FOUNDATIONS OF COMPLEXITY THEORY

Lecture 8: NP-Complete Problems

David Carral
Knowledge-Based Systems

TU Dresden, November 17, 2020

Towards More NP-Complete Problems

Starting with Sat, one can readily show more problems \mathbf{P} to be NP-complete, each time performing two steps:
(1) Show that $\mathbf{P} \in N P$
(2) Find a known NP-complete problem P^{\prime} and reduce $\mathrm{P}^{\prime} \leq_{p} \mathbf{P}$

Thousands of problems have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

$$
\begin{array}{rlrl}
& \leq_{p} \text { Clique } & & \leq_{p} \text { Independent Set } \\
\text { Sat } & \leq_{p} \text { 3-Sat } & & \leq_{p} \text { Dir. Hamlitonian Path } \\
& \leq_{p} \text { Subset Sum } & \leq_{p} \text { Knapsack }
\end{array}
$$

3-Sat, Hamiltonian Path, and Subset Sum

NP-Completeness of 3-Sat

3-Sat: Satisfiability of formulae in CNF with ≤ 3 literals per clause
Theorem 8.1: 3-Sat is NP-complete.

Proof: Hardness by reduction Sat \leq_{p} 3-Sat:

- Given: φ in CNF
- Construct φ^{\prime} by replacing clauses $C_{i}=\left(L_{1} \vee \cdots \vee L_{k}\right)$ with $k>3$ by

$$
C_{i}^{\prime}:=\left(L_{1} \vee Y_{1}\right) \wedge\left(\neg Y_{1} \vee L_{2} \vee Y_{2}\right) \wedge \ldots \wedge\left(\neg Y_{k-1} \vee L_{k}\right)
$$

Here, the Y_{j} are fresh variables for each clause.

- Claim: φ is satisfiable iff φ^{\prime} is satisfiable.

Example

Let $\varphi:=\left(X_{1} \vee X_{2} \vee \neg X_{3} \vee X_{4}\right) \quad \wedge \quad\left(\neg X_{4} \vee \neg X_{2} \vee X_{5} \vee \neg X_{1}\right)$

Then $\varphi^{\prime}:=\left(X_{1} \vee Y_{1}\right) \wedge$

$$
\begin{aligned}
& \left(\neg Y_{1} \vee X_{2} \vee Y_{2}\right) \wedge \\
& \left(\neg Y_{2} \vee \neg X_{3} \vee Y_{3}\right) \wedge \\
& \left(\neg Y_{3} \vee X_{4}\right) \wedge \\
& \left(\neg X_{4} \vee Z_{1}\right) \wedge \\
& \left(\neg Z_{1} \vee \neg X_{2} \vee Z_{2}\right) \wedge \\
& \left(\neg Z_{2} \vee X_{5} \vee Z_{3}\right) \wedge \\
& \left(\neg Z_{3} \vee \neg X_{1}\right)
\end{aligned}
$$

Proving NP-Completeness of 3-SAT

" \Rightarrow " Given $\varphi:=\bigwedge_{i=1}^{m} C_{i}$ with clauses C_{i}, show that if φ is satisfiable then φ^{\prime} is satisfiable
For a satisfying assignment β for φ, define an assignment β^{\prime} for φ^{\prime} :
For each $C:=\left(L_{1} \vee \cdots \vee L_{k}\right)$, with $k>3$, in φ there is

$$
C^{\prime}=\left(L_{1} \vee Y_{1}\right) \wedge\left(\neg Y_{1} \vee L_{2} \vee Y_{2}\right) \wedge \ldots \wedge\left(\neg Y_{k-1} \vee L_{k}\right) \text { in } \varphi^{\prime}
$$

As β satisfies φ, there is $i \leq k$ s.th. $\beta\left(L_{i}\right)=1$ i.e. $\begin{aligned} & \beta(X)=1 \text { if } L_{i}=X \\ & \beta(X)=0 \text { if } L_{i}=\neg X\end{aligned}$
Set $\begin{array}{ll}\beta^{\prime}\left(Y_{j}\right)=1 & \text { for } j<i \\ \beta^{\prime}\left(Y_{j}\right)=0 & \text { for } j \geq i \\ & \beta^{\prime}(X)=\beta(X)\end{array}$ for all variables in φ
This is a satisfying asignment for φ^{\prime}

