COMPLEXITY THEORY

Lecture 1: Introduction and Motivation

Markus Krötzsch
Knowledge-Based Systems

TU Dresden, 10th Oct 2017

Course Tutors

Markus Krötzsch
Lectures

David Carral
Exercises

Organisation

```
Lectures
Tuesday, DS 3 (11:10-12:40), APB E005
Wednesday, DS 6 (16:40-18:10), APB E005
Exercise Sessions (starting 17 October)
Tuesday, DS 5 (14:50-16:20), APB E005
Important: No Lectures or Exercises in Week 3 (24 and 25 Oct)
Web Page
https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2017/18)
Lecture Notes
Slides of current and past lectures will be online.
```


Goals and Prerequisites

Goals

- Introduce basic notions of computational complexity theory
- Introduce commonly known complexity classes (P, NP, PSpace, ...) and discuss relationships between them
- Develop tools to classify problems into their corresponding complexity classes
- Introduce (some) advanced topics of complexity theory

(Non-)Prerequisites

- No particular prior courses needed
- Prior acquaintance with Turing Machines and basic topics in formal languages and complexity is helpful
- General mathematical and theoretical computer science skills necessary

Reading List

- Michael Sipser: Introduction to the Theory of Computation, International Edition; 3rd Edition; Cengage Learning 2013
- Sanjeev Arora and Boaz Barak: Computational Complexity: A Modern Approach; Cambridge University Press 2009
- Michael R. Garey and David S. Johnson: Computers and Intractability; Bell Telephone Laboratories, Inc. 1979
- Erich Grädel: Complexity Theory; Lecture Notes, Winter Term 2009/10
- John E. Hopcroft and Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and Computation; Addison Wesley Publishing Company 1979
- Neil Immerman: Descriptive Complexity; Springer Verlag 1999
- Christos H. Papadimitriou: Computational Complexity; 1995 Addison-Wesley Publishing Company, Inc

Computational Problems are Everywhere

Example 1.1

- What are the factors of 54,623 ?
- What is the shortest route by car from Berlin to Hamburg?
- My program now runs for two weeks. Will it ever stop?
- Is this C++ program syntactically correct?

Computational Problems are Everywhere

Example 1.1

- What are the factors of 54,623 ?
- What is the shortest route by car from Berlin to Hamburg?
- My program now runs for two weeks. Will it ever stop?
- Is this C++ program syntactically correct?

Clear

Computational Problems are ubiquitous in our everyday life!
And, depending on what we want to do, those problems either need to be easily solvable or hardly solvable.

Computational Problems are Everywhere

Example 1.1

- What are the factors of 54,623 ?
- What is the shortest route by car from Berlin to Hamburg?
- My program now runs for two weeks. Will it ever stop?
- Is this C++ program syntactically correct?

Clear

Computational Problems are ubiquitous in our everyday life!
And, depending on what we want to do, those problems either need to be easily solvable or hardly solvable.

Approach to problems:
[T]he way is to avoid what is strong, and strike at what is weak.
(Sun Tzu: The Art of War, Chapter 6: Weak Points and Strong)

Examples

Example 1.2 (Shortest Path Problem)

Given a weighted graph and two vertices s, t, find the shortest path between s and t.

Examples

Example 1.2 (Shortest Path Problem)

Given a weighted graph and two vertices s, t, find the shortest path between s and t.

Easily solvable using, e.g., Dijkstra's Algorithm.

Examples

Example 1.2 (Shortest Path Problem)

Given a weighted graph and two vertices s, t, find the shortest path between s and t.

Easily solvable using, e.g., Dijkstra's Algorithm.

Example 1.3 (Longest Path Problem)

Given a weighted graph and two vertices s, t, find the longest path between s and t.

Examples

Example 1.2 (Shortest Path Problem)

Given a weighted graph and two vertices s, t, find the shortest path between s and t.

Easily solvable using, e.g., Dijkstra's Algorithm.

Example 1.3 (Longest Path Problem)

Given a weighted graph and two vertices s, t, find the longest path between s and t.

