

Hannes Strass (based on slides by Bernardo Cuenca Grau, Ian Horrocks, Przemysław Wałęga) Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Description Logics – Reasoning with Data

Lecture 6, 21st Nov 2022 // Foundations of Knowledge Representation, WS 2022/23

Recap

- For description logic knowledge bases, there are various relevant reasoning problems.
- All can be reduced to knowledge base (in)consistency.
- The basic description logic \mathcal{ALC} can be extended in various ways:

-	Inverse Roles	J
-	(Qualified) Number Restrictions	(Q) N
-	Nominals	O
-	Role Hierarchies	${\mathcal H}$
-	Transitive Roles	$\mathcal{ALC} \rightsquigarrow S, \cdot_{R^+}$

- Description Logics have close connections with propositional modal logic ...
- ...and with the two-variable fragments of first-order logic (with counting quantifiers)

Reasoning with Data

So far we have focused on terminological reasoning

- TBoxes represent general, conceptual domain knowledge
- Terminological reasoning is key to design error-free TBoxes

New Scenario: Ontology-based data access (OBDA)

- We have built an (error-free) TBox for our domain
- We want to populate TBox with data (add an ABox)
 ABox & TBox should be compatible (no inconsistencies)
- Then, we can query the data

TBox provides vocabulary for queries

Answers reflect both TBox knowledge and ABox data

Compatibility of Data and Knowledge

The ABox data should be compatible with the TBox knowledge

- $\mathcal{T} = \{ \mathsf{GradSt} \sqcap \mathsf{UnderGradSt} \sqsubseteq \bot \}$
- $\mathcal{A} = \{John: GradSt, John: UnderGradSt\}$

Nothing wrong with the TBox

Nothing wrong with the ABox

There is an obvious error when putting them together

To detect these situations we use the following problem:

Knowledge Base consistency: An instance is knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. The answer is true iff a model $\mathcal{I} \models \mathcal{K}$ exists.

In a FOL setting, \mathcal{K} is consistent if and only if $\pi(\mathcal{K})$ is satisfiable.

Tableau Algorithm for KB Consistency

Tableau-based knowledge base consistency algorithm:

- Input: Knowledge Base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$
- Output: true iff $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is consistent
- 1. Start with input ABox ${\mathcal A}$
- 2. Apply expansion rules until completion or clash
- 3. Blocking only involves individuals not occurring in $\ensuremath{\mathcal{A}}$

Exploit forest-model property: construct forest-shaped ABox root (ABox) individuals can be arbitrarily connected tree individuals (introduced by ∃-rule) form trees

(JRA, John) : Affects JRA : JuvArth (JRA, Mary) : Affects (John, Mary) : hasChild JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child \\ \exists hasChild. \top \sqsubseteq Adult \\ Adult \sqsubseteq \neg Child \\ Arth \sqsubseteq \exists Damages.Joint \\ JuvArth \sqsubseteq Arth \sqcap JuvDis \end{cases}$

Tableau expansion (simplified):

John $\operatorname{con}_{\mathcal{A}}(\operatorname{JRA}) = {\operatorname{JuvArth}}$ Affects JRA $\operatorname{hasChild}$ $\operatorname{con}_{\mathcal{A}}(\operatorname{John}) = \emptyset$ Affects $\operatorname{dot}_{\mathcal{A}}(\operatorname{Mary}) = \emptyset$ Mary

(JRA, John) : Affects JRA : JuvArth (JRA, Mary) : Affects (John, Mary) : hasChild JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child \\ \exists hasChild. \top \sqsubseteq Adult \\ Adult \sqsubseteq \neg Child \\ Arth \sqsubseteq \exists Damages.Joint \\ JuvArth \sqsubseteq Arth \sqcap JuvDis \end{cases}$

Tableau expansion (simplified):

 $\begin{array}{ccc} John & con_{\mathcal{A}}(JRA) &= \{JuvArth, Arth, JuvDis\} \\ \hline \\ Affects \\ JRA \\ Affects \\ \\ Mary \end{array}$

(JRA, John) : *Affects* JRA : JuvArth (JRA, Mary) : *Affects* (John, Mary) : *hasChild* JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$ $\exists hasChild.T \sqsubseteq Adult$ Adult $\sqsubseteq \neg Child$ Arth $\sqsubseteq \exists Damages.Joint$ JuvArth $\sqsubseteq Arth \sqcap JuvDis$

Tableau expansion (simplified):

John $con_{\mathcal{A}}(JRA) = \{JuvArth, Arth, JuvDis, \exists Damages.Joint\}$ Affects JRA hasChild $con_{\mathcal{A}}(John) = \emptyset$ Affects $dot con_{\mathcal{A}}(Mary) = \emptyset$ Mary

(IRA, John): Affects IRA: JuvArth (IRA, Mary): Affects (John, Mary): hasChild

IRA

Affect

JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$ $\exists hasChild. \top \sqsubset Adult$ Adult $\Box \neg$ Child Arth $\Box \exists Damages.$ Joint $|uvArth \Box Arth \Box |uvDis$

Tableau expansion (simplified):

Iohn $con_{A}(|RA) = \{|uvArth, Arth, |uvDis, \exists Damages.|oint, \}$ ∃*Affects*.Child, ∀*Affects*.Child} Affects $con_A(lohn) = \emptyset$ hasChild $con_A(Mary) = \emptyset$

