Space Complexity Space Complexity Review

Complexity Theory
Space Complexity J

Daniel Borchnmann, Markus Krotzsch Review

Computational Logic

2015-11-25

©®O

©@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-11-25 #1 ©@@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-11-25 #2
Space Complexity Space Complexity Space Complexity Space Complexity

Review: Space Complexity Classes

Recall our earlier definition of space complexities:

Definition 10.1
Let f : N — R™ be a function.

» DSpaci(f(n)) is the class of all languages £ for which there is an
O(f(n))-space bounded Turing machine deciding L.

» NSpraci(f(n)) is the class of all languages £ for which there is an
O(f(n))-space bounded nondeterministic Turing machine deciding L.

Space Complexity

Being O(f(n))-space bounded requires a (nondeterministic) TM
» to halt on every input and
> to use <f(|w|) tape cells on every computation path.

@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-11-25 #3 @@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-11-25 #4



Space Complexity Space Complexity Space Complexity Space Complexity

Space Complexity Classes The Power Of Space
Some important space complexity classes: Space seems to be more powerful than time
because space can be reused.
L = LoGSpPACE = DSPACE(log n) logarithmic space
PSPACE = U DSpaci(n?) polynomial space Example 10.2
o= Sat can be solved in linear space:
EXPSPACE = U DSpace(2™) exponential space Just iterate over all possible truth assignments (each linear in size) and
dx1 check if one satisfies the formula.
NL = NLoGSPACE = NSpacE(log n) nondet. logarithmic space Example 10.3
NPSPACE = U NSprace(n®) nondet. polynomial space TAUTO_LOGY can be solved _In linear Spa(_:e: ] o
d>1 Just iterate over all possible truth assignments (each linear in size) and
check if all satisfy the formula.
NEXPSPACE = U NSPACE(Z"d) nondet. exponential space y
o1 More generally: NP € PSPACE and CONP C PSPACE

©@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-11-25 #5 ©@@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-11-25 #6
Space Complexity Space Complexity Space Complexity Space Complexity

Linear Compression Tape Reduction

Theorem 10.5

Theorem 10.4 For every functionf : N — R™ allk > 1 and £ C ¥*:

For every function f : N — R, for all c € N, and for every f-space

bounded (deterministic/nondeterminsitic) Turing machine M: If L can be decided by an f-space bounded k-tape Turing-machine,

there is a max{1, %f(n)}—space bounded (deterministic/nondeterminsitic) it can also be decided by an f-space bounded 1-tape Turing-machine

Turing machine M’ that accepts the same language as M.

Proof idea.
Proof idea. Cor.r:jbli.ne tapes with a similar reduction as for time. Compress space to
Similar to (but much simpler than) linear speed-up. O avoldlinear increase. -
This justifies using O-notation for defining space classes. Recall that we still use a separate read-only input tape to define some

space complexities, such as LOGSPACE.

@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-11-25 #7 @@®® 2015 Daniel Borchmann, Markus Krétzsch

Complexity Theory 2015-11-25 #8



Space Complexity Space Complexity Space Complexity Space Complexity

Time vs. Space Number of Possible Configurations
Theorem 10.6 Let M = (Q, %, T, qo. 3, gstart) be a 2-tape Turing machine
For all functions f : N — R* (1 read-only input tape + 1 work tape)
DTime(f) € DSpace(f) and  NTime(f) C NSeace(f) Recall: A configuration of M is a quadruple (g, p1, p2, x) where
» g € Q is the current state,
P.ro.o.f. . > p; € N is the head position on tape i, and
Visiting a cell takes at least one time step. O .
» x € [ is the tape content.
Theorem 10.7 Let w € 2 be an input to M and n := |w|. Then also py < n.
For all functions f : N — R* with f(n) > log n: If M is f(n)-space bounded we can assume p; < f(n) and |x| < f(n)
DSeace(f) € DTime(2°())  and ~ NSeace(f) < DTime(20()) Hence, there are at most
Proof. Q|- n-f(n)-|Ff("M = p.200M) = 20(i(n)
Based on configuration graphs and a bound on the number of possible different configurations on inputs of length n
configurations. (the last equality requires f(n) > log n).
©@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-11-25 #9 ©@@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-11-25 #10
Space Complexity Space Complexity Space Complexity
Configuration Graphs Time vs. Space
The possible computations of a TM M (on input w) form a directed graph: Theorem 10.6
> Vertices: configurations that M can reach (on input w) For all functions f - N — R*:
» Edges: there is an edge from Cq to Cy if Cq Fp Co
(Cs reachable from C; in a single step) DTime(f) € DSpace(f) and  NTime(f) € NSpacg(f)
This yields the.co.n?‘lgL.Jratlon graph Proof.
> Could be infinite in general. Visiting a cell takes at least one time step. O

> For f(n)-space bounded 2-tape TMs, there can be at most 2°((")
vertices and 2 - (20(1(M))2 — 20(f(")) edges Theorem 10.7

For all functions f : N — R* with f(n) > log n:
A computation of M on input w corresponds to a path in the configuration

graph from the start configuration to a stop configuration. DSpace(f) € DTme(2°())  and ~ NSpace(f) € DTime(2°())

Hence, to test if M accepts input w, Proof.

> construct the configuration graph and Based on configuration graphs and a bound on the number of possible
» find a path from the start to an accepting stop configuration. configurations.

