Problem Solving and Search in AI Tutorial 3 (on May 20th)

Sarah Gaggl, Lukas Schweizer

 ${\rm SoSe}~2019$

For the ASP exercises, either use the browser version of clingo https://potassco. org/clingo/run/, or download clingo (*recommended*) from https://potassco. org/. A short introduction will be given in the tutorial.

Exercise 3.1

For the Maze Problem of Exercise 2.1, apply the Tabu Search Algorithm. How does it perform compared to your A*-Implementation?

Exercise 3.2

Given the programs P_i , determine the stable models of P_i by applying the *Gelfond-Lifschitz-Reduct*.

		$P_1 = \{a \leftarrow a.$
$P_1 = \{a \leftarrow not \ b, c.$	$P_2 = \{a \leftarrow not \ o.$	$b \leftarrow c, d.$
$c \leftarrow not h$	$c \leftarrow not \ a $	$c \leftarrow not \ d.$
		$d \leftarrow not \ c, a.$

Exercise 3.3

Give an ASP Encoding for the Graph Matching Problem of Tutorial 1.

Exercise 3.4

Can you also encode the Bridge-Crossing Problem of Exercise 2.2 in ASP? What could be possible limitations?