
On Upper and Lower Bounds on the Length
of Alternating Towers

Štěpán Holub 1,?, Galina Jirásková 2,??, and Tomáš Masopust 3,? ? ?

1 Dept. of Algebra, Charles University, Sokolovská 83, 175 86 Praha, Czech Republic
holub@karlin.mff.cuni.cz

2 Mathematical Institute, Slovak Academy of Sciences
Grešákova 6, 040 01 Košice, Slovak Republic

jiraskov@saske.sk
3 Institute of Mathematics, ASCR, Žižkova 22, 616 62 Brno, Czech Republic, and

TU Dresden, Germany
masopust@math.cas.cz

Abstract. A tower between two regular languages is a sequence of
strings such that all strings on odd positions belong to one of the lan-
guages, all strings on even positions belong to the other language, and
each string can be embedded into the next string in the sequence. It
is known that if there are towers of any length, then there also exists
an infinite tower. We investigate upper and lower bounds on the length
of finite towers between two regular languages with respect to the size
of the automata representing the languages in the case there is no infi-
nite tower. This problem is relevant to the separation problem of regular
languages by piecewise testable languages.

1 Introduction

The separation problem appears in many disciplines of mathematics and com-
puter science, such as algebra and logic [8,9], or databases and query answer-
ing [4]. Given two languages K and L and a family of languages F , the problem
asks whether there exists a language S in F such that S includes one of the
languages K and L, and it is disjoint with the other. Recently, it has been in-
dependently shown in [4] and [8] that the separation problem for two regular
languages given as NFAs and the family of piecewise testable languages is decid-
able in polynomial time with respect to both the number of states and the size
of the alphabet. It should be noted that an algorithm polynomial with respect
to the number of states and exponential with respect to the size of the alpha-
bet has been known in the literature [1,3]. In [4], the separation problem has
been shown to be equivalent to the non-existence of an infinite tower between
the input languages. Namely, the languages have been shown separable by a

? Research supported by the Czech Science Foundation grant number 13-01832S.
?? Research supported by grant APVV-0035-10.

? ? ? Research supported by RVO 67985840 and by the DFG in grant KR 4381/1-1.

ar
X

iv
:1

40
4.

44
95

v2
 [

cs
.F

L
]

 9
 J

ul
 2

01
4

2 Š. Holub, G. Jirásková, T. Masopust

piecewise testable language if and only if there does not exist an infinite tower.
In [8], another technique has been used to prove the polynomial time bound for
the decision procedure, and a doubly exponential upper bound on the index of
the separating piecewise testable language has been given. This information can
then be further used to construct a separating piecewise testable language.

However, there exists a simple (in the meaning of description, not complex-
ity) method to decide the separation problem and to compute the separating
piecewise testable language, whose running time depends on the length of the
longest finite tower. The method is recalled in Section 3. This observation has
motivated the study of this paper to investigate the upper bound on the length
of finite towers in the presence of no infinite tower. So far, to the best of our
knowledge, the only published result in this direction is a paper by Stern [12],

who has given an exponential upper bound 2|Σ|
2N on the length of the tower be-

tween a piecewise testable language and its complement, where N is the number
of states of the minimal deterministic automaton.

Our contribution in this paper are upper and lower bounds on the length of
maximal finite towers between two regular languages in the case no infinite towers
exist. These bounds depend on the size of the input (nondeterministic) automata.
The upper bound is exponential with respect to the size of the input alphabet.
More precisely, it is polynomial with respect to the number of states with the
cardinality of the input alphabet in the exponent (Theorem 1). Concerning the
lower bounds, we show that the bound is tight for binary languages up to a
linear factor (Theorem 2), that a cubic tower with respect to the number of
states exists (Theorem 3), and that an exponential lower bound with respect to
the size of the input alphabet can be achieved (Theorem 4).

