

• Exercise classes: Tuesday at DS 5
{ taught by Maximilian Marx

• Oral examination (details based on applicable examination regulations)

• Course homepage (dates, slides, exercise sheets):

https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2022)

• Matrix channel (group chat for consultation among students and teachers):

https://matrix.to/#/#dbt2022:tu-dresden.de

TUD students can directly join this channel using the university matrix service with
their logins

Markus Krötzsch, 4th April 2022 Database Theory slide 2 of 27

https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2022)
https://matrix.to/#/#dbt2022:tu-dresden.de

Aims of the course

Obtain an understanding of key topics in database theory with a special focus on query
formalisms:

• Relational data model

• Basic and advanced query languages

• Expressive power of query languages

• Complexity of query answering + some algorithmic approaches

• Modelling with constraints

Connect databases with other advanced topics in logic/KR/formal methods

Markus Krötzsch, 4th April 2022 Database Theory slide 3 of 27

Literature, prerequisites, related courses

• Serge Abiteboul, Richard Hull, Victor Vianu:
Foundations of Databases. Addison-Wesley. 1994.

– Available at http://webdam.inria.fr/Alice/
– Slight deviations in the lecture
– Further literature will be given for advanced topics

• Prerequisites: basics of first-order logic, Turing machines, worst-case complexity
• Related courses at TUD:

– Advanced Logic
– Advanced Problem Solving and Search
– Knowledge Graphs
– Introduction to Logic Programming
– Introduction to Constraint Programming
– Datenbanken (Grundlagen)
– Theoretische Informatik & Logik

Markus Krötzsch, 4th April 2022 Database Theory slide 4 of 27

http://webdam.inria.fr/Alice/

What is a database?

A Database Management System (DBMS) is a software to manage collections of data.

{ highly important class of software systems
{ major role in industry and in research
{ extremely wide variety of concepts and implementations

General three-level architecture of DBMS:

• External Level: Application-specific user views

• Logical Level: Abstract data model, independent of implementation, conceptual view

• Physical Level: Data structures and algorithms, platform-specific

In this lecture: focus on logical view for relational data model

Markus Krötzsch, 4th April 2022 Database Theory slide 5 of 27

What is a database?

A Database Management System (DBMS) is a software to manage collections of data.

{ highly important class of software systems
{ major role in industry and in research
{ extremely wide variety of concepts and implementations

General three-level architecture of DBMS:

• External Level: Application-specific user views

• Logical Level: Abstract data model, independent of implementation, conceptual view

• Physical Level: Data structures and algorithms, platform-specific

In this lecture: focus on logical view for relational data model

Markus Krötzsch, 4th April 2022 Database Theory slide 5 of 27

What is a database?

A Database Management System (DBMS) is a software to manage collections of data.

{ highly important class of software systems
{ major role in industry and in research
{ extremely wide variety of concepts and implementations

General three-level architecture of DBMS:

• External Level: Application-specific user views

• Logical Level: Abstract data model, independent of implementation, conceptual view

• Physical Level: Data structures and algorithms, platform-specific

In this lecture: focus on logical view for relational data model

Markus Krötzsch, 4th April 2022 Database Theory slide 5 of 27

What is a database? (2)
Basic functionality of DBMS:
• Schema definition: specify how data should be logically organised
• Update: insert/delete/update stored data
• Query: retrieve stored data or information derived from it
• Administration: user rights management, configuration, recovery, data export, etc.

Many related concerns:
• Persistence: data retained when DBMS is shut down
• Optimisation: ensure maximal efficiency
• Scalability: cope with increasing loads by adding resources
• Concurrency: support many update and query operations in parallel
• Distribution: combine data from several locations
• Interfaces: APIs, query languages, update languages, etc.
• . . .

In this lecture: schema, query languages, some optimisation
Markus Krötzsch, 4th April 2022 Database Theory slide 6 of 27

Overview: Topics covered (excerpt)

1. Introduction | Relational data model

2. First-order queries

3. Complexity of query answering

4. Complexity of FO query answering

5. Conjunctive queries

6. Tree-like conjunctive queries

7. Query optimisation

8. Conjunctive Query Optimisation / First-Order Expressiveness

9. First-Order Expressiveness / Introduction to Datalog

10. Expressive Power and Complexity of Datalog

11. Optimisation and Evaluation of Datalog

12. Database dependencies

13. Query answering under constraints

Markus Krötzsch, 4th April 2022 Database Theory slide 7 of 27

The Relational Data Model

Markus Krötzsch, 4th April 2022 Database Theory slide 8 of 27

Database = collection of tables

Lines:

Line Type

85 bus

3 tram

F1 ferry

.

