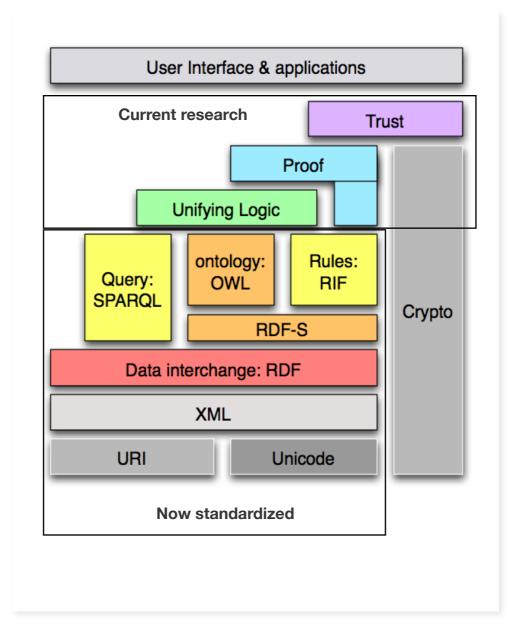


Fakultät Informatik, Institut Künstliche Intelligenz, Professur Computational Logic

Foundations of Semantic Web Technologies


Ontology Engineering

Sebastian Rudolph

Ontology Engineering

WHY ONTOLOGY ENGINEERING?

- ontology languages and reqasoners provide the technical infrastructure for using semantic technologies
- however: domain specific knowledge specifications (=ontologies) have to come from somewhere
- questions:
 - how to create (good, useful) ontologies?
 - how to judge ontology quality?

Why Ontology Engineering?

- many aspects of these questions are similar to problems of software engineering
- in both cases, complex artefacts are created (often in a collaborative way) that should be
 - correct
 - functional
 - comprehensible
 - reusable
 - etc.

Sebastian Rudolph

- ...always a good idea before one starts constructing an ontology:
 - is a semantic representation needed at all? (alternative: database solution)
 - if so, should it be a representation based on formal logic
 - (alternative: textual representation, in particular if the purpose is human-to-human information exchange)
 - contra: cost of setting it up, established practice
 - pro: flexible usage/exchange
 - pro: reasoning allows for managing implicit knowledge

Requirement Analysis

- tool support
 - does the choice of a certain approach create dependencies to a specific tool?
 - under what license models are the necessary tools available
 - how stable/mature is the software?
 - what support is offered by the vendor?
 - are the available tools sufficiently interoperable?

6

Requirement Analysis

- functional aspects
 - what domain is to be modelled/ what aspects of that domain are to be represented?
 - what is the level of granularity of the information to be specified?
 - what tasks are supposed to be performed using the ontology?
 - browsing a body of knowledge
 - search for information
 - query processing
 - automated inferencing
- what inferences are wanted

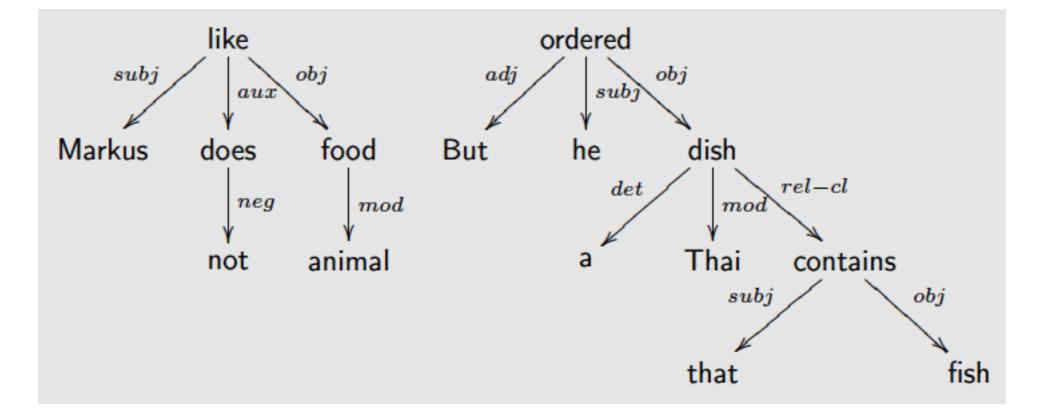
ONTOLOGY CREATION

- there are many possible sources of knowledge that can be utilized:
 - humans
 - texts
 - webpages
 - databases
- these sources are different in terms of (i) how explicit and (ii) how structured the knowledge is