2 Preliminaries

We assume that the reader is familiar with automata and formal language theory.
The cardinality of a set A is denoted by |A| and the power set of A by 2A. An
alphabet Σ is a finite nonempty set. The free monoid generated by Σ is denoted
by Σ∗. A string over Σ is any element of Σ∗; the empty string is denoted by ε.
For a string w ∈ Σ∗, alph(w) ⊆ Σ denotes the set of all letters occurring in w.

We define (alternating subsequence) towers as a generalization of Stern’s
alternating towers [12]. For strings v = a1a2 · · · an and w ∈ Σ∗a1Σ∗ · · ·Σ∗anΣ∗,
we say that v is a subsequence of w or that v can be embedded into w, denoted
by v 4 w. For languages K and L and the subsequence relation 4, we say that
a sequence (wi)

k
i=1 of strings is an (alternating subsequence) tower between K

and L if w1 ∈ K ∪ L and, for all i = 1, . . . , k − 1,

– wi 4 wi+1,
– wi ∈ K implies wi+1 ∈ L, and
– wi ∈ L implies wi+1 ∈ K.

We say that k is the length of the tower. Similarly, we define an infinite
sequence of strings to be an infinite (alternating subsequence) tower between K

On Upper and Lower Bounds on the Length of Alternating Towers 3

and L. If the languages are clear from the context, we omit them. Notice that the
languages are not required to be disjoint, however, if there exists a w ∈ K ∩ L,
then there exists an infinite tower, namely w,w,w,

For two languages K and L, we say that the language K can be embedded
into the language L, denoted K 4 L, if for each string w in K, there exists a
string w′ in L such that w 4 w′. We say that a string w can be embedded into
the language L, denoted w 4 L, if {w} 4 L.

A nondeterministic finite automaton (NFA) is a 5-tupleM = (Q,Σ, δ,Q0, F),
where Q is the finite nonempty set of states, Σ is the input alphabet, Q0 ⊆ Q is
the set of initial states, F ⊆ Q is the set of accepting states, and δ : Q×Σ → 2Q

is the transition function that can be extended to the domain 2Q × Σ∗. The
language accepted by M is the set L(M) = {w ∈ Σ∗ | δ(Q0, w)∩F 6= ∅}. A path
π is a sequence of states and input symbols q0, a0, q1, a1, . . . , qn−1, an−1, qn, for
some n ≥ 0, such that qi+1 ∈ δ(qi, ai), for all i = 0, 1, . . . , n − 1. The path π is

accepting if q0 ∈ Q0 and qn ∈ F . We also use the notation q0
a1a2···an−1−−−−−−−→ qn to

denote a path from q0 to qn under a string a1a2 · · · an−1.
The NFA M has a cycle over an alphabet Γ ⊆ Σ if there exists a state q and

a string w over Σ such that alph(w) = Γ and q
w−→ q.

We assume that there are no useless states in the automata under consider-
ation, that is, every state appears on an accepting path.

3 Computing a Piecewise Testable Separator 4

We now motivate our study by recalling a “simple” method [5] solving the separa-
tion problem of regular languages by piecewise testable languages and computing
a piecewise testable separator, if it exists. Our motivation to study the length
of towers comes from the fact that the running time of this method depends on
the maximal length of finite towers.

Let K and L be two languages. A language S separates K from L if S contains
K and does not intersect L. Languages K and L are separable by a family F if
there exists a language S in F that separates K from L or L from K.

A regular language is piecewise testable if it is a finite boolean combination
of languages of the form Σ∗a1Σ

∗a2Σ
∗ · · ·Σ∗akΣ∗, where k ≥ 0 and ai ∈ Σ,

see [10,11] for more details.
Given two disjoint regular languages L0 and R0 represented as NFAs. We

construct a decreasing sequence of languages . . . 4 R2 4 L2 4 R1 4 L1 4 R0

as follows, show that a separator exists if and only if from some point on all the
languages are empty, and use them to construct a piecewise testable separator.