Mary

Description Logics – Reasoning with Data (Lecture 6) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

Slide 6 of 30

(JRA, John) : *Affects* JRA : JuvArth (JRA, Mary) : *Affects* (John, Mary) : *hasChild* JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$ $\exists hasChild.T \sqsubseteq Adult$ Adult $\sqsubseteq \neg Child$ Arth $\sqsubseteq \exists Damages.Joint$ JuvArth $\sqsubseteq Arth \sqcap JuvDis$

Tableau expansion (simplified):

John $con_{\mathcal{A}}(JRA) = \{JuvArth, Arth, JuvDis, \exists Damages. Joint, \\ \exists Affects \\ JRA \\ Affects \\ Affects \\ Mary \\ Mary \\ \end{bmatrix} con_{\mathcal{A}}(John) = \{Child\} \\ con_{\mathcal{A}}(Mary) = \{Child\} \\ \end{bmatrix}$

(JRA, John) : *Affects* JRA : JuvArth (JRA, Mary) : *Affects* (John, Mary) : *hasChild* JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$ $\exists hasChild.T \sqsubseteq Adult$ Adult $\sqsubseteq \neg Child$ Arth $\sqsubseteq \exists Damages.Joint$ JuvArth $\sqsubseteq Arth \sqcap JuvDis$

	John	$con_{\mathcal{A}}(JRA)$	=	{JuvArth, Arth, JuvDis, ∃ <i>Damages</i> .Joint,
Affec	ts			∃ <i>Affects</i> .Child, ∀ <i>Affects</i> .Child}
JRA	hasChild	$con_{\mathcal{A}}(John)$	=	{Child}
Damages Affec	ts	con _A (Mary)	=	{Child}
w	∑ ↓ Mary	con _A (w)	=	{Joint}

(JRA, John) : *Affects* JRA : JuvArth (JRA, Mary) : *Affects* (John, Mary) : *hasChild* JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$ $\exists hasChild.T \sqsubseteq Adult$ Adult $\sqsubseteq \neg Child$ Arth $\sqsubseteq \exists Damages.Joint$ JuvArth $\sqsubseteq Arth \sqcap JuvDis$

	John	$con_A(JRA)$	=	{JuvArth, Arth, JuvDis, ∃ <i>Damages</i> .Joint,
Affects				∃ <i>Affects</i> .Child, ∀ <i>Affects</i> .Child}
JRA	hasChild	con _A (John)	=	{Child, Adult}
Damages Affects		con _A (Mary)	=	{Child}
w	∖ ↓ Mary	con _{<i>A</i>} (<i>w</i>)	=	{Joint}

(JRA, John) : *Affects* JRA : JuvArth (JRA, Mary) : *Affects* (John, Mary) : *hasChild* JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$ $\exists hasChild.T \sqsubseteq Adult$ Adult $\sqsubseteq \neg Child$ Arth $\sqsubseteq \exists Damages.Joint$ JuvArth $\sqsubseteq Arth \sqcap JuvDis$

Jo	hn	$con_{\mathcal{A}}(JRA)$	=	{JuvArth, Arth, JuvDis, ∃ <i>Damages</i> .Joint,
Affects				∃ <i>Affects</i> .Child, ∀ <i>Affects</i> .Child}
JRA	hasChild	$con_\mathcal{A}(John)$	=	{Child, Adult, ¬Child}
Damages Affects		con _A (Mary)	=	{Child}
2	↓ ary	con _A (w)	=	{Joint}

(JRA, John) : *Affects* JRA : JuvArth (JRA, Mary) : *Affects* (John, Mary) : *hasChild* JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$ $\exists hasChild.T \sqsubseteq Adult$ Adult $\sqsubseteq \neg Child$ Arth $\sqsubseteq \exists Damages.Joint$ JuvArth $\sqsubseteq Arth \sqcap JuvDis$

Querying the Data

It does not make sense to query an inconsistent ${\mathcal K}$ (previous example)

- An inconsistent $\mathcal K$ entails all formulas.
- We (typically) fix inconsistencies before we start asking queries.

Once we have determined that ${\mathcal K}$ is consistent, we want to query the data:

- Which children are affected by a juvenile arthritis?
- Which drugs are used to treat JRA?
- Who is affected by an arthritis and is allergic to steroids?

Similar to the types of queries one would pose to a database.

SELECT Child.cname
FROM Child, Affects, JuvArth
WHERE Child.cname = Affects.cname AND
Affects.dname = JuvArth.dname

Querying the Data: Simple Queries (1)

The basic data queries ask for all the instances of a concept:

 $q_1(x) = \text{Child}(x)$ Set of children? $q_2(x) = (\text{Dis} \sqcap \exists Damages.\text{Joint})(x)$ Set of diseases affecting a joint?

How to (naively) answer these queries? Try each individual name!