Proving NP-Completeness of 3-SAT

" \Leftarrow " Show that if φ^{\prime} is satisfiable then so is φ
Suppose β is a satisfying assignment for $\varphi^{\prime}-\operatorname{then} \beta$ satisfies φ :
Let $C:=\left(L_{1} \vee \cdots \vee L_{k}\right)$ be a clause of φ
(1) If $k \leq 3$ then C is a clause of φ^{\prime}
(2) If $k>3$ then

$$
C^{\prime}=\left(L_{1} \vee Y_{1}\right) \wedge\left(\neg Y_{1} \vee L_{2} \vee Y_{2}\right) \wedge \ldots \wedge\left(\neg Y_{k-1} \vee L_{k}\right) \text { in } \varphi^{\prime}
$$

β must satisfy at least one $L_{i}, 1 \leq i \leq k$
Case (2) follows since, if $\beta\left(L_{i}\right)=0$ for all $i \leq k$ then C^{\prime} can be reduced to

$$
\begin{aligned}
C^{\prime} & =\left(Y_{1}\right) \wedge\left(\neg Y_{1} \vee Y_{2}\right) \wedge \ldots \wedge\left(\neg Y_{k-1}\right) \\
& \equiv Y_{1} \wedge\left(Y_{1} \rightarrow Y_{2}\right) \wedge \ldots \wedge\left(Y_{k-2} \rightarrow Y_{k-1}\right) \wedge \neg Y_{k-1}
\end{aligned}
$$

which is not satisfiable.

NP-Completeness of Directed Hamiltonian Path

Directed Hamlitonian Path

Input: A directed graph G.
Problem: Is there a directed path in G containing every vertex exactly once?

Theorem 8.2: Directed Hamiltonian Path is NP-complete.

Proof:

(1) Directed Hamlitonian Path \in NP:

Take the path to be the certificate.
(2) Directed Hamlitonian Path is NP-hard:

3-Sat \leq_{p} Directed Hamlltonian Path

Digression: How to design reductions

Task: Show that problem \mathbf{P} (Directed Hamlitonian Path) is NP-hard.

- Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to Directed Hamiltonian Path?

- Considerations:
- Is there an NP-complete problem similar to \mathbf{P} ? (for example, Clique and Independent Set)
- It is not always beneficial to choose a problem of the same type (for example, reducing a graph problem to a graph problem)
- For instance, Clique, Independent Set are "local" problems (is there a set of vertices inducing some structure)
- Hamiltonian Path is a global problem (find a structure - the Hamiltonian path - containing all vertices)
- How to design the reduction:
- Does your problem come from an optimisation problem?

If so: a maximisation problem? a minimisation problem?

- Learn from examples, have good ideas.

NP-Completeness of Directed Hamiltonian Path

Directed Hamlitonian Path

Input: A directed graph G.
Problem: Is there a directed path in G containing every vertex exactly once?

Theorem 8.2: Directed Hamiltonian Path is NP-complete.

Proof:

(1) Directed Hamlitonian Path \in NP:

Take the path to be the certificate.
(2) Directed Hamlitonian Path is NP-hard:

3-Sat \leq_{p} Directed Hamlltonian Path

NP-Completeness of Directed Hamiltonian Path

Proof (Proof idea): (see blackboard for details)
Let $\varphi:=\bigwedge_{i=1}^{k} C_{i}$ and $C_{i}:=\left(L_{i, 1} \vee L_{i, 2} \vee L_{i, 3}\right)$

- For each variable X occurring in φ, we construct a directed graph ("gadget") that allows only two Hamiltonian paths: "true" and "false"
- Gadgets for each variable are "chained" in a directed fashion, so that all variables must be assigned one value
- Clauses are represented by vertices that are connected to the gadgets in such a way that they can only be visited on a Hamiltonian path that corresponds to an assignment where they are true
Details are also given in [Sipser, Theorem 7.46].