For k ≥ 1, let Lk = {w ∈ Lk−1 | w 4 Rk−1} be the set of all strings of
Lk−1 that can be embedded into Rk−1, and let Rk = {w ∈ Rk−1 | w 4 Lk},
see Fig. 1. Let K be a language accepted by an NFA A = (Q,Σ, δ,Q0, F),
and let ε(K) denote the language accepted by the NFA Aε = (Q,Σ, δε, Q0, F),

4 The method recalled here is not the original work of this paper and the credit for this
should go to the authors of [5], namely to Wim Martens and Wojciech Czerwiński.

4 Š. Holub, G. Jirásková, T. Masopust

L0 R0

w1 ∈ L1

R1

w2 ∈ L2

R2
...

Fig. 1. The sequence of languages; an arrow stands for the embedding relation 4.

where δε(q, a) = δ(q, a) and δε(q, ε) =
⋃
a∈Σ δ(q, a). Then Lk = Lk−1 ∩ ε(Rk−1)

(analogously for Rk), hence the languages are regular.

We now show that there exists a constant B ≥ 1 such that LB = LB+1 = . . .,
which also implies RB = RB+1 = Assume that no such constant exists. Then
there are infinitely many strings w` ∈ L` \ L`+1, for all ` ≥ 1, as depicted in
Fig. 1. By Higman’s lemma [6], there exist i < j such that wi 4 wj , hence
wi 4 Rj−1, which is a contradiction because wi 64 Ri and Rj−1 ⊆ Ri.

By construction, languages LB and RB are mutually embeddable into each
other, LB 4 RB 4 LB , which describes a way how to construct an infinite tower.
Thus, if there is no infinite tower, languages LB and RB must be empty.

The constant B depends on the length of the longest finite tower. Let (wi)
r
i=1

be a maximal finite tower between L0 and R0 and assume that wr belongs to
L0. In the first step, the method eliminates all strings that cannot be embedded
into R0, hence wr does not belong to L1, but (wi)

r−1
i=1 is a tower between L1 and

R0. Thus, in each step of the algorithm, all maximal strings of all finite towers
(belonging to the language under consideration) are eliminated, while the rests
of towers still form towers between the resulting languages. Therefore, as long
as there is a maximal finite tower, the algorithm can make another step.

Assume that there is no infinite tower (LB = RB = ∅). We use the languages
computed above to construct a piecewise testable separator. For a string w =
a1a2 · · · a`, we define Lw = Σ∗a1Σ

∗a2Σ
∗ · · ·Σ∗a`Σ∗, which is piecewise testable

by definition. Let up(L) =
⋃
w∈L Lw. The language up(L) is regular and its NFA

is constructed from an NFA for L by adding self-loops under all letters to all
states, see [7] for more details. By Higman’s Lemma [6], up(L) can be written as
a finite union of languages of the form Lw, for some w ∈ L, hence it is piecewise
testable. For k = B,B − 1, . . . , 1, we define the piecewise testable languages
Sk = up(R0 \ Rk) \ up(L0 \ Lk) and show that S =

⋃B
k=1 Sk is a piecewise

testable separator of L0 and R0.

To this end, we show that L0 ∩ Sk = ∅ and R0 ⊆ S. To prove the former,
let w ∈ L0. If w ∈ L0 \ Lk, then w ∈ up(L0 \ Lk), hence w /∈ Sk. If w ∈ Lk
and w ∈ up(R0 \ Rk), then there is v ∈ R0 \ Rk such that v 4 w. However,
Rk = {u ∈ R0 | u 4 Lk}, hence v ∈ Rk, a contradiction. Thus L0 ∩ Sk = ∅. To

prove the later, we show that Rk−1\Rk ⊆ Sk. Then R0 =
⋃B
k=1(Rk−1\Rk) ⊆ S.

To show this, we have Rk−1 \ Rk ⊆ R0 \ Rk ⊆ up(R0 \ Rk). If w ∈ Rk−1
and w ∈ up(L0 \ Lk), then there is v ∈ L0 \ Lk such that v 4 w. However,

On Upper and Lower Bounds on the Length of Alternating Towers 5

Lk = {u ∈ L0 | u 4 Rk−1}, hence v ∈ Lk, a contradiction. Thus, we have shown
that L0 ∩ S = ∅ and R0 ⊆ S. Moreover, S is piecewise testable because it is a
finite boolean combination of piecewise testable languages.