No efficient algorithm known, and believed to not exist. (i.e., this problem is NP-hard)

Examples

Example 1.2 (Shortest Path Problem)

Given a weighted graph and two vertices s, t, find the shortest path between s and t.

Easily solvable using, e.g., Dijkstra's Algorithm.

Example 1.3 (Longest Path Problem)

Given a weighted graph and two vertices s, t, find the longest path between s and t.

No efficient algorithm known, and believed to not exist. (i.e., this problem is NP-hard)

Observation

Difficulty of a problem is hard to assess

Measuring the Difficulty of Problems

Question

How can we measure the complexity of a problem?

Measuring the Difficulty of Problems

Question

How can we measure the complexity of a problem?

Approach

Estimate the resource requirements of the "best" algorithm that solves this problem.

Typical Resources:

- Running Time
- Memory Used

Measuring the Difficulty of Problems

Question

How can we measure the complexity of a problem?

Approach

Estimate the resource requirements of the "best" algorithm that solves this problem.

Typical Resources:

- Running Time
- Memory Used

Note

To assess the complexity of a problem, we need to consider all possible algorithms that solve this problem.

Problems

What actually is ... a Problem?

(Decision) Problems are word problems of particular languages.

Problems

What actually is ... a Problem?

(Decision) Problems are word problems of particular languages.

Example 1.4

"Problem: Is a given graph connected?" will be modeled as the word problem of the language

$$
\text { GCONN }:=\{\langle G\rangle \mid G \text { is a connected graph }\} .
$$

Then for a graph G we have
G is connected $\Longleftrightarrow\langle G\rangle \in$ GCONN.

Note

The notation $\langle G\rangle$ denotes a suitable encoding of the graph G over some fixed alphabet (e.g., $\{0,1\}$).

Algorithms

What actually is ... an Algorithm?

Algorithms

What actually is ... an Algorithm?
Different approaches to formalize the notion of an "algorithm"

- Turing Machines
- Lambda Calculus
- μ-Recursion
- ...

Algorithms

What actually is ... an Algorithm?
Different approaches to formalize the notion of an "algorithm"

- Turing Machines
- Lambda Calculus
- μ-Recursion
- ...

Algorithms

What actually is ... an Algorithm?
Different approaches to formalize the notion of an "algorithm"

- Turing Machines
- Lambda Calculus
- μ-Recursion
- ...

Algorithms

What actually is ... an Algorithm?
Different approaches to formalize the notion of an "algorithm"

- Turing Machines
- Lambda Calculus
- μ-Recursion
- ...

Algorithms

What actually is ... an Algorithm?
Different approaches to formalize the notion of an "algorithm"

- Turing Machines
- Lambda Calculus
- μ-Recursion
- ...

Avoid What is Strong

Avoid What is Strong

Suppose we are given a language \mathcal{L} and a word w.
Question
Does there need to exist any algorithm that decides whether $w \in \mathcal{L}$?

Avoid What is Strong

Suppose we are given a language \mathcal{L} and a word w.
Question
Does there need to exist any algorithm that decides whether $w \in \mathcal{L}$?

Answer

No. Some problems are undecidable.

Avoid What is Strong

Suppose we are given a language \mathcal{L} and a word w.
Question
Does there need to exist any algorithm that decides whether $w \in \mathcal{L}$?

Answer

No. Some problems are undecidable.

Example 1.5

Avoid What is Strong

Suppose we are given a language \mathcal{L} and a word w.
Question
Does there need to exist any algorithm that decides whether $w \in \mathcal{L}$?

Answer

No. Some problems are undecidable.

Example 1.5

- The Halting Problem of Turing machines

Avoid What is Strong

Suppose we are given a language \mathcal{L} and a word w.
Question
Does there need to exist any algorithm that decides whether $w \in \mathcal{L}$?

Answer

No. Some problems are undecidable.

Example 1.5

- The Halting Problem of Turing machines
- The Entscheidungsproblem (Is a mathematical statement true?)

Avoid What is Strong

Suppose we are given a language \mathcal{L} and a word w.
Question
Does there need to exist any algorithm that decides whether $w \in \mathcal{L}$?

Answer

No. Some problems are undecidable.