Stops:

SID Stop Accessible

17 Hauptbahnhof true

42 Helmholtzstr. true

57 Stadtgutstr. true

123 Gustav-Freytag-Str. false

.

Connect:

From To Line

57 42 85

17 789 3

.

Every table has a schema:

• Lines[Line:string, Type:string]

• Stops[SID:int, Stop:string,
Accessible:bool]

• Connect[From:int, To:int, Line:string]
Markus Krötzsch, 4th April 2022 Database Theory slide 9 of 27

Towards a formal definition of “table”

A table row has one value for each column

{ row = function from the attributes of the table schema to specific values

Example: The row

SID Stop Accessible

.

42 Helmholtzstr. true

.

can be represented by the function:

f : {SID 7→ 42, Stop 7→ "Helmholtzstr.", Accessible 7→ true}

Markus Krötzsch, 4th April 2022 Database Theory slide 10 of 27

Towards a formal definition of “table”

A table row has one value for each column
{ row = function from the attributes of the table schema to specific values

Example: The row

SID Stop Accessible

.

42 Helmholtzstr. true

.

can be represented by the function:

f : {SID 7→ 42, Stop 7→ "Helmholtzstr.", Accessible 7→ true}

Markus Krötzsch, 4th April 2022 Database Theory slide 10 of 27

Database = set of tables

Let dom (“domain”) be the (infinite) set of conceivable values in tables.

For simplicity, we drop the datatypes of database columns and assume that each
column uses the same datatype that supports all values in dom.

Definition 1.1:

• A relation schema R[U] consists of a relation name R and a finite set U of
attributes (|U| is the arity of R[U])

• A table for R[U] is a finite set of functions from U to dom

• A database instance I is a finite set of tables

Note: we disregard the order and multiplicity of rows.

Tables are also called relation instances. The table with relation schema R[U] in the
database instance I is written RI.

Markus Krötzsch, 4th April 2022 Database Theory slide 11 of 27

Database = set of relations

Observation: Attribute names don’t matter. Instead of the function

{SID 7→ 42, Stop 7→ "Helmholtzstr.", Accessible 7→ true}

we could also use a tuple:

〈42, "Helmholtzstr.", true〉

Necessary assumption: Attributes have a fixed order.

Definition 1.2:

• A relation schema R[U] is defined as before

• A table for R[U] is a finite subset of dom|U|

• A database instance I is a finite set of tables

Recall that a subset of dom|U| is just a |U|-ary relation. Sets of relations are also called
relational structures.

Markus Krötzsch, 4th April 2022 Database Theory slide 12 of 27

Database = set of relations

Observation: Attribute names don’t matter. Instead of the function

{SID 7→ 42, Stop 7→ "Helmholtzstr.", Accessible 7→ true}

we could also use a tuple:

〈42, "Helmholtzstr.", true〉

Necessary assumption: Attributes have a fixed order.

Definition 1.2:

• A relation schema R[U] is defined as before

• A table for R[U] is a finite subset of dom|U|

• A database instance I is a finite set of tables

Recall that a subset of dom|U| is just a |U|-ary relation. Sets of relations are also called
relational structures.
Markus Krötzsch, 4th April 2022 Database Theory slide 12 of 27

Database = interpretation of first-order logic

Recall:

• First-order logic is based on predicate symbols with a fixed arity (we won’t need
function symbols here)

• An interpretation I of first-order logic is a pair 〈∆I, ·I〉:
– ∆I is a set (the domain of interpretation)
– ·I maps n-ary predicates p to n-ary relations pI ⊆ (∆I)n

This is (almost) a database instance!

Definition 1.3:

• domain of interpretation ∆I = database domain dom

• predicate symbol = relation name

• interpretation of predicate symbol (if finite!) = table

• finite first-order logic interpretation = database instance

Markus Krötzsch, 4th April 2022 Database Theory slide 13 of 27

Database = interpretation of first-order logic

Recall:

• First-order logic is based on predicate symbols with a fixed arity (we won’t need
function symbols here)

• An interpretation I of first-order logic is a pair 〈∆I, ·I〉:
– ∆I is a set (the domain of interpretation)
– ·I maps n-ary predicates p to n-ary relations pI ⊆ (∆I)n

This is (almost) a database instance!