Example 8.3: $\varphi:=C_{1} \wedge C_{2}$ where $C_{1}:=(X \vee \neg Y \vee Z)$ and $C_{2}:=(\neg X \vee Y \vee \neg Z)$ (see blackboard)

Towards More NP-Complete Problems

Starting with Sat, one can readily show more problems \mathbf{P} to be NP-complete, each time performing two steps:
(1) Show that $\mathbf{P} \in N P$
(2) Find a known NP-complete problem P^{\prime} and reduce $\mathrm{P}^{\prime} \leq_{p} \mathbf{P}$

Thousands of problems have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

$$
\begin{array}{rlrl}
& \leq_{p} \text { Clique } & & \leq_{p} \text { Independent Set } \\
\text { Sat } & \leq_{p} \text { 3-Sat } & & \leq_{p} \text { Dir. Hamlitonian Path } \\
& \leq_{p} \text { Subset Sum } & \leq_{p} \text { Knapsack }
\end{array}
$$

NP-Completeness of Subset Sum

Subset Sum

Input: A collection ${ }^{1}$ of positive integers

$$
S=\left\{a_{1}, \ldots, a_{k}\right\} \text { and a target integer } t .
$$

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_{i} \in T} a_{i}=t$?

Theorem 8.4: Subset Sum is NP-complete.

Proof:

(1) Subset Sum \in NP: Take T to be the certificate.
(2) Subset Sum is NP-hard: Sat \leq_{p} Subset Sum
${ }^{1}$) This "collection" is supposed to be a multi-set, i.e., we allow the same number to occur several times. The solution "subset" can likewise use numbers multiple times, but not more often than they occured in the given collection.

Example

$$
\left(X_{1} \vee X_{2} \vee X_{3}\right) \wedge\left(\neg X_{1} \vee \neg X_{4}\right) \wedge\left(X_{4} \vee X_{5} \vee \neg X_{2} \vee \neg X_{3}\right)
$$

$\left.\begin{array}{lllllllll} & & X_{1} X_{2} X_{3} & X_{4} & X_{5} & C_{1} & C_{2} & C_{3} \\ & = & 1 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$

Sat \leq_{p} Subset Sum

Given: $\varphi:=C_{1} \wedge \cdots \wedge C_{k}$ in conjunctive normal form.
(w.l.o.g. at most 9 literals per clause)

Let X_{1}, \ldots, X_{n} be the variables in φ. For each X_{i} let
$t_{i}:=a_{1} \ldots a_{n} c_{1} \ldots c_{k}$ where $a_{j}:=\left\{\begin{array}{ll}1 & i=j \\ 0 & i \neq j\end{array}\right.$ and $c_{j}:= \begin{cases}1 & X_{i} \text { occurs in } C_{j} \\ 0 & \text { otherwise }\end{cases}$
$f_{i}:=a_{1} \ldots a_{n} c_{1} \ldots c_{k}$ where $a_{j}:=\left\{\begin{array}{ll}1 & i=j \\ 0 & i \neq j\end{array}\right.$ and $c_{j}:= \begin{cases}1 & \neg X_{i} \text { occurs in } C_{j} \\ 0 & \text { otherwise }\end{cases}$

Example

$$
\left(X_{1} \vee X_{2} \vee X_{3}\right) \wedge\left(\neg X_{1} \vee \neg X_{4}\right) \wedge\left(X_{4} \vee X_{5} \vee \neg X_{2} \vee \neg X_{3}\right)
$$

$\left.\begin{array}{lllllllll} & & X_{1} X_{2} X_{3} & X_{4} & X_{5} & C_{1} & C_{2} & C_{3} \\ & = & 1 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$

