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Knowledge-Based Systems

TU Dresden, 7th Jan 2020

https://iccl.inf.tu-dresden.de/web/Knowledge_Graphs_(WS2019/20)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en


Review
Property Graph is a graph format that supports annotations as second-grade pieces of
information in graphs:

name: Tim Berners-Lee

description: British computer scientist

id1

name: CERN

description: international organization

id3

employer

start time: 1984

end time: 1994

position: fellow

id2

Cypher is used as a query language in some property graph systems.

Finding pairs of siblings:

MATCH
(parent)-[:HAS_CHILD]->(child1),

(parent)-[:HAS_CHILD]->(child2)

WHERE id(child1) <> id(child2)

RETURN child1, child2
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The shape of a Cypher query
Cypher queries are organised in blocks, called clauses:
• Match clause: MATCH followed by a pattern; variants of this clause are OPTIONAL

MATCH and MANDATORY MATCH

• Where clause: WHERE followed by a filter expression; usually associated with the
preceding match clause

• With clause: WITH followed by (possibly aliased) expressions and aggregates; ends
a subquery

• Return clause: RETURN followed by (possibly aliased) expressions and aggregates;
occurs once at the end of the query

• Modifier sub-clauses: ORDER BY, LIMIT, and SKIP might follow a With or Return
clause

• Union clauses: keyword UNION can be used between two complete queries (with
RETURN for each)

Syntactically, queries are not nested but chained. Many MATCH-WHERE-WITH blocks may
occur. The order of clauses affects the semantics of queries, but implementations can
still evaluate in modified order (as long as the meaning remains the same).
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Node patterns
The most basic pattern in Cypher describes a single node.

Definition 11.1: A node pattern is denoted by a pair of parentheses (). It may
optionally contain the following optional components:

• a variable name (a string)

• a list of labels (a list of strings, each prefixed by :)

• a set of properties (a comma-separated list of key:value pairs in {...})

Variable names, labels and property keys are quoted with backticks ` (can be omit-
ted if only alphanumeric characters are used). Property values that are strings are
written in straight quotes ’.

Example 11.2:

• (): an arbitrary node

• (v { name:’Melitta Bentz’, `year of birth`: 1873}): a node with two
properties (and maybe others); matching nodes are bound to variable v

• (:Scientist:Composer): a node with two labels
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Path patterns

Node patterns are a basic building block of path patterns:

Definition 11.3: A path pattern is a sequence of one or more node patterns, sep-
arated by expressions of the form -[...]-> (forward) or <-[...]- (backward) or
-[...]- (bidirectional), where the expression in [...] is an relationship pattern,
with the following optional components:

• a variable name (a string)

• a list of relationship types (: followed by a |-separated list of strings)

• a range literal (*, optionally by a number range n..m)

• a set of properties (a comma-separated list of key:value pairs in {...})

Example 11.4: The following pattern finds nodes a and b connected with a di-
rected path that consists of between 5 and 10 relationships of types E or F, where
b has an incoming relationship e with properties that include score:0.8:

(a)-[:E|F*5..10]->(b)<-[e {score:0.8}]-()
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Features of path patterns

The various features of path patterns express the following query conditions:

• Sequences of stylised arrows express linear subgraphs (paths with edges in any
direction)

• Arrow tips indicate directionality; patterns without any arrow tip match any direction

• The |-separated list of relationship types expresses a disjunction of possible types:
the pattern matches if one of the types is found1

• The same property-map syntax as in node patterns are used to require the
presence of some properties

• The range with * indicates that the specified kind of relationship has to occur
multiple times (within a numeric range, where numbers can be omitted to match
any finite path)

Note: * always applies to the complete relationship pattern. For example, the
disjunction is nested within this iteration.

1Recall that relationships in this interpretation of Property Graph can only have one type.
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Expressivity of path patterns

In contrast to SPARQL, Cypher does not support arbitrary regular expressions, but it can
still capture certain regular languages:

Example 11.5: The SPARQL property path pattern ?a (p|ˆp|q|ˆp)* ?b can be
expressed by the Cypher path pattern (a)-[:p|q*]-(b).

Example 11.6: The SPARQL property path pattern ?a (p/q)* ?b cannot be
expressed in Cypher.

Example 11.7: The SPARQL property path pattern ?a (p|ˆq)* ?b cannot be
expressed with Cypher path patterns, but it can be expressed in Cypher by a
combination of other features.
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Graph patterns

Path patterns can be combined conjunctively.

Definition 11.8: A graph pattern is a comma-separated list of path patterns.