Definition 1.3:

• domain of interpretation ∆I = database domain dom

• predicate symbol = relation name

• interpretation of predicate symbol (if finite!) = table

• finite first-order logic interpretation = database instance

Markus Krötzsch, 4th April 2022 Database Theory slide 13 of 27

Database = set of facts

Another convenient way to write databases:

Lines(85, "bus")
Lines(F1, "ferry")
Stops(42, "Helmholtzstr.", true)
. . .

Definition 1.4: A fact is an expression p(t1, . . . , tn) where

• p is an n-ary predicate symbol

• t1, . . . , tn are constant symbols

A database instance is a finite set of facts.

When interpreting these facts logically, their least model is again the database instance
(viewed as a first-order logic interpretation).

Markus Krötzsch, 4th April 2022 Database Theory slide 14 of 27

Database = set of facts

Another convenient way to write databases:

Lines(85, "bus")
Lines(F1, "ferry")
Stops(42, "Helmholtzstr.", true)
. . .

Definition 1.4: A fact is an expression p(t1, . . . , tn) where

• p is an n-ary predicate symbol

• t1, . . . , tn are constant symbols

A database instance is a finite set of facts.

When interpreting these facts logically, their least model is again the database instance
(viewed as a first-order logic interpretation).

Markus Krötzsch, 4th April 2022 Database Theory slide 14 of 27

Visualising relations

Binary relations (sets of pairs) can be viewed as directed graphs.
Example:

Source Target

1 2

1 3

2 5

3 2

3 4

4 3

5 3

Many binary tables in one graph? Use table name to label edges!

Markus Krötzsch, 4th April 2022 Database Theory slide 15 of 27

Database = hypergraph

What to do with tables of arity , 2?
{ generalise graphs to hypergraphs

Definition 1.5: A hypergraph is a
triple 〈V, E, ρ〉, where

• V is a set of vertices

• E is a set of edge names

• ρ maps each edge name e ∈ E
to an n-ary relation ρ(e) ⊆ Vn

In other words: finite hypergraphs are databases.

Markus Krötzsch, 4th April 2022 Database Theory slide 16 of 27

Database = hypergraph

What to do with tables of arity , 2?
{ generalise graphs to hypergraphs

Definition 1.5: A hypergraph is a
triple 〈V, E, ρ〉, where

• V is a set of vertices

• E is a set of edge names

• ρ maps each edge name e ∈ E
to an n-ary relation ρ(e) ⊆ Vn

In other words: finite hypergraphs are databases.

Markus Krötzsch, 4th April 2022 Database Theory slide 16 of 27

Summary: the relational model

Relational databases are everywhere:

• sets of tables with named attributes (“named perspective”)

• sets of relations (“unnamed perspective”)

• first-order logic interpretations

• sets of logical facts (ground atoms)

• hypergraphs (and graphs as a special case)

. . . all restricted to finite sets

Important elements of the theory of relational databases are very widely applicable, also
to many datamodels that are not the classical relational one (e.g., graph databases,
RDF databases, XML databases).

Markus Krötzsch, 4th April 2022 Database Theory slide 17 of 27

The Relational Algebra

Markus Krötzsch, 4th April 2022 Database Theory slide 18 of 27

Relational Algebra Queries

Query language based on a set of operations on databases.

Each operation refers to one or more tables and produces another table
(we often simplify notation and write a table name rather than a table instance)

Main operations of the named perspective:

• Selection σ

• Projection π

• Join ./

• Renaming δ

• Difference −

• Union ∪

• Intersection ∩

Markus Krötzsch, 4th April 2022 Database Theory slide 19 of 27

Selection

“Find all bus lines”
σType="bus"Lines

“Find all connections that begin and end in the same stop”

σFrom=ToConnect

Definition 1.6: The selection operator has the form σn=m

• n is an attribute name

• m is an attribute name or a constant value

Consider a table RI for R[U].
• For m constant value: σn=m(RI) = {f ∈ RI | f (n) = m}

• For m attribute name: σn=m(RI) = {f ∈ RI | f (n) = f (m)}

This is only defined if U contains the required attribute names.

Markus Krötzsch, 4th April 2022 Database Theory slide 20 of 27

Selection

“Find all bus lines”
σType="bus"Lines

“Find all connections that begin and end in the same stop”

σFrom=ToConnect

Definition 1.6: The selection operator has the form σn=m

• n is an attribute name

• m is an attribute name or a constant value

Consider a table RI for R[U].
• For m constant value: σn=m(RI) = {f ∈ RI | f (n) = m}

• For m attribute name: σn=m(RI) = {f ∈ RI | f (n) = f (m)}

This is only defined if U contains the required attribute names.