ABox \mathcal{A} TBox \mathfrak{T} $(\mathfrak{K} = (\mathfrak{T}, \mathcal{A}))$ (JRA, John): AffectsJuvDis $\sqsubseteq \exists Affects. Child \sqcap \forall Affects. Child$ JRA: JuvArthAdult $\sqsubseteq \neg Child$ (JRA, Mary): AffectsArth $\sqsubseteq \exists Damages. Joint$ JuvArth $\sqsubseteq Arth \sqcap JuvDis$ $\mathcal{K} \models JRA: Child?$ No.No.JRA is not an answer to q_1 $\mathcal{K} \models John: Child?$ Yes!John is an answer to q_1 $\mathcal{K} \models Mary: Child?$

Querying the Data: Simple Queries (2)

So, we are interested in the following decision problem:

Concept Instance Checking: Given individual name a, concept C and KB \mathcal{K} , an instance is a triple $\langle a, C, \mathcal{K} \rangle$. The answer is true iff $\mathcal{K} \models a : C$

 $\label{eq:constraint} \begin{array}{ll} \mbox{In \mathcal{ALC} (and extensions) this problem is reducible to KB consistency:} \\ (\ensuremath{\mathfrak{T}},\ensuremath{\mathcal{A}}) \models a: C & \mbox{iff} & (\ensuremath{\mathfrak{T}},\ensuremath{\mathcal{A}} \cup & \ensuremath{)} \mbox{inconsistent} \end{array} \right) inconsistent$

Querying the Data: Simple Queries (2)

So, we are interested in the following decision problem:

Concept Instance Checking: Given individual name a, concept C and KB \mathcal{K} , an instance is a triple $\langle a, C, \mathcal{K} \rangle$. The answer is true iff $\mathcal{K} \models a : C$

 $\label{eq:stars} \begin{array}{l} \mbox{In \mathcal{ALC} (and extensions) this problem is reducible to KB consistency:} \\ (\mathfrak{T},\mathcal{A}) \models a: C \qquad \mbox{iff} \qquad (\mathfrak{T},\mathcal{A} \cup \{a: \neg C\}) \mbox{ inconsistent} \end{array}$

Note that we can assume, w.l.o.g., that *C* is a concept name:

 $(\mathfrak{T}, \mathcal{A}) \models a: C$ iff $(\mathfrak{T} \cup \{X \equiv C\}, \mathcal{A}) \models a: X$

where X is a concept name that does not occur in \mathcal{T} or \mathcal{A} .

Querying the Data: Simple Queries (3)

What about instances of a role:

 $\mathcal{K} \models$ (John, John): has Child?

 $\mathcal{K} \models$ (lohn, IRA): hasChild?

 $q_2(x, y) = hasChild(x, y)$ Set of parent-child tuples?

How to (naively) answer these queries? Try each pair of individuals!

ABox A IRA: JuvArth (IRA, Mary): Affects (John, Mary): hasChild

TBox T $(\mathcal{K} = (\mathcal{T}, \mathcal{A}))$ $|uvDis \Box \exists Affects.Child \Box \forall Affects.Child$ Adult $\Box \neg$ Child Arth $\Box \exists Damages.$ Joint $|uvArth \Box Arth \Box |uvDis$ *No.* (John, John) is not an answer to q_2 $\mathcal{K} \models$ (John, Mary): has Child? Yes! (John, Mary) is an answer to q_2 *No.* (lohn, lohn) is not an answer to q_2

. . .

Querying the Data: Simple Queries (4)

So, we are interested in the following decision problem:

Role Instance Checking:

Given a pair of individual names (a, b), role *R* and KB \mathcal{K} , an instance is a triple $\langle (a, b), R, \mathcal{K} \rangle$. The answer is true iff $\mathcal{K} \models (a, b)$: *R*

Can this problem be reduced to knowledge base consistency?

 $(\mathfrak{T}, \mathcal{A}) \models (a, b): R \quad \text{iff} \quad (\mathfrak{T}, \mathcal{A} \cup \mathcal{A})$

) is inconsistent

Querying the Data: Simple Queries (4)

So, we are interested in the following decision problem:

Role Instance Checking:

Given a pair of individual names (a, b), role *R* and KB \mathcal{K} , an instance is a triple $\langle (a, b), R, \mathcal{K} \rangle$. The answer is true iff $\mathcal{K} \models (a, b)$: *R*

Can this problem be reduced to knowledge base consistency?

 $(\mathfrak{T}, \mathcal{A}) \models (a, b): R$ iff $(\mathfrak{T}, \mathcal{A} \cup \{a: \forall R.X, b: \neg X\})$ is inconsistent

where X is a concept name that does not occur in ${\mathfrak T}$ or ${\mathcal A}.$

Limitations of Concept-based Queries

Some natural queries cannot be expressed using a concept:

 $q(y) = \exists x \exists z (Affects(x, y) \land Affects(x, z) \land hasFriend(y, z))$

Set of people (y) affected by the same disease as a friend?

Query Graph:

We can only represent tree-like queries as concepts Related to the tree model property of DLs

We need a more expressive query language ...

Conjunctive Queries

The language of conjunctive queries

- Generalises concept-based queries in a natural way arbitrarily-shaped queries vs. tree-like queries
- Widely used as a query language in databases
 Corresponds to Select-Project-Join fragment of relational algebra
 Fragment of relational calculus using only ∃ and ∧
- Implemented in most DBMS

We next study the problem of CQ answering over DL knowledge bases

We will not study the problem of answering FOL queries over DL KBs ~ Corresponds to general relational calculus queries. ~ Leads to an undecidable decision problem.

Conjunctive Queries – Definition

Conjunctive query

Let **V** be a set of variables. A term *t* is a variable from **V** or an individual name from **I**.