4 The Length of Towers

Recall that it was shown in [4] that there is either an infinite tower or a constant
bound on the length of any tower. We now establish an upper bound on the
length of finite towers.

Theorem 1. Let A0 and A1 be NFAs with at most n states over an alphabet Σ
of cardinality m, and assume that there is no infinite tower between the languages
L(A0) and L(A1). Let (wi)

r
i=1 be a tower between L(A0) and L(A1) such that

wi ∈ L(Ai mod 2). Then r ≤ nm+1−1
n−1 .

Proof. First, we define some new concepts. We say that w = v1v2 · · · vk is a cyclic
factorization of w with respect to a pair of states (q, q′) in an automaton A,
if there is a sequence of states q0, . . . , qk−1, qk such that q0 = q, qk = q′, and

qi−1
vi−→ qi, for each i = 1, 2, . . . k, and either vi is a letter, or the path qi−1

vi−→ qi
contains a cycle over alph(vi). We call vi a letter factor if it is a letter and
qi−1 6= qi, and a cycle factor otherwise. The factorization is trivial if k = 1.
Note that this factorization is closely related to the one given in [1], see also [2,
Theorem 8.1.11].

We first show that if q′ ∈ δ(q, w) in some automaton A with n states, then w
has a cyclic factorization v1v2 · · · vk with respect to (q, q′) that contains at most
n cycle factors and at most n − 1 letter factors. Moreover, if w does not admit
the trivial factorization with respect to (q, q′), then alph(vi) is a strict subset of
alph(w) for each cycle factor vi, i = 1, 2, . . . , k.

Consider a path π of the automaton A from q to q′ labeled by a string w.
Let q0 = q. Define the factorization w = v1v2 · · · vk inductively by the following
greedy strategy. Assume we have defined the factors v1, v2 . . . , vi−1 such that

w = v1 · · · vi−1w′ and q0
v1v2···vi−1−−−−−−−→ qi−1. The factor vi is defined as the label of

the longest possible initial segment πi of the path qi−1
w′−→ q′ such that either πi

contains a cycle over alph(vi) or πi = qi−1, a, qi, where vi = a, so vi is a letter.
Such a factorization is well defined, and it is a cyclic factorization of w.

Let pi, i = 1, . . . , k, be a state such that the path qi−1
vi−→ qi contains a

cycle pi → pi over alph(vi) if vi is a cycle factor, and pi = qi−1 if vi is a letter
factor. If pi = pj with i < j such that vi and vj are cycle factors, then we have

a contradiction with the maximality of vi since qi−1
vivi+1···vj−−−−−−−→ qj contains a

cycle pi → pi from pi to pi over the alphabet alph(vivi+1 · · · vj). Therefore the
factorization contains at most n cycle factors.

Note that vi is a letter factor only if the state pi, which is equal to qi−1
in such a case, has no reappearance in the path qi−1

vi···vk−−−−→ q′. This implies
that there are at most n − 1 letter factors. Finally, if alph(vi) = alph(w), then
vi = v1 = w follows from the maximality of v1.

6 Š. Holub, G. Jirásková, T. Masopust

We now define inductively cyclic factorizations of wi, such that the factoriza-
tion of wi−1 is a refinement of the factorization of wi. Let wr = vr,1vr,2 · · · vr,kr
be a cyclic factorization of wr defined, as described above, by some accepting
path in the automaton Ar mod 2. Factorizations wi−1 = vi−1,1vi−1,2 · · · vi−1,ki−1

are defined as follows. Let

wi−1 = v′i,1v
′
i,2 · · · v′i,ki ,

where v′i,j 4 vi,j , for each j = 1, 2, . . . , ki; note that such a factorization exists
since wi−1 4 wi. Then vi−1,1vi−1,2 · · · vi−1,ki−1

is defined as a concatenation of
cyclic factorizations of v′i,j , j = 1, 2, . . . , ki, corresponding to an accepting path
of wi−1 in Ai−1 mod 2. The cyclic factorization of the empty string is defined as
empty. Note also that a letter factor of wi either disappears in wi−1, or it is
“factored” into a letter factor.