8

Humans

- domain experts = humans who have the required knowledge
- ...are normally not logicians and don't know ontology languages
- thus, often knowledge engineers are needed as "mediators"
- these must be knowledgeable in formal logic and have good communication skills


Texts

- accessible in a very direct way: digital textual resources, still: text != logic
- possibility: deployment of automated methods for extracting knowledge from text (Ontology Learning)
- different approaches:
 - pattern-based search for predefined relations (Information Extraction)
 - complete syntactic decomposition and conversion into logical expressions (deep semantic analysis)

DEEP SEMANTIC ANALYSIS - EXAMPLE

Markus does not like animal food. But he ordered a Thai dish that contains fish.

 $\neg \exists likes.(Animal \sqcap Food)(markus)$ $\exists ordered(Dish \sqcap \exists contains.Fish)(markus)$

Semi-structured Resources

- as opposed to text, other digital documents such as web pages have more explicit structure (mark-up, links, etc.)
- these can be directly converted into e.g. RDF
- other examples:
 - wikis
 - file systems

Structured Resources

- databases are "fully structured"
- for coupling a database with an ontology a mapping is required that connects the database's schema part with classes and properties of the ontology
- then the data part of the ontology can be interpreted as ABox

ONTOLOGY EVALUATION

- what makes a good ontology?
- there are different criteria, e.g.:
 - logical criteria
 - structural/formal criteria
 - "correctness"

LOGICAL CRITERIA

consistency of KB or classes

Horse $\sqsubseteq \neg$ Flies FlyingHorse \equiv Horse \sqcap Flies

Iogical completeness

 $\begin{array}{l} \texttt{Bird} \sqsubseteq \neg \texttt{Mammal} \\ \texttt{Bird} \sqsubseteq \texttt{Oviparous} \\ \texttt{Oviparous} \sqsubseteq \neg \texttt{Viviparous} \end{array}$

Bird(ostrich) Mammal □ Viviparous(lion)

 $Mammal \sqsubseteq Viviparous$

Mammal □ Oviparous(platypus)

STRUCTURAL CRITERIA

investigation of class hierarchy:

 $\begin{array}{l} \texttt{Architecture} \sqsubseteq \texttt{Faculty} \\ \texttt{University} \sqsubseteq \texttt{Building} \end{array}$

 $\begin{array}{l} \texttt{Faculty}\sqsubseteq\texttt{University}\\ \texttt{Building}\sqsubseteq\texttt{Architecture} \end{array}$

checking correctness is rather difficult (grounding problem)

Typical Modeling "Errors"

omitting disjointness

Man 드 Human	Human 드 Man 🗆 Woman	Woman 드 Human
Man(pascal)		Woman(anne)

- omitting role characteristics
- domain / range too specific
- wrong interpretation of universal quantifier

 $\texttt{Happy} \equiv \forall \texttt{hasChild}.\texttt{Happy}$

mistaking "part of" for "subclass of"

```
Finger \sqsubseteq HandHand \sqsubseteq ArmArm \sqsubseteq BodyToe \sqsubseteq FootFoot \sqsubseteq LegLeg \sqsubseteq BodyArm \sqcap Leg \sqsubseteq \bot
```


Typical Modeling "Errors"

direction of property unclear

ex:author	rdfs:range	ex:Publication .
ex:author	rdfs:domain	ex:Person .
ex:macbeth	ex:author	ex:shakespeare .

subclasses vs. equivalence

too "verbal" translation…

MODULARISATION / PATTERNS

facilitates reuse

- allows for faster reasoning
- usage of "best practices"

(semi)automatic "improvement" of ontologies

- ontology repair
- ontology update / evolution
- Iogical completion of ontologies