A conjunctive query (CQ) q has the form $\exists x_1 \cdots \exists x_k (a_1 \land \cdots \land a_n)$ where

- $k \ge 0, n \ge 1, x_1, ..., x_k \in \mathbf{V}$
- each α_i is a concept atom A(t) or a role atom r(t, t') with $A \in \mathbf{C}$, $r \in \mathbf{R}$, and t, t' terms
- x₁,..., x_k are called quantified variables;
 all other variables in *q* are called answer variables
- the arity of *q* is the number of answer variables
- *q* is called Boolean if it has arity zero

To indicate that the answer variables in a CQ q are \vec{x} , we often write $q(\vec{x})$ instead of just q.

Example Conjunctive Queries

1. Return all pairs of individual names (*a*, *b*) such that *a* is a professor who supervises student *b*:

 $q_1(x_1, x_2) = Professor(\underline{x_1}) \land supervises(\underline{x_1}, \underline{x_2}) \land Student(\underline{x_2}).$

2. Return all individual names *a* such that *a* is a student supervised by some professor:

 $q_2(x) = \exists y (Professor(y) \land supervises(y, \underline{x}) \land Student(\underline{x})).$

3. Return all pairs of students supervised by the same professor:

 $q_{3}(x_{1}, x_{2}) = \exists y (Professor(y) \land supervises(y, \underline{x_{1}}) \land supervises(y, \underline{x_{2}}) \land$ Student($\underline{x_{1}}$) \land Student($\underline{x_{2}}$)).

4. Return all students supervised by professor smith (an individual name):

 $q_4(x) =$ supervises(smith, \underline{x}) \land Student(\underline{x}).

Answers on an Interpretation

We first define query answers on a given interpretation J.

Definition

Let q be a conjunctive query and \mathcal{I} an interpretation. We use term(q) to denote the terms in q.

A match of q in \mathcal{I} is a mapping π : term(q) $\rightarrow \Delta^{\mathcal{I}}$ such that

- $\pi(a) = a^{\mathcal{I}}$ for all $a \in \text{term}(q) \cap I$,
- $\pi(t) \in A^{\mathcal{I}}$ for all concept atoms A(t) in q, and
- $(\pi(t_1), \pi(t_2)) \in r^{\mathcal{I}}$ for all role atoms $r(t_1, t_2)$ in q.

Let $\vec{x} = x_1, \ldots, x_k$ be the answer variables in q and $\vec{a} = a_1, \ldots, a_k$ be individual names from **I**. We call the match π of q in \mathfrak{I} an \vec{a} -match if $\pi(x_i) = a_i^{\mathfrak{I}}$ for $1 \le i \le k$.

We say that \vec{a} is an answer to q on \mathcal{I} if there is an \vec{a} -match π of q in \mathcal{I} . We use ans (q, \mathcal{I}) to denote the set of all answers to q on \mathcal{I} .

Answers on Interpretation ${\mathfrak I}$

 $q_2(x) = \exists y (Professor(y) \land supervises(y, \underline{x}) \land Student(\underline{x}))$

There are 3 answers to $q_2(x)$ on J: mark, alex, and lily. Note that a match is a homomorphism from the query to the interpretation (both viewed as a graphs).

Slide 17 of 30

Answers on Interpretation ${\mathfrak I}$

 $q_{3}(x_{1}, x_{2}) = \exists y (Professor(y) \land supervises(y, \underline{x_{1}}) \land supervises(y, \underline{x_{2}}) \land Student(\underline{x_{1}}) \land Student(\underline{x_{2}})).$

There are 7 answers to $q_3(x_1, x_2)$ on \mathcal{I} , including (mark, alex), (alex, lily), (lily, alex) and (mark, mark). Note that a match need not be injective.

Certain Answers

Usually we are interested in answers on a KB, which may have many models. In this case, so-called certain answers provide a natural semantics.

Definition

Let q be a CQ and $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be a KB.

We say that \vec{a} is a certain answer to q on \mathcal{K} if

- all individual names from \vec{a} occur in A
- $\vec{a} \in ans(q, \mathcal{I})$ for every model \mathcal{I} of \mathcal{K}

We use $cert(q, \mathcal{K})$ to denote the set of all certain answers to q on \mathcal{K} :

 $\operatorname{cert}(q, \mathcal{K}) = \bigcap_{\mathcal{I} \models \mathcal{K}} \operatorname{ans}(q, \mathcal{I})$

Consider the $ALCI KB \mathcal{K} = (\mathcal{T}, A)$:

- $\mathcal{T} = \{$ Student $\sqsubseteq \exists supervises^{-}$.Professor $\}$,
- A = {smith: Professor, mark: Student, alex: Student, lily: Student, (smith, mark): supervises, (smith, alex): supervises}.
- $q_4(x) = \text{supervises(smith, } \underline{x}) \land \text{Student}(\underline{x});$
- $q_2(x) = \exists y (Professor(y) \land supervises(y, \underline{x}) \land Student(\underline{x}));$

• $q_1(x_1, x_2) = \text{Professor}(\underline{x_1}) \land \text{supervises}(\underline{x_1}, \underline{x_2}) \land \text{Student}(\underline{x_2});$

Consider the $ALCI KB \mathcal{K} = (\mathcal{T}, A)$:

- $\mathcal{T} = \{$ Student $\sqsubseteq \exists supervises^{-}$.Professor $\}$,
- A = {smith: Professor, mark: Student, alex: Student, lily: Student, (smith, mark): supervises, (smith, alex): supervises}.
- q₄(x) = supervises(smith, <u>x</u>) ∧ Student(<u>x</u>); cert(q₄, *K*) = {mark, alex}: there are models of *K* in which smith supervises other students, but only mark and alex are supervised by smith in *all* models.
- $q_2(x) = \exists y (Professor(y) \land supervises(y, \underline{x}) \land Student(\underline{x}));$

• $q_1(x_1, x_2) = \text{Professor}(\underline{x_1}) \land \text{supervises}(\underline{x_1}, \underline{x_2}) \land \text{Student}(\underline{x_2});$

Consider the $ALCI KB \mathcal{K} = (\mathcal{T}, A)$:

- $\mathcal{T} = \{$ Student $\sqsubseteq \exists supervises^{-}$.Professor $\}$,
- A = {smith: Professor, mark: Student, alex: Student, lily: Student, (smith, mark): supervises, (smith, alex): supervises}.
- q₄(x) = supervises(smith, <u>x</u>) ∧ Student(<u>x</u>); cert(q₄, K) = {mark, alex}: there are models of K in which smith supervises other students, but only mark and alex are supervised by smith in *all* models.
- q₂(x) = ∃y(Professor(y) ∧ supervises(y, <u>x</u>) ∧ Student(<u>x</u>)); cert(q₂, K) = {mark, alex, lily}: note that lily is included because she is a student and thus the TBox enforces that in every model of K she has a supervisor who is a professor.
- $q_1(x_1, x_2) = \text{Professor}(\underline{x_1}) \land \text{supervises}(\underline{x_1}, \underline{x_2}) \land \text{Student}(\underline{x_2});$

Consider the $ALCI KB \mathcal{K} = (\mathcal{T}, A)$:

- $\mathcal{T} = \{$ Student $\sqsubseteq \exists supervises^{-}$.Professor $\}$,
- A = {smith:Professor,mark:Student,alex:Student,lily:Student, (smith,mark):supervises,(smith,alex):supervises}.
- *q*₄(*x*) = supervises(smith, <u>x</u>) ∧ Student(<u>x</u>); cert(*q*₄, *K*) = {mark, alex}: there are models of *K* in which smith supervises other students, but only mark and alex are supervised by smith in *all* models.
- q₂(x) = ∃y(Professor(y) ∧ supervises(y, <u>x</u>) ∧ Student(<u>x</u>)); cert(q₂, K) = {mark, alex, lily}: note that lily is included because she is a student and thus the TBox enforces that in every model of K she has a supervisor who is a professor.
- $q_1(x_1, x_2) = \text{Professor}(\underline{x_1}) \land \text{supervises}(\underline{x_1}, \underline{x_2}) \land \text{Student}(\underline{x_2});$ $\text{cert}(q_1, \mathcal{K}) = \{(\text{smith, mark}), (\text{smith, alex})\}: \text{lily always has a supervisor},$ but there is no supervisor (known by name) on which all models agree.

Boolean Conjunctive Query Answering

(Arbitrary) CQ answering reduces to Boolean CQ answering:

Given query q of arity n and $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ in which m individual names occur.

- Iterate through *mⁿ* tuples of arity *n*
- For each tuple $\vec{a} = (a_1, ..., a_n)$ create a Boolean query $q_{\vec{a}}$ by replacing the *i*th answer variable with a_i
- $\vec{a} \in \operatorname{cert}(q, \mathcal{K})$ iff $\mathcal{K} \models q_{\vec{a}}$

Boolean Conjunctive Query Entailment:

An instance is a pair $\langle \mathcal{K}, q \rangle$ with \mathcal{K} a KB and q a Boolean CQ. The answer is true iff $\mathcal{I} \models q$ for each $\mathcal{I} \models \mathcal{K}$.

This problem is not trivially reducible to knowledge base consistency.

It is ExpTime-complete for \mathcal{ALC} , the same as consistency. (proof beyond this course)

Boolean Conjunctive Query Answering

Many types of query can be reduced to KB consistency:

- Concept and role instance queries, e.g., q() = C(a) and q() = r(a, b)
- Fully ground queries, e.g., $q() = C(a) \wedge D(b) \wedge r(a, b)$ check each atom independently
- Forest shaped queries, e.g., $q() = \exists x(C(a) \land D(x) \land r(a, x))$ roll up tree parts of query

Reduction may or may not be possible in general (possible for SHJQ; open problem for SHOJQ).

 $q_1 = Affects(|RA, Mary)$ $q_2 = \text{Child}(\text{Mary})$

 $q_3 = \text{Adult}(\text{Mary})$

 $q_4 = \exists y (Damages(| RA, y) \land Organ(y))$

 $\mathcal{A} \models q_1$ Yes

Conjunctive Query Answering (1)

How to interpret the answer to a Boolean Query?