Markus Krötzsch, 4th April 2022 Database Theory slide 20 of 27

Projection

“Find all possible types of lines”
πTypeLines

“Find all pairs of adjacent stops on line 85”

πFrom,To(σLine="85"Connect)

Definition 1.7: The projection operator has the form πa1,...,an where each ai is an
attribute name.

Consider a table RI for R[U].

πa1,...,an (RI) =
{
f{a1,...,an} | f ∈ RI

}
where f{a1,...,an} is the restriction of f to the domain {a1, . . . , an}, i.e., the function
{a1 7→ f (a1), . . . , an 7→ f (an)}.
Of course this projection is only defined if ai ∈ U for each ai.

Markus Krötzsch, 4th April 2022 Database Theory slide 21 of 27

Projection

“Find all possible types of lines”
πTypeLines

“Find all pairs of adjacent stops on line 85”

πFrom,To(σLine="85"Connect)

Definition 1.7: The projection operator has the form πa1,...,an where each ai is an
attribute name.

Consider a table RI for R[U].

πa1,...,an (RI) =
{
f{a1,...,an} | f ∈ RI

}
where f{a1,...,an} is the restriction of f to the domain {a1, . . . , an}, i.e., the function
{a1 7→ f (a1), . . . , an 7→ f (an)}.
Of course this projection is only defined if ai ∈ U for each ai.

Markus Krötzsch, 4th April 2022 Database Theory slide 21 of 27

Natural join

“Find all connections and their type of line”

Connect:

From To Line

57 42 85

17 789 3

.

Lines:

Line Type

85 bus

3 tram

F1 ferry

.

Connect ./ Lines:

From To Line Type

57 42 85 bus

17 789 3 tram

.

Definition 1.8: The natural join operator has the form ./.

Consider tables RI for R[U] and SI for S[V].

RI ./ SI = {f : U ∪ V → dom | fU ∈ RI and fV ∈ SI}

where fU (fV) is the restriction of f to elements in U (V) as before

Markus Krötzsch, 4th April 2022 Database Theory slide 22 of 27

Natural join

“Find all connections and their type of line”

Connect:

From To Line

57 42 85

17 789 3

.

Lines:

Line Type

85 bus

3 tram

F1 ferry

.

Connect ./ Lines:

From To Line Type

57 42 85 bus

17 789 3 tram

.

Definition 1.8: The natural join operator has the form ./.

Consider tables RI for R[U] and SI for S[V].

RI ./ SI = {f : U ∪ V → dom | fU ∈ RI and fV ∈ SI}

where fU (fV) is the restriction of f to elements in U (V) as before

Markus Krötzsch, 4th April 2022 Database Theory slide 22 of 27

Renaming
“Find all lines that depart from an accessible stop”

Stops:

SID Stop Accessible

57 Stadtgutstr. true

123 Gustav-Freytag-Str. false

.

Connect:

From To Line

57 42 85

17 789 3

.

We need to join Stops.SID with Connect.From{ use renaming

πLine
(
σAccessible="true"(Stops ./ δFrom,To,Line→SID,To,Line(Connect))

)

Definition 1.9: The renaming operator has the form δa1,...,an→b1,...,bn with all ai mu-
tually distinct attribute names, and likewise for all bi.
Consider a table RI for R[{a1, . . . , an}].

δa1,...,an→b1,...,bn (RI) = {f ◦ g | f ∈ RI and g : {bi 7→ ai}1≤i≤n}

where f ◦ g is function composition: (f ◦ g)(x) = f (g(x))

Markus Krötzsch, 4th April 2022 Database Theory slide 23 of 27

Renaming
“Find all lines that depart from an accessible stop”

Stops:

SID Stop Accessible

57 Stadtgutstr. true

123 Gustav-Freytag-Str. false

.

Connect:

From To Line

57 42 85

17 789 3

.

We need to join Stops.SID with Connect.From{ use renaming

πLine
(
σAccessible="true"(Stops ./ δFrom,To,Line→SID,To,Line(Connect))

)
Definition 1.9: The renaming operator has the form δa1,...,an→b1,...,bn with all ai mu-
tually distinct attribute names, and likewise for all bi.
Consider a table RI for R[{a1, . . . , an}].

δa1,...,an→b1,...,bn (RI) = {f ◦ g | f ∈ RI and g : {bi 7→ ai}1≤i≤n}

where f ◦ g is function composition: (f ◦ g)(x) = f (g(x))

Markus Krötzsch, 4th April 2022 Database Theory slide 23 of 27

Difference, Union, Intersection

Binary operators on tables of the same relational schema, defined like the usual set
operations.