Example 1.5

- The Halting Problem of Turing machines
- The Entscheidungsproblem (Is a mathematical statement true?)
- Finding the lowest air fare between two cities (\rightarrow Reference)

Avoid What is Strong

Suppose we are given a language \mathcal{L} and a word w.
Question
Does there need to exist any algorithm that decides whether $w \in \mathcal{L}$?

Answer

No. Some problems are undecidable.

Example 1.5

- The Halting Problem of Turing machines
- The Entscheidungsproblem (Is a mathematical statement true?)
- Finding the lowest air fare between two cities (\rightarrow Reference)
- Deciding syntactic validity of C++ programs (\rightarrow Reference)

Avoid What is Strong

Suppose we are given a language \mathcal{L} and a word w.
Question
Does there need to exist any algorithm that decides whether $w \in \mathcal{L}$?

Answer

No. Some problems are undecidable.

Example 1.5

- The Halting Problem of Turing machines
- The Entscheidungsproblem (Is a mathematical statement true?)
- Finding the lowest air fare between two cities (\rightarrow Reference)
- Deciding syntactic validity of C++ programs (\rightarrow Reference)

Avoid: Suppose from now on all problems we consider to be decidable.

Time and Space

Drawback

Measuring running time and memory requirements depends highly on the machine, and not so much on the problem.

Time and Space

Drawback

Measuring running time and memory requirements depends highly on the machine, and not so much on the problem.

Resort

Measure time and space only asymptotically using Big-O-Notation:

Time and Space

Drawback

Measuring running time and memory requirements depends highly on the machine, and not so much on the problem.

Resort

Measure time and space only asymptotically using Big-O-Notation:

$$
f(n)=O(g(n)) \Longleftrightarrow f(n) \text { "asymptotically bounded by" } g(n)
$$

Time and Space

Drawback

Measuring running time and memory requirements depends highly on the machine, and not so much on the problem.

Resort

Measure time and space only asymptotically using Big-O-Notation:

$$
f(n)=O(g(n)) \Longleftrightarrow f(n) \text { "asymptotically bounded by" } g(n)
$$

More formally:

$$
f(n)=O(g(n)) \Longleftrightarrow \exists c>0 \exists n_{0} \in \mathbb{N} \forall n>n_{0}: f(n) \leq c \cdot g(n) .
$$

Big-O-Notation

Example 1.6

$$
100 n^{3}+1729 n=O\left(n^{4}\right):
$$

Big-O-Notation

Example 1.6

$$
100 n^{3}+1729 n=O\left(n^{4}\right):
$$

Big-O-Notation

Example 1.6

$$
100 n^{3}+1729 n=O\left(n^{4}\right):
$$

Big-O-Notation

Example 1.6

$$
100 n^{3}+1729 n=O\left(n^{4}\right):
$$

Complexity of Problems

Approach
The time (space) complexity of a problem is the asymptotic running time of a fastest (least memory consumptive) algorithm that solves the problem.

Complexity of Problems

Approach
The time (space) complexity of a problem is the asymptotic running time of a fastest (least memory consumptive) algorithm that solves the problem.

Problem
Still too difficult ...

Complexity of Problems

Approach
The time (space) complexity of a problem is the asymptotic running time of a fastest (least memory consumptive) algorithm that solves the problem.

Problem
Still too difficult ...

Example 1.7 (Traveling Salesman Problem)

Given a weighted graph, find the shortest simple path visiting every node.

Complexity of Problems

Approach

The time (space) complexity of a problem is the asymptotic running time of a fastest (least memory consumptive) algorithm that solves the problem.

Problem

Still too difficult . . .

Example 1.7 (Traveling Salesman Problem)

Given a weighted graph, find the shortest simple path visiting every node.

- Best known algorithm runs in time $O\left(n^{2} 2^{n}\right)$ (Bellman-Held-Karp algorithm)

Complexity of Problems

Approach

The time (space) complexity of a problem is the asymptotic running time of a fastest (least memory consumptive) algorithm that solves the problem.

Problem

Still too difficult ...

Example 1.7 (Traveling Salesman Problem)

Given a weighted graph, find the shortest simple path visiting every node.