@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-11-25 #11 @@®® 2015 Daniel Borchmann, Markus Krétzsch

Complexity Theory 2015-11-25 #12



Basic Space/Time Relationships Nondeterminism in Space

Most experts think that nondeterministic TMs can solve strictly more
problems when given the same amount of time than a deterministic TM:

Most believe that P ¢ NP
LCcNLCPcNP cPSpacet € NPSpack € ExpPTIME € NEXPTIME B

Applying the results of the previous slides, we get the following relations:

S|

inism in space- » B
We also noted P € CONP € PSPACE. How about nondeterminism in space-bounded TMs*

Theorem 10.8 (Savitch’s Theorem, 1970)

Open questions: For any function f : N — R™ with f(n) > log n:

» What is the relationship between space classes and their co-classes?

» What is the relationship between deterministic and non-deterministic NSpacE(f(n)) € DSPACE(f?(n)).
space classes?

That is: nondeterminism adds almost no power to space-bounded TMs!

®®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory PIGEERE-LIE I ©®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-11-25  #14
SRS VAl  Space Complexity (S O Val  Space Complexity

Consequences of Savitch’s Theorem Proving Savitch’s Theorem

Savitch’s Theorem: For any function f : N — R™ with f(n) > log n: Simulating nondeterminism with more space:

NSPACE(f(n)) DSPACE(fz(n)). » Use configuration graph of nondeterministic space-bounded TM

Corollary 10.9 » Check if an accepting configuration can be reached

PSPACE — NPSPACE. » Store only one computation path at a time (depth-first search)

This still requires exponential space. We want quadratic space!

Proof. What to do?

PSpraceE € NPSPACE is clear. The converse follows since the square of a

polynomial is still a polynomial. o Things we can do:

» Store one configuration:

» one configuration requires log n + O(f(n)) space
Corollary 10.10 » if f(n) > log n, then this is O(f(n)) space

NL ¢ DSpacg(O(log? n)). » Store log n configurations (remember we have log® n space)

Similarly for “bigger” classes, e.g., EXPSPACE = NEXPSPACE.

Note that log?(n) ¢ O(log n), so we do not obtain NL = L from this. > Iterate over all configurations (one by one)

@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-11-25 #15 @@®® 2015 Daniel Borchmann, Markus Krétzsch

Complexity Theory 2015-11-25 #16



Proving Savitch’s Theorem: Key Idea

To find out if we can reach an accepting configuration, we solve a slighly
more general question:

YIELDABILITY
Input:  TM configurations Cy and C,, integer k

Problem: Can TM get from Cy to Cy in at most k steps?

Approach: check if there is an intermediate configuration C” such that
(1) Cq canreach C’ in k/2 steps and
(2) C’ canreach Cy in k/2 steps

~> Deterministic: we can try all C’ (iteration)
~> Space-efficient: we can reuse the same space for both steps

©@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory

Space Complexity

Space Complexity

Space Requirement for the Algorithm

01 CanYreLp(Cq,Co,k) {

02 if k=1 :

03 return (C; = Co) or (Cqkp Co)

04 else if k>1 :

05 for each configuration C of M for input size n :
06 if CanYreLpn(Cy,C,k/2) and

07 CanYzeLn(C,Co,k/2) :

08 return true

09 // eventually, if no success:
10 return false
11}

» During iteration (line 85), we store one C in O(f(n))
» Calls in lines 06 and 07 can reuse the same space
» Maximum depth of recursive call stack: log, k

Overall space usage: O(f(n) - log k)

@@®® 2015 Daniel Borchmann, Markus Krétzsch

Complexity Theory 2015-11-25

2015-11-25 #17 ©@@®® 2015 Daniel Borchmann, Markus Krétzsch
Space Complexity Space Complexity

#19 @@®® 2015 Daniel Borchmann, Markus Krotzsch

An Algorithm for Yieldability

01 CanYIeLD(Cq,Co,k) {

09 // eventually, if no success:
10 return false
11 }

02 if k=1

03 return (Cq = C2) or (Cykp Co)

04 else if k> 1

05 for each configuration C of M for input size n :
06 if CanY1zeELD(Cy,C,k/2) and

07 CanYIeLp(C,Co,k/2)

08 return true

» We only call CanYieLp only with k a power of 2, so k/2 e N

Complexity Theory 2015-11-25

Simulating Nondeterministic Space-Bounded TMs

Input: TM M that runs in NSPACE(f(n)); input word w of length n

Algorithm:

> Modify M to have a unique accepting configuration Caccept
when accepting, erase tape and move head to the very left

» Select d such that 29'(") > |Q| - n - f(n) - |[|/(")

Space requirements:
CANYIELD runs in

O (f(n) - logk) = O(f(n) -log 2%(") = O(f(n) - df(n)) = O(f*(n))

Complexity Theory 2015-11-25

#18

#20



Did We Really Do 1t? Relationships of Space and Time

«“ df(n) .n- - T |f(n)»
Select d such that 2 >1Ql-n-f(n) T Summing up, we get the following relations:
How does the algorithm actually do this?

> f(n) was not part of the input! LCNLCPcNP cC PSpaCE = NPSpPACE € EXPTIME € NEXPTIME

» Even if we knew f, it might not be easy to compute! We also noted P € cONP C PSPACE.

Solution: replace f(n) by a parameter ¢ and probe its value Open questions:

(1) Startwith £ =1 » Is Savitch’s Theorem tight?

(2) Check if M can reach any configuration with more than ¢ tape cells > Are there any interesting problems in these space classes?
(iterate over all configurations of size ¢ + 1; use CanYieLp on each) » We have PSPACE = NPSPACE = CONPSPACE.

(3) If yes, increase ¢ by 1; goto (2) But what about L, NL, and cONL?

(4) Run algorithm as before, with f(n) replaced by ¢ ~» the first: nobody knows; the others: see upcoming lectures

Therefore: we don’t need to know f at all. This finishes the proof. O

©@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-11-25 #21 ©@@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-11-25 #22