ABox A: (JRA, John) : Affects JRA : JuvArth (JRA, Mary): Affects

TBox \mathcal{T} : JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$ Adult $\Box \neg$ Child Arth $\sqsubseteq \exists Damages.$ Joint JuvArth \sqsubseteq Arth \sqcap JuvDis

 $(\mathcal{K} = (\mathcal{T}, \mathcal{A}))$

Slide 22 of 30

JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$

 $q_2 = \text{Child}(\text{Mary})$

 $q_1 = Affects(|RA, Mary)$

 $q_3 = \text{Adult}(\text{Mary})$

 $q_4 = \exists y (Damages(| RA, y) \land Organ(y))$

 $\mathcal{A} \models q_1$ Yes $\mathcal{A} \not\models q_2, \mathcal{A} \not\models \neg q_2$???

How to interpret the answer to a Boolean Query? $(\mathcal{K} = (\mathcal{T}, \mathcal{A}))$ TBox \mathcal{T} :

Adult $\Box \neg$ Child

Arth $\sqsubseteq \exists Damages.$ Joint

 $JuvArth \sqsubseteq Arth \sqcap JuvDis$

Conjunctive Query Answering (1)

(JRA, John) : Affects IRA : JuvArth (JRA, Mary): Affects

ABox A:

 $(\mathcal{K} = (\mathcal{T}, \mathcal{A}))$

- $q_3 = \text{Adult}(\text{Mary})$
- $q_2 = \text{Child}(\text{Mary})$
- $q_1 = Affects(|RA, Mary)$

(JRA, John) : Affects

(JRA, Mary) : Affects

ABox A:

 $q_4 = \exists y (Damages(| RA, y) \land Organ(y))$

JRA : JuvArth

TBox \mathcal{T} :

Adult $\Box \neg$ Child

JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$

Arth $\sqsubseteq \exists Damages.$ Joint

 $JuvArth \sqsubseteq Arth \sqcap JuvDis$

 $\mathcal{A} \models q_1$ Yes $\mathcal{A} \not\models q_2, \mathcal{A} \not\models \neg q_2$??? $\mathcal{K} \models q_2$ Yes

How to interpret the answer to a Boolean Query?

- $q_1 = Affects(|RA, Mary)$
- $q_2 = \text{Child}(\text{Mary})$

IRA : JuvArth

 $q_3 = \text{Adult}(\text{Mary})$

(JRA, John) : Affects

(IRA, Mary) : Affects

ABox A:

 $q_4 = \exists y (Damages(| RA, y) \land Organ(y))$

- $\mathcal{A} \models q_1$ Yes $\mathcal{A} \not\models q_2, \mathcal{A} \not\models \neg q_2$??? $\mathcal{K} \models q_2$ Yes $\mathcal{A} \not\models q_3, \mathcal{A} \not\models \neg q_3$???
- TBox \mathcal{T} : JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$ Adult $\Box \neg$ Child Arth $\sqsubseteq \exists Damages.$ Joint $JuvArth \sqsubseteq Arth \sqcap JuvDis$
- **Conjunctive Query Answering (1)** How to interpret the answer to a Boolean Query?

 $(\mathcal{K} = (\mathcal{T}, \mathcal{A}))$

Slide 22 of 30

 $\mathcal{A} \not\models q_3, \mathcal{A} \not\models \neg q_3$??? $q_4 = \exists y (Damages(| RA, y) \land Organ(y))$ $\mathcal{K} \models \neg q_3$ No

- $\mathcal{A} \models q_1$ Yes $\mathcal{A} \not\models q_2, \mathcal{A} \not\models \neg q_2$??? $\mathcal{K} \models q_2$ Yes

- $JuvArth \sqsubseteq Arth \sqcap JuvDis$

JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$

Arth $\sqsubseteq \exists Damages.$ Joint

Adult $\Box \neg$ Child

Conjunctive Query Answering (1) How to interpret the answer to a Boolean Query?

TBox \mathcal{T} :

ABox A:
(JRA, John): Affects
JRA : JuvArth
(JRA, Mary): Affects

 $q_1 = Affects(|RA, Mary)$

 $q_2 = \text{Child}(\text{Mary})$

 $q_3 = \text{Adult}(\text{Mary})$

 $(\mathcal{K} = (\mathcal{T}, \mathcal{A}))$

ABox A:

(JRA, John) : Affects

(IRA, Mary) : Affects

 $q_2 = \text{Child}(\text{Mary})$

 $q_3 = \text{Adult}(\text{Mary})$

IRA : JuvArth

 $\mathcal{A} \models q_1$ Yes $q_1 = Affects(|RA, Mary)$ $\mathcal{A} \not\models \mathbf{q}_2, \mathcal{A} \not\models \neg \mathbf{q}_2$ $\mathcal{K} \models q_2$ Yes $\mathcal{A} \not\models q_3, \mathcal{A} \not\models \neg q_3$ $q_4 = \exists y (Damages(| RA, y) \land Organ(y))$ $\mathcal{K} \models \neg q_3$ $\mathcal{A} \not\models q_{\mathcal{A}}, \mathcal{A} \not\models \neg q_{\mathcal{A}}$

 $IuvArth \Box Arth \Box IuvDis$

TBox \mathcal{T} : JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$ Adult $\Box \neg$ Child Arth $\sqsubseteq \exists Damages.$ Joint

 $(\mathcal{K} = (\mathcal{T}, \mathcal{A}))$

???

???

No

???

Conjunctive Query Answering (1)

How to interpret the answer to a Boolean Query?

IRA : JuvArth Adult $\Box \neg$ Child

Conjunctive Query Answering (1)

How to interpret the answer to a Boolean Query?