- Best known algorithm runs in time $O\left(n^{2} 2^{n}\right)$ (Bellman-Held-Karp algorithm)
- Best known lower bound is $O(n \log n)$

Complexity of Problems

Approach

The time (space) complexity of a problem is the asymptotic running time of a fastest (least memory consumptive) algorithm that solves the problem.

Problem

Still too difficult . . .

Example 1.7 (Traveling Salesman Problem)

Given a weighted graph, find the shortest simple path visiting every node.

- Best known algorithm runs in time $O\left(n^{2} 2^{n}\right)$ (Bellman-Held-Karp algorithm)
- Best known lower bound is $O(n \log n)$

Exact complexity of TSP unknown.

Even more abstraction

Approach

Divide decision problems into the "quality" of their fastest algorithms:

Even more abstraction

Approach

Divide decision problems into the "quality" of their fastest algorithms:

- P is the class of problems solvable in polynomial time

Even more abstraction

Approach

Divide decision problems into the "quality" of their fastest algorithms:

- P is the class of problems solvable in polynomial time
- PSpace is the class of problems solvable in polynomial space

Even more abstraction

Approach

Divide decision problems into the "quality" of their fastest algorithms:

- P is the class of problems solvable in polynomial time
- PSpace is the class of problems solvable in polynomial space
- ExpTime is the class of problems solvable in exponential time

Even more abstraction

Approach

Divide decision problems into the "quality" of their fastest algorithms:

- P is the class of problems solvable in polynomial time
- PSpace is the class of problems solvable in polynomial space
- ExpTime is the class of problems solvable in exponential time
- L is the class of problems solvable in logarithmic space (apart from the input)

Even more abstraction

Approach

Divide decision problems into the "quality" of their fastest algorithms:

- P is the class of problems solvable in polynomial time
- PSpace is the class of problems solvable in polynomial space
- ExpTime is the class of problems solvable in exponential time
- L is the class of problems solvable in logarithmic space (apart from the input)
- NP is the class of problems verifiable in polynomial time

Even more abstraction

Approach

Divide decision problems into the "quality" of their fastest algorithms:

- P is the class of problems solvable in polynomial time
- PSpace is the class of problems solvable in polynomial space
- ExpTime is the class of problems solvable in exponential time
- L is the class of problems solvable in logarithmic space (apart from the input)
- NP is the class of problems verifiable in polynomial time
- NL is the class of problems verifiable in logarithmic space

Even more abstraction

Approach

Divide decision problems into the "quality" of their fastest algorithms:

- P is the class of problems solvable in polynomial time
- PSpace is the class of problems solvable in polynomial space
- ExpTime is the class of problems solvable in exponential time
- L is the class of problems solvable in logarithmic space (apart from the input)
- NP is the class of problems verifiable in polynomial time
- NL is the class of problems verifiable in logarithmic space

And many more!

Even more abstraction

Approach

Divide decision problems into the "quality" of their fastest algorithms:

- P is the class of problems solvable in polynomial time
- PSpace is the class of problems solvable in polynomial space
- ExpTime is the class of problems solvable in exponential time
- L is the class of problems solvable in logarithmic space (apart from the input)
- NP is the class of problems verifiable in polynomial time
- NL is the class of problems verifiable in logarithmic space

And many more!
$\oplus P, \# P, A C, A C^{0}, A C C O, A M, A P, A P S p a c e, B P L, B P P, B Q P, ~ c o N P, ~ E, ~ E x p, ~ F P, ~ I P$, MA, MIP, NC, NExpTime, P/poly, PH, PP, PSpace, RL, RP, $\Sigma_{i}^{\mathrm{p}}, \operatorname{TISP}(T(n), S(n))$, ZPP, ...