Cypher graph patterns are similar to SPARQL basic graph patterns (with property path
patterns):

• SPARQL bnodes correspond to Cypher node patterns without variable

• Path patterns are based on similar but slightly distinct features

• Individual path pattern results can be combined with join-like operations to
compute overall results

But do their semantics agree?

Markus Krötzsch, 7th Jan 2020 Knowledge Graphs slide 8 of 22



Graph patterns

Path patterns can be combined conjunctively.

Definition 11.8: A graph pattern is a comma-separated list of path patterns.

Cypher graph patterns are similar to SPARQL basic graph patterns (with property path
patterns):

• SPARQL bnodes correspond to Cypher node patterns without variable

• Path patterns are based on similar but slightly distinct features

• Individual path pattern results can be combined with join-like operations to
compute overall results

But do their semantics agree?

Markus Krötzsch, 7th Jan 2020 Knowledge Graphs slide 8 of 22



Cypher matching semantics

Graph pattern matches are based on mapping parts of the pattern to parts of the graph:

• Every node pattern is mapped to a node
• Every path pattern is mapped to an alternating sequence of nodes and relationships

– Such a sequence is called a path
– Different matches of the same pattern can include paths of different lengths
– Each distinct path is a distinct match

• Even the parts that have no variables associated must be matched (similar to
bnodes in SPARQL)

Two special aspects of Cypher:

• Unique edges: In any match of a single graph pattern, each relationship
must be used in only one place (but each node can be used many times).

• Path counting: When paths are matched, each path (without repeated
relationships) counts as one result.
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Homomorphism semantics in Cypher

The restriction that each relationship can be used only once in a pattern match is only
enforced within single patterns

A query may use several clauses to allow for the same edge to be used several times:

Example 11.9: Find all persons who have a daughter and who has a relation with
a computer scientist (possibly the same person):

MATCH (p:Person)-[:HAS_DAUGHTER]->()
MATCH (p:Person)-[r]-({occupation:"computer scientist"})

Return p.name, type(r)

Using similar ideas as before, we immediately get:

Theorem 11.10: Query matching in Cypher is hard for NP.

Proof sketch: Reduce from graph colouring, using one MATCH clause per edge. �
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Working with nodes and relationships

Matched nodes and relationships are represented as special types of maps. Their
content can be accessed in various ways:

• Syntax “varname.propertyKey” is used to access the value of a property
(keys using non-alphanumeric symbols must be written in backtics)

• Alternatively, syntax “varname[expression]” is used to access property values for
the property key returned by evaluating the expression

• The function id returns the (numeric) ID of a nodes or relationships
• The function keys returns the list of all property keys of a map-like object

• The function labels returns the list of labels of a node; the function type returns
the type of a relationship
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Working with paths

Cypher can return not only matched nodes and relationships, but also matched paths.

Example 11.11: Find all ways in which two nodes are connected, and return the
list of relationship types in each case:

MATCH p= ({name=’node1’})-[*]->({name=’node2’})

RETURN relationships(p)

• Paths are represented by lists of nodes and relationships (alternating; starting and
ending with a node).

• There are several functions to access the content of paths (and other lists), e.g.,
relationships to extract a sublist of relationships only, or length to return its
number of relationships.

• The syntax “varname=” in front of a path pattern indicates that matched paths
should be assigned to the variable.
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Shortest paths

Cypher provides functions that find shortest paths

Example 11.12: Find all shortest ways in which two nodes are connected, and
return the list of relationship types in each case:

MATCH p= allShortestPaths(({name=’node1’})-[*]->({name=’node2’}))

RETURN relationships(p)

One can use range delimiters to specify an upper bound for the length of the shortest
path:

Example 11.13: Find all shortest ways of length at most 10 in which two nodes
are connected, and return the list of relationship types in each case:

MATCH p= allShortestPaths(({name=’node1’})-[*..10]->({name=’node2’}))

RETURN relationships(p)
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Filter conditions
MATCH clauses can be complemented by WHERE clauses that express filters.

Example 11.14: Find nodes with more than one label:

MATCH (n)
WHERE size(labels(n)) > 1

As in SPARQL, filters declaratively specify part of the query condition:

• they must be placed after the relevant MATCH clause

• but they can be evaluated in any order by a database

According to openCypher v9: “If there is a WHERE clause following the match of a
shortestPath, relevant predicates will be included in shortestPath.”