TBox \mathcal{T} : JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$ Arth $\sqsubseteq \exists Damages.$]oint $IuvArth \Box Arth \Box IuvDis$

- $q_1 = Affects(|RA, Mary)$ $q_2 = \text{Child}(\text{Mary})$ $q_3 = \text{Adult}(\text{Mary})$ $q_4 = \exists y (Damages(| RA, y) \land Organ(y))$
- $\mathcal{A} \not\models q_3, \mathcal{A} \not\models \neg q_3$??? $\mathcal{K} \models \neg q_3$ No $\mathcal{A} \not\models q_{\mathcal{A}}, \mathcal{A} \not\models \neg q_{\mathcal{A}}$??? $\mathcal{K} \not\models q_4, \mathcal{K} \not\models \neg q_4$???

 $\mathcal{A} \models q_1$ Yes

 $\mathcal{K} \models q_2$ Yes

???

 $\mathcal{A} \not\models \mathbf{q}_2, \mathcal{A} \not\models \neg \mathbf{q}_2$

 $(\mathcal{K} = (\mathcal{T}, \mathcal{A}))$

 $\mathcal A$ is seen as a FOL knowledge base, but $\mathcal D$ is seen as a FOL model:

- $q_1 = Affects(JRA, Mary)$
- q_2 = Child(Mary)
- $q_3 = \text{Adult(Mary)}$
- $q_4 = \exists y (Damages(JRA, y) \land Organ(y))$

 $\mathcal{A} \models q_1$ Yes

 ${\mathcal A}$ is seen as a FOL knowledge base, but ${\mathfrak D}$ is seen as a FOL model:

 $q_4 = \exists y (Damages(JRA, y) \land Organ(y))$

ABox A	Database \mathcal{D}
(JRA, John): <i>Affects</i> JRA: JuvArth (JRA, Mary): <i>Affects</i>	AffectsJuvArthritisJRAJohnJRAJRAMary
$q_1 = Affects(JRA, Mary)$ $q_2 = Child(Mary)$ $q_3 = Adult(Mary)$ $q_4 = \exists y(Damages(JRA, y) \land Org$	$\begin{array}{ccc} \mathcal{A}\models q_1 & Yes \\ \mathbb{D}\models q_1 & Yes \\ \mathcal{A}\not\models q_2, \mathcal{A}\not\models \neg q_2 & ??? \\ \mathbb{D}\not\models q_2 & No \end{array}$

ABox A	Database \mathcal{D}
(JRA, John): <i>Affects</i> JRA: JuvArth (JRA, Mary): <i>Affects</i>	AffectsJuvArthritisJRAJohnJRAJRAMary
$q_1 = Affects(JRA, Mary)$ $q_2 = Child(Mary)$ $q_3 = Adult(Mary)$ $q_4 = \exists y(Damages(JRA, y) \land Or)$	$\begin{array}{ccc} \mathcal{A} \models q_1 & \text{Yes} \\ \mathcal{D} \models q_1 & \text{Yes} \\ \mathcal{A} \not\models q_2, \mathcal{A} \not\models \neg q_2 & \ref{algorithmatrix} \\ \mathcal{D} \not\models q_2 & \mathcal{No} \\ gan(y)) & \mathcal{A} \not\models q_3, \mathcal{A} \not\models \neg q_3 & \ref{algorithmatrix} \end{array}$

ABox A	Database D
(JRA, John): <i>Affects</i> JRA: JuvArth (JRA, Mary): <i>Affects</i>	<i>Affects</i> JuvArthritis JRA John JRA JRA Mary
$q_1 = Affects(JRA, Mary)$ $q_2 = Child(Mary)$ $q_3 = Adult(Mary)$ $q_4 = \exists y(Damages(JRA, y) \land Org$	$\begin{array}{c} \mathcal{A} \models q_1 \text{Yes} \\ \mathcal{D} \models q_1 \text{Yes} \\ \mathcal{A} \not\models q_2, \mathcal{A} \not\models \neg q_2 ??? \\ \mathcal{D} \not\models q_2 No \\ \mathcal{A} \not\models q_3, \mathcal{A} \not\models \neg q_3 ??? \\ \mathcal{D} \not\models q_3 No \end{array}$

ABox A	Databas	e D		
(JRA, John): <i>Affects</i> JRA: JuvArth (JRA, Mary): <i>Affects</i>	<i>Affects</i> JRA JRA	John Mary	JuvArthritis JRA	
$q_1 = Affects(JRA, Mary)$ $q_2 = Child(Mary)$ $q_3 = Adult(Mary)$ $q_4 = \exists y(Damages(JRA, y) \land Org$	an(<i>y</i>))		$ \begin{array}{c} \mathcal{D} \not\models q_2 \\ \mathcal{A} \not\models q_3, \mathcal{A} \not\models \neg q_3 \\ \mathcal{D} \not\models q_3 \end{array} $	Yes Yes ??? No ??? No ???