In order to measure the height of a tower, we introduce a weight function f
of factors in a factorization v1v2 · · · vk. First, let

g(x) = n
nx − 1

n− 1
.

Note that g satisfies g(x + 1) = ng(x) + (n − 1) + 1. Now, let f(vi) = 1 if vi is
a letter factor, and let f(vi) = g(| alph(vi)|) if vi is a cycle factor. Note that, by
definition, f(ε) = 0. The weight of the factorization v1v2 · · · vk is then defined
by

W (v1v2 · · · vk) =

k∑
i=1

f(vi) .

Let
Wi = W (vi,1vi,2 · · · vi,ki).

We claim that Wi−1 < Wi for each i = 2, . . . , r. Let v1v2 · · · vk be the fragment
of the cyclic factorization of wi−1 that emerged as the cyclic factorization of
v′i,j 4 vi,j . If the factorization is not trivial, then, by the above analysis,

W (v1v2 · · · vk) ≤ n− 1 + n · g(| alph(vi,j)| − 1) < g(| alph(vi,j)|) = f(vi,j).

Similarly, we have f(v′i,j) < f(vi,j) if | alph(v′i,j)| < | alph(vi,j)|. Altogether, we
have Wi−1 < Wi as claimed, unless

– ki−1 = ki,
– the factor vi−1,j is a letter factor if and only if vi,j is a letter factor, and
– alph(vi−1,j) = alph(vi,j) for all j = 1, 2, . . . , ki.

Assume that such a situation takes place, and show that it leads to an infinite
tower. Let L be the language of strings z1z2 · · · zki such that zj = vi,j if vi,j is a
letter factor, and zj ∈ (alph(vi,j))

∗ if vi,j is a cycle factor. Since wi ∈ L(Ai mod 2)
and wi−1 ∈ L(Ai−1 mod 2) holds, the definition of a cycle factor implies that, for
each z ∈ L, there is some z′ ∈ L(A0)∩L such that z 4 z′, and also z′′ ∈ L(A1)∩L
such that z 4 z′′. The existence of an infinite tower follows. We have therefore
proved Wi−1 < Wi.

On Upper and Lower Bounds on the Length of Alternating Towers 7

1 2 3 4 5 6
a

a
a

a

a a a

b b b b
b

b

Fig. 2. Automaton A0; n− 1 = 6.

The proof is completed, since Wr ≤ f(wr) ≤ g(m), W1 ≥ 0, and the bound
in the claim is equal to g(m) + 1. ut

For binary regular languages, we now show that there exists a tower of length
at least n2−O(n) between two binary regular languages having no infinite tower
and represented by automata with at most n states.

Theorem 2. The upper bound n3−1
n−1 on the length of a maximal tower is tight

for binary languages up to a linear factor.

Proof. Let n be an odd number and define the automata A0 and A1 with n− 1
and n states as depicted in Figs. 2 and 3, respectively.

The automaton A0 = ({1, 2, . . . , n − 1}, {a, b}, δ0, 1, {n − 1}) consists of an
a-path from state 1 through states 2, 3, . . . , n− 3, respectively, to state n− 2, of
a-transitions from state 1 to all states but itself and the final state, of self-loops
under b in all but the states n− 2 and n− 1, and of a b-cycle from n− 2 to n− 1
and back to n− 2.

The automaton A1 = ({1, 2, . . . , n}, {a, b}, δ1, 1, {1, n}) consists of a b-path
from state 1 through states 2, 3, . . . , n − 1, respectively, to state n, of an a-
transition from state n to state 1, and of b-transitions going from state 1 to all
even-labeled states.

Consider the string
(bn−1a)n−3(bn−1b) .