Sat \leq_{p} Subset Sum

Further, for each clause C_{i} take $r:=\left|C_{i}\right|-1$ integers $m_{i, 1}, \ldots, m_{i, r}$
where $m_{i, j}:=c_{i} \ldots c_{k}$ with $c_{\ell}:= \begin{cases}1 & \ell=i \\ 0 & \ell \neq i\end{cases}$
Definition of S : Let

$$
S:=\left\{t_{i}, f_{i} \mid 1 \leq i \leq n\right\} \cup\left\{m_{i, j}\left|1 \leq i \leq k, \quad 1 \leq j \leq\left|C_{i}\right|-1\right\}\right.
$$

Target: Finally, choose as target

$$
t:=a_{1} \ldots a_{n} c_{1} \ldots c_{k} \text { where } a_{i}:=1 \text { and } c_{i}:=\left|C_{i}\right|
$$

Claim: There is $T \subseteq S$ with $\sum_{a_{i} \in T} a_{i}=t$ iff φ is satisfiable.

Example

$$
\left(X_{1} \vee X_{2} \vee X_{3}\right) \wedge\left(\neg X_{1} \vee \neg X_{4}\right) \wedge\left(X_{4} \vee X_{5} \vee \neg X_{2} \vee \neg X_{3}\right)
$$

$\left.\begin{array}{lllllllll} & & X_{1} X_{2} X_{3} & X_{4} & X_{5} & C_{1} & C_{2} & C_{3} \\ & = & 1 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$

NP-Completeness of Subset Sum

Let $\varphi:=\wedge C_{i} \quad C_{i}:$ clauses
Show: If φ is satisfiable, then there is $T \subseteq S$ with $\sum_{s \in T} S=t$.
Let β be a satisfying assigment for φ
Set $T_{1}:=\left\{t_{i} \mid \beta\left(X_{i}\right)=1,1 \leq i \leq m\right\} \cup$

$$
\left\{f_{i} \mid \beta\left(X_{i}\right)=0,1 \leq i \leq m\right\}
$$

Further, for each clause C_{i} let r_{i} be the number of satisfied literals in C_{i} (with resp. to β).
Set $T_{2}:=\left\{m_{i, j}\left|1 \leq i \leq k, \quad 1 \leq j \leq\left|C_{i}\right|-r_{i}\right\}\right.$
and define $T:=T_{1} \cup T_{2}$.
It follows: $\sum_{s \in T} s=t$

NP-Completeness of Subset Sum

Show: If there is $T \subseteq S$ with $\sum_{s \in T} S=t$, then φ is satisfiable.
Let $T \subseteq S$ such that $\sum_{s \in T} S=t$
Define $\beta\left(X_{i}\right)= \begin{cases}1 & \text { if } t_{i} \in T \\ 0 & \text { if } f_{i} \in T\end{cases}$
This is well defined as for all i : $t_{i} \in T$ or $f_{i} \in T$ but not both.
Further, for each clause, there must be one literal set to 1 as for all i, the $m_{i, j} \in S$ do not sum up to the number of literals in the clause.

Towards More NP-Complete Problems

Starting with Sat, one can readily show more problems \mathbf{P} to be NP-complete, each time performing two steps:
(1) Show that $\mathbf{P} \in N P$
(2) Find a known NP-complete problem P^{\prime} and reduce $\mathrm{P}^{\prime} \leq_{p} \mathbf{P}$

Thousands of problems have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

$$
\begin{array}{rlrl}
& \leq_{p} \text { Clique } & & \leq_{p} \text { Independent Set } \\
\text { Sat } & \leq_{p} \text { 3-Sat } & & \leq_{p} \text { Dir. Hamlitonian Path } \\
& \leq_{p} \text { Subset Sum } & \leq_{p} \text { Knapsack }
\end{array}
$$

NP-completeness of Knapsack

Knapsack

Input: A set $I:=\{1, \ldots, n\}$ of items each of value v_{i} and weight w_{i} for $1 \leq i \leq n$, target value t and weight limit ℓ

Problem: Is there $T \subseteq I$ such that

$$
\sum_{i \in T} v_{i} \geq t \text { and } \sum_{i \in T} w_{i} \leq \ell ?
$$

Theorem 8.5: Knapsack is NP-complete.