ABox A	Databas	e D		
(JRA, John): <i>Affects</i> JRA: JuvArth (JRA, Mary): <i>Affects</i>	<i>Affects</i> JRA JRA	John Mary	JuvArthritis JRA	
$q_1 = Affects(JRA, Mary)$ $q_2 = Child(Mary)$ $q_3 = Adult(Mary)$ $q_4 = \exists y(Damages(JRA, y) \land Org$	an(<i>y</i>))		$\begin{array}{c} \mathcal{A} \models q_1 \\ \mathcal{D} \models q_1 \\ \mathcal{A} \not\models q_2, \mathcal{A} \not\models \neg q_2 \\ \mathcal{D} \not\models q_2 \\ \mathcal{A} \not\models q_3, \mathcal{A} \not\models \neg q_3 \\ \mathcal{D} \not\models q_3 \\ \mathcal{A} \not\models q_4, \mathcal{A} \not\models \neg q_4 \\ \mathcal{D} \not\models q_4 \end{array}$	Yes Yes ??? No ??? No ??? No

Ontologies vs. Database Systems

Conceptual DB-Schema:

- Typically formulated as an ER or UML diagram (used in DB design)
- Schema leads to a set of FOL-based constraints
- Constraints are used to check conformance of the data

Description Logic TBoxes:

- Formulated in a Description Logic (fragment of FOL)
- TBox axioms are used to check conformance of the data The way this is done differs from DBs
- TBox axioms participate in query answering

 ~> In description logics, query answering is a FOL *entailment* problem.

KB Consistency: Practicality Issues

- Addition of ABox may greatly exacerbate practicality problems
 - No obvious limit to size of data could be millions or even billions of individuals
 - Tableau algorithm applied to whole ABox
- Optimisations can ameliorate but not eliminate problem
- Can exploit decomposition of an ABox:
 - A can be decomposed into a set of disjoint connected components $\{A_1, \ldots, A_n\}$ such that:

 $\mathcal{A} = \mathcal{A}_1 \cup \ldots \cup \mathcal{A}_n$ $\forall_{1 \le i < j \le n} \operatorname{ind}(\mathcal{A}_i) \cap \operatorname{ind}(\mathcal{A}_j) = \emptyset$

where ind(A_i) is the set of individuals (constants) occurring in A_i

An ALC KB (T, A) is consistent iff (T, A_i) is consistent for each A_i in a decomposition {A₁,..., A_n} of A

ABox Decomposition: Example

JRA : JuvArth (JRA, Mary) : *Affects* (John, Mary) : *hasChild* (Paul, Miranda) : *hasChild* Paul : Adult $JuvDis \sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child \\ \exists hasChild.T \sqsubseteq Adult \\ Adult \sqsubseteq \neg Child \\ Arth \sqsubseteq \exists Damages.Joint \\ JuvArth \sqsubseteq Arth \sqcap JuvDis \end{cases}$

ABox Decomposition: Example

JRA : JuvArth (JRA, Mary) : *Affects* (John, Mary) : *hasChild* (Paul, Miranda) : *hasChild* Paul : Adult $JuvDis \sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child \\ \exists hasChild.\top \sqsubseteq Adult \\ Adult \sqsubseteq \neg Child \\ Arth \sqsubseteq \exists Damages.Joint \\ JuvArth \sqsubseteq Arth \sqcap JuvDis \end{cases}$

Perform separate consistency tests on the disjoint connected components:

Description Logics – Reasoning with Data (Lecture 6) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

Query Answering: Practicality Issues

• Recall our example query

 $q(y) = \exists x \exists z (Affects(x, y) \land Affects(x, z) \land hasFriend(y, z))$

- To answer this query we have to:
 - check for each individual *a* occurring in A if $(T, A) \models q_{[y/a]}$, where $q_{[y/a]}$ is the Boolean CQ

 $q() = \exists x \exists z (Affects(x, a) \land Affects(x, z) \land hasFriend(a, z))$

- checking ($\mathfrak{T}, \mathcal{A}$) $\models q_{[y/a]}$ involves performing (possibly many) consistency tests
- each test could be very costly
- And what if we change the query to

 $q(x, y, z) = Affects(x, y) \land Affects(x, z) \land hasFriend(y, z)?$

• In general, there are n^m "candidate" answer tuples, where *n* is the number of individuals occurring in A and *m* the arity of the query

Optimised Query Answering

Many optimisations are possible, for example:

- Exploit the fact that we can't entail ABox roles in \mathcal{ALC} , that is:

 $(\mathcal{T}, \mathcal{A}) \models R(a, b) \text{ iff } R(a, b) \in \mathcal{A}$

- Only check candidate tuples with relevant relational structure
- So for

 $q(y, z) = \exists x (JuvArth(x) \land Affects(x, y) \land hasFriend(y, z))$

only check tuples (a, b) such that

 $hasFriend(a, b) \in A$

and for these only need to check Boolean CQ:

 $\exists x (JuvArth(x) \land Affects(x, a) \land Affects(x, b))$

Conflicting Requirements

Ontology-based data access applications require:

- 1. Very expressive ontology languages As large fragment of FOL as possible
- 2. Powerful query languages

As large fragment of SQL as possible

3. Efficient query answering algorithms Low complexity, easy to optimise

The requirements are in conflict!

~ We need to make compromises.

Conclusion

- DL KB consistency can be decided using tableau algorithms
 >> Idea: Make implicit inconsistencies explicit/construct model
- Query answering for DL KBs is understood as FOL entailment
- Conjunctive Queries constitute natural query language
- CQs induce answers on a single interpretation, and *certain answers* on a KB
- Boolean CQ Entailment is not trivially reducible to KB consistency
- In contrast, CQ Entailment in databases is understood as FOL *model checking*