This string consists of n − 2 parts of length n and belongs to L(A0). Note
that deleting the last letter b results in a string that belongs to L(A1). Deleting

1 2 3 4 5 6 7
b

b

b

b b b b b

a

Fig. 3. Automaton A1; n = 7.

8 Š. Holub, G. Jirásková, T. Masopust

another letter b from the right results in a string belonging again to the language
L(A0). We can continue in this way alternating between the languages until the
letter a is the last letter, that is, until the string (bn−1a)n−3, which belongs to
L(A1). Now, we delete the last two letters, namely the string ba, which results
in a string from L(A0), and we can continue with deleting the last letters b again
as described above. Moreover, we cannot accept the prefix bn−2 in A0, hence the
length of the tower is at least n(n− 2)− (n− 3)− (n− 2) = n2 − 4n+ 5.

To show that there is no infinite tower between the languages L(A0) and
L(A1), we can use the techniques described in [4,8], or to use the algorithm
presented in Section 3. We can also notice that letter a can appear at most n−3
times in any string from L(A0) and that after at most n−1 occurrences of letter
b, letter a must appear in a string from L(A1). As the languages are disjoint, any
infinite tower would have to contain a string from L(A1) of length more than
n · (n − 3) + (n − 1). But any such string in L(A1) must contain at least n − 2
occurrences of letter a, hence it cannot be embedded into any string of L(A0).
This means that there cannot be an infinite tower. ut

In Theorem 2, we have shown that there exists a tower of a quadratic length
between two binary languages having no infinite tower. Now we show that there
exist two quaternary languages having a tower of length more than quadratic.

Theorem 3. There exist two languages with no infinite tower having a finite
tower of a cubic length.

Proof. Let n be a number divisible by four and define the automata A0 and A1

with n− 1 and n states as shown in Figs. 4 and 5, respectively.
The automaton A0 = ({1, 2, . . . , n − 1}, {a, b, c, d}, δ0, 1, {n − 1}) consists of

an a-path through states 1, 2, . . . , n− 2, respectively, of a-transitions from state
1 to all other states but itself and the final state, of self-loops under symbols
b, c, d in all but the final state, and of a b-transition from all, but the final state,
to the final state.

The automaton A1 = ({1, 2, . . . , n}, {a, b, c, d}, δ1, 1, {n2 , n}) consists of two
parts. The first part is constituted by states 1, 2, . . . , n2 with a d-path through
states 1, 2, . . . , n2 , respectively, by self-loops under b, c in states 1, 2, . . . , n2 − 1,
and by d-transitions from state 1 to all of states 2, 3, . . . , n2 . The second part
is constituted by states n

2 , . . . , n with a bc-path through states n
2 , . . . , n − 2,

respectively, by a-transitions from state n−1 to states 1 and n, by a c-transition
from state n−1 to state n, and by b-transitions from state n

2 to all odd-numbered
states between n

2 and n− 1.
Note that the languages are disjoint since A0 accepts strings ending with b,

while A1 accepts strings ending with a, c, or d.
Consider the string[(

bd(bc)
n
4

)n
2−2 bd(bc)

n
4−1ba

]n−3
·
(
bd(bc)

n
4

)n
2−2 bd(bc)

n
4−1bcb .

This string belongs to L(A0) and consists of n−3 parts each of length n2

4 + n
2 −2,

plus one part of length n2

4 + n
2 − 1. We can delete the last letters one by one,

On Upper and Lower Bounds on the Length of Alternating Towers 9

1 2 3 4 5 6 7
a

a

a

a

a

b, c, d

b

a

b, c, d

b

a

b, c, d

b

a

b, c, d

b

a

b, c, d

b

b

b, c, d

Fig. 4. Automaton A0; n− 1 = 7.

obtaining strings alternating between L(A1) and L(A0). Hence the length of this

tower is (n− 2) · (n
2

4 + n
2 − 2) + 1, which results in a tower of length Ω(n3).

To show that there is no infinite tower between the languages, we can use
the techniques described in [4,8], or the algorithm presented in Section 3. ut

As the last result of this paper, we prove an exponential lower bound with
respect to the cardinality of the input alphabet.