“Find all stops where line 3 departs, but line 8 does not depart.”

“Find all stops where either line 3 or line 8 departs.”

“Find all stops where both line 3 and line 8 depart.”

Markus Krötzsch, 4th April 2022 Database Theory slide 24 of 27

Table constants in queries

It is sometimes convenient to define constant tables in queries.

“Find all stops near Helmholtzstr. (SID 42), including Helmholtzstr.”

δTo→StopId(πTo(σFrom="42"Connect)) ∪
{
{StopId 7→ 42}

}
One can generalise this to constant tables with more than one column or more than one
table (no additional expressive power, see exercise).

Markus Krötzsch, 4th April 2022 Database Theory slide 25 of 27

Reachability
Generalising the previous example:

“Stops that are Helmholtzstr.”
R0 = {{From 7→ 42}

}

“Stops that are next to Helmholtzstr.”

R1 = δTo→From(πTo(Connect ./ R0))

“Stops at distance 2 from Helmholtzstr.”

R2 = δTo→From(πTo(Connect ./ R1))

Stops reachable from Helmholtzstr. with a short-distance ticket:

R0 ∪ R1 ∪ R2 ∪ R3 ∪ R4

What about all stops reachable from Helmholtzstr.?
{ see upcoming lectures . . .

Markus Krötzsch, 4th April 2022 Database Theory slide 26 of 27

Reachability
Generalising the previous example:

“Stops that are Helmholtzstr.”
R0 = {{From 7→ 42}

}
“Stops that are next to Helmholtzstr.”

R1 = δTo→From(πTo(Connect ./ R0))

“Stops at distance 2 from Helmholtzstr.”

R2 = δTo→From(πTo(Connect ./ R1))

Stops reachable from Helmholtzstr. with a short-distance ticket:

R0 ∪ R1 ∪ R2 ∪ R3 ∪ R4

What about all stops reachable from Helmholtzstr.?
{ see upcoming lectures . . .

Markus Krötzsch, 4th April 2022 Database Theory slide 26 of 27

Reachability
Generalising the previous example:

“Stops that are Helmholtzstr.”
R0 = {{From 7→ 42}

}
“Stops that are next to Helmholtzstr.”

R1 = δTo→From(πTo(Connect ./ R0))

“Stops at distance 2 from Helmholtzstr.”

R2 = δTo→From(πTo(Connect ./ R1))

Stops reachable from Helmholtzstr. with a short-distance ticket:

R0 ∪ R1 ∪ R2 ∪ R3 ∪ R4

What about all stops reachable from Helmholtzstr.?
{ see upcoming lectures . . .

Markus Krötzsch, 4th April 2022 Database Theory slide 26 of 27

Reachability
Generalising the previous example:

“Stops that are Helmholtzstr.”
R0 = {{From 7→ 42}

}
“Stops that are next to Helmholtzstr.”

R1 = δTo→From(πTo(Connect ./ R0))

“Stops at distance 2 from Helmholtzstr.”

R2 = δTo→From(πTo(Connect ./ R1))

Stops reachable from Helmholtzstr. with a short-distance ticket:

R0 ∪ R1 ∪ R2 ∪ R3 ∪ R4

What about all stops reachable from Helmholtzstr.?

{ see upcoming lectures . . .

Markus Krötzsch, 4th April 2022 Database Theory slide 26 of 27

Reachability
Generalising the previous example:

“Stops that are Helmholtzstr.”
R0 = {{From 7→ 42}

}
“Stops that are next to Helmholtzstr.”

R1 = δTo→From(πTo(Connect ./ R0))

“Stops at distance 2 from Helmholtzstr.”

R2 = δTo→From(πTo(Connect ./ R1))

Stops reachable from Helmholtzstr. with a short-distance ticket:

R0 ∪ R1 ∪ R2 ∪ R3 ∪ R4

What about all stops reachable from Helmholtzstr.?
{ see upcoming lectures . . .
Markus Krötzsch, 4th April 2022 Database Theory slide 26 of 27

Summary and Outlook

The relational model is very versatile

Relational algebra allows us to define queries with operators

Many operators exist, not all are really needed (see exercise)

Open questions:

• What does this have to do with logic? (next lecture)

• How hard is it to actually answer such queries? (complexity)

• How can we study the expressiveness of query languages?

Markus Krötzsch, 4th April 2022 Database Theory slide 27 of 27

	Introduction / Relational data model