Strike at What is Weak

Approach (cf. Cobham-Edmonds Thesis)

The problems in P are "tractable" or "efficiently solvable" (and those outside not)

Strike at What is Weak

Approach (cf. Cobham-Edmonds Thesis)

The problems in P are "tractable" or "efficiently solvable" (and those outside not)

Example 1.8

The following problems are in P :

- Shortest Path Problem
- Satisfiability of Horn-Formulas
- Linear Programming
- Primality

Strike at What is Weak

Approach (cf. Cobham-Edmonds Thesis)

The problems in P are "tractable" or "efficiently solvable" (and those outside not)

Example 1.8

The following problems are in P :

- Shortest Path Problem
- Satisfiability of Horn-Formulas
- Linear Programming
- Primality

Note

The Cobham-Edmonds-Thesis is only a rule of thumb: there are (practically) tractable problems outside of P, and (practically) intractable problems in P.

Friend or Foe?

Caveat

It is not known how big P is.
In particular, it is unknown whether $\mathrm{P} \neq \mathrm{NP}$ or not.

Friend or Foe?

Caveat

It is not known how big P is.
In particular, it is unknown whether $P \neq N P$ or not.
Approach
Try to find out which problems in a class are at least as hard as others.

Friend or Foe?

Caveat

It is not known how big P is.
In particular, it is unknown whether $\mathrm{P} \neq \mathrm{NP}$ or not.

Approach

Try to find out which problems in a class are at least as hard as others. Complete problems are then the hardest problems of a class.

Friend or Foe?

Caveat

It is not known how big P is.
In particular, it is unknown whether $P \neq N P$ or not.

Approach

Try to find out which problems in a class are at least as hard as others.
Complete problems are then the hardest problems of a class.

Example 1.9

Satisfiability of propositional formulas is NP-complete: if we can efficiently decide whether a propositional formula is satisfiable, we can solve any problem in NP efficiently.

Friend or Foe?

Caveat

It is not known how big P is.
In particular, it is unknown whether $P \neq N P$ or not.

Approach

Try to find out which problems in a class are at least as hard as others.
Complete problems are then the hardest problems of a class.

Example 1.9

Satisfiability of propositional formulas is NP-complete: if we can efficiently decide whether a propositional formula is satisfiable, we can solve any problem in NP efficiently.

But: we still do not know whether we can or cannot solve satisfiability efficiently. We only know it will be difficult to find out ...

Live Survey: Student Haves and Wants

Learning Goals

- Get an overview over the foundations of Complexity Theory
- Gain insights into advanced techniques and results in Complexity Theory
- Understand what it means to "compute" something, and what the strengths and limits of different computing approaches are
- Get a feeling of how hard certain problems are, and where this hardness comes from
- Appreciate how very little we actually know about the computational complexity of many problems

Lecture Outline (1)

- Turing Machines (Revision)

Definition of Turing Machines; Variants; Computational Equivalence; Decidability and Recognizability; Enumeration

- Undecidability

Examples of Undecidable Problems; Mapping Reductions; Rice's Theorem; Recursion Theorem

- Time Complexity

Measuring Time Complexity; Many-One Reductions; Cook-Levin Theorem;
Time Complexity Classes (P, NP, ExpTime); NP-completeness; pseudo-NP-complete problems

- Space Complexity

Space Complexity Classes (PSpace, L, NL); Savitch's Theorem; PSpace-completeness; NL-completeness; NL = coNL

Lecture Outline (2)

- Diagonalisation

Hierarchy Theorems (det. Time, non-det. Time, Space); Gap Theorem; Ladner's Theorem; Relativisation; Baker-Gill-Solovay Theorem

- Alternation

Alternating Turing Machines; APTime = PSpace; APSpace = ExpTime;
Polynomial Hierarchy; $\operatorname{NTIME}(n) \nsubseteq \operatorname{TISP}\left(n^{1.2}, n^{0.2}\right)$

- Circuit Complexity

Boolean Circuits; Alternative Proof of Cook-Levin Theorem; Parallel Computation (NC); P-completeness; P/poly; (Karp-Lipton Theorem, Meyer's Theorem)

- Probabilistic Computation

Randomised Complexity Classes (RP, PP, BPP, ZPP); Sipser-Gács-Lautemann Theorem

Avoid what is Strong, and Strike at what is Weak

Sometimes the best way to solve a problem is to avoid it . . .

Avoid what is Strong, and Strike at what is Weak

Sometimes the best way to solve a problem is to avoid it . . .