Theorem 4. There exist two languages with no infinite tower having a finite
tower of an exponential length with respect to the size of the alphabet.

Proof. For every non-negative integer m, we define a pair of nondeterministic
automata Am and Bm over the input alphabet Σm = {a1, a2, . . . , am} ∪ {b, c}
with a tower of length 2m+2 between L(Am) and L(Bm), and such that there is
no infinite tower between the two languages.

The two-state automaton Am = ({1, 2}, Σm, δm, 1, {2}) has self-loops under
all symbols in state 1 and a b-transition from state 1 to state 2. The automaton
is shown in Fig. 6 (left), and it accepts all strings over Σm ending with b.

1 2 3 4 5 6 7 8

b, c

d

d
d

b, c

d

b, c

d b

b

c b a, c

a

Fig. 5. Automaton A1; n = 8 and F = {n
2
, n}.

10 Š. Holub, G. Jirásková, T. Masopust

1 2

Σm

b p q r
b c

Fig. 6. The two-state NFA Am, for m ≥ 0 (left), and the automaton B0 (right).

The automata Bm are constructed inductively as follows. The automaton
B0 = ({p, q, r}, {b, c}, γ0, {p}, {p, r}) accepts the finite language {ε, bc}, and it is
shown in Fig. 6 (right).

Assume that we have constructed the nondeterministic finite automaton
Bm = (Qm, Σm, γm, Sm, {p, r}). We construct the nondeterministic automaton
Bm+1 = (Qm ∪ {m+ 1}, Σm ∪ {am+1}, γm+1, Sm ∪ {m+ 1}, {p, r}) by adding a
new initial state m + 1 to Qm, and transitions on a fresh input symbol am+1.
The transition function γm+1 extends γm so that it defines self-loops under all
letters of Σm in the new state m + 1, and adds the transitions on input am+1

from state m+ 1 to all the states of Sm, that is, to all the initial states of Bm.
The first two steps of the construction, that is, automata B1 and B2, are shown
in Figs. 7 and 8, respectively. Note that L(Bm) ⊆ L(Bm+1) since all the initial
states of Bm are initial in Bm+1 as well, and the set of final states is {p, r} in
both automata.

By induction on m, we show that there exists a tower between the languages
L(Am) and L(Bm) of length 2m+2. More specifically, we prove that there exists

a sequence (wi)
2m+2

i=1 such that wi is a prefix of wi+1 and |wi+1| = |wi| + 1 for
all i = 1, . . . , 2m+2 − 1, w1 = ε, so w1 ∈ L(Bm), and w2m+2 ∈ L(Am). Thus, the
tower is fully characterized by its longest string w2m+2 . Moreover, by definition,
the letter b appears on all odd positions of w2m+2 .

If m = 0, then such a tower is ε, b, bc, bcb, and it is of length 22. Assume that
for some m, we have a sequence of prefixes of length 2m+2 as required above, and
such that the length of its longest string wb is 2m+2− 1. Consider the automata
Am+1 and Bm+1 and the string

wbam+1wb .

The length of this string is 2(m+1)+2 − 1, which results in 2(m+1)+2 prefixes.
By the assumption, every odd position is occupied by letter b, hence every

prefix of an odd length belongs to L(Am+1). It remains to show that all even-

p q r1
b ca1

b, c

Fig. 7. Automaton B1.

On Upper and Lower Bounds on the Length of Alternating Towers 11

p q r12
b ca1

b, cb, c, a1

a2

a2

Fig. 8. Automaton B2.

length prefixes belong to L(Bm+1). Let x be such a prefix. If x does not contain
am+1, then it is a prefix of wb and belongs to L(Bm) by the induction hypothesis.
If x = wbam+1y, then Bm+1 reads the string wb in state m+ 1. Then, on input
am+1, it goes to an initial state of Bm. From this initial state, the string y is
accepted as a prefix of wb by the induction hypothesis. Thus x is in L(Bm+1).