Proof:

(1) Knapsack \in NP: Take T to be the certificate.
(2) Knapsack is NP-hard: Subset Sum \leq_{p} Knapsack

Subset Sum \leq_{p} Knapsack

	Given:	$S:=\left\{a_{1}, \ldots, a_{n}\right\}$
Subset Sum:		collection of positive integers
	t	target integer

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_{i} \in T} a_{i}=t$?
Reduction: From this input to Subset Sum construct

- set of items $I:=\{1, \ldots, n\}$
- weights and values $v_{i}=w_{i}=a_{i}$ for all $1 \leq i \leq n$
- target value $t^{\prime}:=t$ and weight limit $\ell:=t$

Clearly: For every $T \subseteq S$

$$
\sum_{a_{i} \in T} a_{i}=t \quad \text { iff } \quad \begin{aligned}
& \sum_{a_{i} \in T} v_{i} \geq t^{\prime}=t \\
& \\
& \sum_{a_{i} \in T} w_{i} \leq \ell=t
\end{aligned}
$$

Hence: The reduction is correct and in polynomial time.

A Polynomial Time Algorithm for Knapsack

Knapsack can be solved in time $O(n \ell)$ using dynamic programming
Initialisation:

- Create an $(\ell+1) \times(n+1)$ matrix M
- Set $M(w, 0):=0$ for all $1 \leq w \leq \ell$ and $M(0, i):=0$ for all $1 \leq i \leq n$

Computation: Assign further $M(w, i)$ to be the largest total value obtainable by selecting from the first i items with weight limit w :

For $i=0,1, \ldots, n-1$ set $M(w, i+1)$ as

$$
M(w, i+1):=\max \left\{M(w, i), M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}
$$

Here, if $w-w_{i+1}<0$ we always take $M(w, i)$.
Acceptance: If M contains an entry $\geq t$, accept. Otherwise reject.

Example

Input $I=\{1,2,3,4\}$ with
Values: $\quad v_{1}=1 \quad v_{2}=3 \quad v_{3}=4 \quad v_{4}=2$
Weight: $\quad w_{1}=1 \quad w_{2}=1 \quad w_{3}=3 \quad w_{4}=2$
Weight limit: $\ell=5 \quad$ Target value: $t=7$

weight	max. total value from first i items				
	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$
0	0	0	0	0	0
1	0	1	3	3	3
2	0	1	4	4	4
3	0	1	4	4	5
4	0	1	4	7	7
5	0	1	4	8	8

Set $M(w, 0):=0$ for all $1 \leq w \leq \ell$ and $M(0, i):=0$ for all $1 \leq i \leq n$ For $i=0,1, \ldots, n-1$ set $M(w, i+1):=\max \left\{M(w, i), M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}$

A Polynomial Time Algorithm for Knapsack

Knapsack can be solved in time $O(n \ell)$ using dynamic programming
Initialisation:

- Create an $(\ell+1) \times(n+1)$ matrix M
- Set $M(w, 0):=0$ for all $1 \leq w \leq \ell$ and $M(0, i):=0$ for all $1 \leq i \leq n$

Computation: Assign further $M(w, i)$ to be the largest total value obtainable by selecting from the first i items with weight limit w :

For $i=0,1, \ldots, n-1$ set $M(w, i+1)$ as

$$
M(w, i+1):=\max \left\{M(w, i), M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}
$$

Here, if $w-w_{i+1}<0$ we always take $M(w, i)$.
Acceptance: If M contains an entry $\geq t$, accept. Otherwise reject.