Example 11.15: It is not always clear how to evaluate this efficiently:

MATCH p=allShortestPaths((a)-[*]-(b))
WHERE a.someKey + b.someKey < length(p) RETURN p
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Expressions
WHERE clauses can use any expression, which can be constructed using many different
functions and operators, such as:
• Any constant datatype literal value or variable
• Values obtained by accessing content of map objects
• Boolean operations AND, OR, XOR, and NOT

• Arithmetic operators, such as + and *, and other mathematical functions, such as
sin or ceil

• String functions, such as substring and toLower

• List and map accessing functions, such as keys and size

• Path patterns (return true or false)

Example 11.16: Find all nodes that have value "scientist" as one of their oc-
cupations (recall that property values can be lists), and that do not have a spouse:

MATCH (n)
WHERE ("scientist" IN n.occupation) AND NOT ( (n)-[:SPOUSE]-() )

RETURN n
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Further Cypher Features
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Groups and Aggregates

Cypher supports aggregate functions, such as min, avg, count, and also more complex
ones like stDev (standard deviation, for some statistical assumptions).

Unlike SPARQL, grouping is implicit: if aggregated and non-aggregated results are
defined, the non-aggregated ones will be the keys to group by.

Example 11.17: Show married professors with their number of children:

MATCH (prof {occupation: "Professor"})-[:SPOUSE]-()

MATCH (prof)-[:HAS_CHILD]->(child)
RETURN prof, count(child)

DISTINCT can be used to reduce the collection of expression results to contain no
duplicates before aggregation, e.g., count(DISTINCT child)

Exercise: is DISTINCT needed in the above example or not?
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Subqueries

Subqueries in Cypher are chained rather than nested, using WITH clauses as separators
that control the passing of bindings.

Example 11.18: Find all universities located in one of the ten largest cities:

MATCH (c:City)
WITH c
ORDER BY c.population DESC LIMIT 10
MATCH (u:University)-[:LOCATION]->(c)
RETURN DISTINCT u.name

• WITH can be followed by sub-clauses for ORDER BY, LIMIT, and SKIP

• WITH can use aggregations and DISTINCT

• Expressions that are not projected are not accessible after a WITH clause

Markus Krötzsch, 7th Jan 2020 Knowledge Graphs slide 18 of 22



Union

The results of two Cypher queries can be combined on the outermost level.

Example 11.19: Find parent-child pairs in one of two possible encodings:

MATCH (parent) -[:HAS_CHILD]-> (child)

RETURN parent, child

UNION
MATCH (parent) <-[:HAS_PARENT]- (child)

RETURN parent, child

“The number and the names of the fields must be identical in all queries combined by
using UNION.” (unlike SPARQL)

UNION automatically removes duplicates. For keeping them, UNION ALL can be used
instead.
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Optional matches

Similar to SPARQL’s OPTIONAL, Cypher supports OPTIONAL MATCH for clauses that may
add additional information, if available.

Example 11.20: Find parent-child pairs and, optionally, a spouse for the parent:

MATCH (parent) -[:HAS_CHILD]-> (child)

OPTIONAL MATCH (parent) -[:SPOUSE]- (spouse)

RETURN parent, child, spouse

• If a match cannot be found, then variables will be mapped to null
• Special functions can be used to test for null (e.g., “WHERE v IS NULL”)

• A graph pattern must match completely, i.e., partial matches will not lead to
variable bindings
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Error handling in Cypher
Recall: SPARQL used a dedicated “error” value to signal and propagate errors. The
value effectively evaluates to false in Boolean expressions.

Cypher uses the special value null to indicate errors
• propagation rules are similar to SPARQL for Boolean operations
• other functions may lead to query errors when given nulls
• but the value cannot be distinguished from “unbound”

Many other error situations cause the whole Cypher query to fail
• For example, if queries are ordered by values of incomparable types
• Function calls with unsuitable parameters might cause errors
• This can also happen for a perfectly valid query due to unexpected database

contents

Note: The use of null in Cypher is ambiguous. It is used to express “no result” or
“unknown value”, but it is also used to express “error” in function calls. Ordering
and comparisons of null values in Cypher are not consistently defined yet.
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Summary

Cypher is a query language for property graphs

It is based on clauses (like SQL) and graph patterns (like SPARQL)

Not all regular expressions are supported, but powerful path manipulation features are
available.

Graph pattern matching is not based on homomorphisms like in other query languages
(SQL, SPARQL, etc.) but on a notion of isomorphim on edges

What’s next?

• Quality assurance in knowledge graphs

• Modelling with ontologies

• Graph analysis
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