To complete the proof, it remains to show that there is no infinite tower
between the languages. We can either use the techniques described in [4,8], or
the algorithm presented in Section 3. However, to give a brief idea why it is so, we
can give an inductive argument. Since L(B0) is finite, there is no infinite tower
between L(A0) and L(B0). Consider a tower between L(Am+1) and L(Bm+1).
If every string of the tower belonging to L(Bm+1) is accepted from an initial
state different from m + 1, then it is a tower between L(Am) and L(Bm), so it
is finite. Thus, if there exists an infinite tower, there also exists an infinite tower
where all strings belonging to L(Bm+1) are accepted only from state m + 1.
However, every such string is of the form ({a1, . . . , am} ∪ {b, c})∗am+1y, where
the string y is accepted from an initial state different from m+1. Cutting off the
prefixes from ({a1, . . . , am} ∪ {b, c})∗am+1 results in an infinite tower between
L(Am) and L(Bm), which is a contradiction. ut

5 Conclusions

The definition of towers can be generalized from subsequences to basically any
relation on strings, namely to prefixes, suffixes, etc. Notice that our lower-bound
examples in Theorems 2, 3, and 4 are actually towers of prefixes, hence they give
a lower bound on the length of towers of prefixes as well.

On the other hand, the upper-bound results cannot be directly used to prove
the upper bounds for towers of prefixes. Although every tower of prefixes is also
a tower of subsequences, the condition that there are no infinite towers is weaker
for prefixes. The bound for subsequences therefore does not apply to languages
that allow an infinite tower of subsequences but only finite towers of prefixes.

Finally, note that the lower-bound results are based on nondeterminism. We
are aware of a tower of subsequences (prefixes) showing the quadratic lower
bound for deterministic automata. However, it is an open question whether a
longer tower can be found or the upper bound is significantly different for de-
terministic automata.

12 Š. Holub, G. Jirásková, T. Masopust

References

1. Almeida, J.: Implicit operations on finite J-trivial semigroups and a conjecture of
I. Simon. Journal of Pure and Applied Algebra 69, 205–218 (1990)

2. Almeida, J.: Finite semigroups and universal algebra, Series in Algebra, vol. 3.
World Scientific (1995)

3. Almeida, J., Zeitoun, M.: The pseudovariety J is hyperdecidable. RAIRO – Theo-
retical Informatics and Applications 31(5), 457–482 (1997)

4. Czerwiński, W., Martens, W., Masopust, T.: Efficient separability of regular lan-
guages by subsequences and suffixes. In: Proc. of ICALP. LNCS, vol. 7966, pp.
150–161. Springer (2013), full version available at http://arxiv.org/abs/1303.0966

5. Czerwiński, W., Martens, W., Masopust, T.: Personal communication. (2013)
6. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the Lon-

don Mathematical Society s3-2(1), 326–336 (1952)
7. P. Karandikar, P.S.: On the state complexity of closures and interiors of regu-

lar languages with subwords. In: Proc. of DCFS (2014), to appear. Available at
http://arxiv.org/abs/1406.0690

8. Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by piecewise
testable and unambiguous languages. In: Chatterjee, K., Sgall, J. (eds.) Proc. of
MFCS. LNCS, vol. 8087, pp. 729–740. Springer (2013)

9. Place, T., Zeitoun, M.: Separating regular languages with first-order logic. In: Proc.
of CSL-LICS (2014), accepted. Available at http://arxiv.org/abs/1402.3277

10. Simon, I.: Hierarchies of Events with Dot-Depth One. Ph.D. thesis, Dept. of Ap-
plied Analysis and Computer Science, University of Waterloo, Canada (1972)

11. Simon, I.: Piecewise testable events. In: GI Conference on Automata Theory and
Formal Languages. pp. 214–222. Springer (1975)

12. Stern, J.: Characterizations of some classes of regular events. Theoretical Computer
Science 35, 17–42 (1985)

	On Upper and Lower Bounds on the Length of Alternating Towers