Example

Input $I=\{1,2,3,4\}$ with
Values: $\quad v_{1}=1 \quad v_{2}=3 \quad v_{3}=4 \quad v_{4}=2$
Weight: $\quad w_{1}=1 \quad w_{2}=1 \quad w_{3}=3 \quad w_{4}=2$
Weight limit: $\ell=5 \quad$ Target value: $t=7$

weight	max. total value from first i items				
	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$
0	0	0	0	0	0
1	0	1	3	3	3
2	0	1	4	4	4
3	0	1	4	4	5
4	0	1	4	7	7
5	0	1	4	8	8

Set $M(w, 0):=0$ for all $1 \leq w \leq \ell$ and $M(0, i):=0$ for all $1 \leq i \leq n$ For $i=0,1, \ldots, n-1$ set $M(w, i+1):=\max \left\{M(w, i), M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}$

Did we prove $\mathrm{P}=\mathrm{NP}$?

Summary:

- Theorem 8.5: Knapsack is NP-complete
- Knapsack can be solved in time $O(n \ell)$ using dynamic programming

What went wrong?

Knapsack

Input: A set $I:=\{1, \ldots, n\}$ of items each of value v_{i} and weight w_{i} for $1 \leq i \leq n$, target value t and weight limit ℓ
Problem: Is there $T \subseteq I$ such that

$$
\sum_{i \in T} v_{i} \geq t \text { and } \sum_{i \in T} w_{i} \leq \ell ?
$$

Pseudo-Polynomial Time

The previous algorithm is not sufficient to show that Knapsack is in P

- The algorithm fills a $(\ell+1) \times(n+1)$ matrix M
- The size of the input to Knapsack is $O(n \log \ell)$
\leadsto the size of M is not bounded by a polynomial in the length of the input!
Definition 8.6 (Pseudo-Polynomial Time): Problems decidable in time polynomial in the sum of the input length and the value of numbers occurring in the input.

Equivalently: Problems decidable in polynomial time when using unary encoding for all numbers in the input.

- If Knapsack is restricted to instances with $\ell \leq p(n)$ for a polynomial p, then we obtain a problem in P .
- Knapsack is in polynomial time for unary encoding of numbers.

Strong NP-completeness

Pseudo-Polynomial Time: Algorithms polynomial in the maximum of the input length and the value of numbers occurring in the input.

Examples:

- Knapsack
- Subset Sum

Strong NP-completeness: Problems which remain NP-complete even if all numbers are bounded by a polynomial in the input length (equivalently: even for unary coding of numbers).

Examples:

- Clique
- Sat
- Hamlitonian Cycle
- ...

Note: Showing Sat \leq_{p} Subset Sum required exponentially large numbers.

Beyond NP

The Class coNP

Recall that coNP is the complement class of NP.

Definition 8.7:

- For a language $\mathbf{L} \subseteq \Sigma^{*}$ let $\overline{\mathbf{L}}:=\Sigma^{*} \backslash \mathbf{L}$ be its complement
- For a complexity class C , we define coC := $\{\mathbf{L} \mid \overline{\mathbf{L}} \in \mathbf{C}\}$
- In particular coNP $=\{\mathbf{L} \mid \overline{\mathbf{L}} \in \mathrm{NP}\}$

A problem belongs to coNP, if no-instances have short certificates.

Examples:

- No Hamlltonian Path: Does the graph G not have a Hamiltonian path?
- Tautology: Is the propositional logic formula φ a tautology (true under all assignments)?
- ...

coNP-completeness

Definition 8.8: A language $\mathbf{C} \in$ coNP is coNP-complete, if $\mathbf{L} \leq_{p} \mathbf{C}$ for all $\mathbf{L} \in$ coNP.

Theorem 8.9:
(1) $P=c o P$
(2) Hence, $\mathrm{P} \subseteq \mathrm{NP} \cap \mathrm{coNP}$

Open questions:

- NP = coNP?

Most people do not think so.

- $P=N P \cap \operatorname{coNP}$?

Again, most people do not think so.

Summary and Outlook

3-Sat and Hamlitonian Path are also NP-complete

So are SubSet Sum and Knapsack, but only if numbers are encoded effiently (pseudo-polynomial time)

There do not seem to be polynomial certificates for coNP instances; and for some problems there seem to be certificates neither for instances nor for non-instances

What's next?

- Space
- Games
- Relating complexity classes

