## Complexity Theory

Space Complexity

Daniel Borchmann, Markus Krötzsch

Computational Logic
2015-11-25
(c)(1)

## Review: Space Complexity Classes

Recall our earlier definition of space complexities:
Definition 10.1
Let $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function.

- $\operatorname{DSpace}(f(n))$ is the class of all languages $\mathcal{L}$ for which there is an $O(f(n))$-space bounded Turing machine deciding $\mathcal{L}$.
- $\operatorname{NSpACE}(f(n))$ is the class of all languages $\mathcal{L}$ for which there is an $O(f(n))$-space bounded nondeterministic Turing machine deciding $\mathcal{L}$.

Being $O(f(n))$-space bounded requires a (nondeterministic) TM

- to halt on every input and
- to use $\leq f(|w|)$ tape cells on every computation path.


## Space Complexity Classes

Some important space complexity classes:

$$
\begin{array}{rlr}
\mathrm{L}=\operatorname{LoGSPACE} & =\operatorname{DSPACE}(\log n) & \text { logarithmic space } \\
\operatorname{PSPACE} & =\bigcup_{d \geq 1} \operatorname{DSPACE}\left(n^{d}\right) & \text { polynomial space } \\
\operatorname{EXPSPACE} & =\bigcup_{d \geq 1} \operatorname{DSPACE}\left(2^{n^{d}}\right) & \text { exponential space } \\
\mathrm{NL}=\operatorname{NLOGSPACE} & =\operatorname{NSPACE}(\log n) & \text { nondet. logarithmic space } \\
\operatorname{NPSPACE} & =\bigcup_{d \geq 1} \operatorname{NSPACE}\left(n^{d}\right) & \text { nondet. polynomial space } \\
\operatorname{NEXPSPACE} & =\bigcup_{d \geq 1} \operatorname{NSPACE}\left(2^{n^{d}}\right) & \text { nondet. exponential space }
\end{array}
$$

## The Power Of Space

Space seems to be more powerful than time because space can be reused.

## Example 10.2

Sat can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if one satisfies the formula.

Example 10.3
Tautology can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if all satisfy the formula.

More generally: $\mathrm{NP} \subseteq$ PSpace and coNP $\subseteq$ PSpace

| ©(®)2015 Daniel Borchmann, Markus Krötzsch | Complexity Theory | 2015-11-25 | \#5 | @(0) 2015 Daniel Borchmann, Markus |  | Complexity Theory | 2015-11-25 | \#6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Space Complexity | Space Complexity |  |  | Space Complexity |  | Space Complexity |  |  |
| Linear Compression |  |  |  | Tape Reduction |  |  |  |  |

## Theorem 10.4

For every function $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$, for all $c \in \mathbb{N}$, and for every $f$-space bounded (deterministic/nondeterminsitic) Turing machine $\mathcal{M}$ :
there is a $\max \left\{1, \frac{1}{c} f(n)\right\}$-space bounded (deterministic/nondeterminsitic) Turing machine $\mathcal{M}^{\prime}$ that accepts the same language as $\mathcal{M}$.

Proof idea.
Similar to (but much simpler than) linear speed-up.
This justifies using $O$-notation for defining space classes.

## Theorem 10.5

For every function $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$all $k \geq 1$ and $\mathcal{L} \subseteq \Sigma^{*}$ :
If $\mathcal{L}$ can be decided by an $f$-space bounded $k$-tape Turing-machine, it can also be decided by an $f$-space bounded 1-tape Turing-machine

Proof idea.
Combine tapes with a similar reduction as for time. Compress space to avoid linear increase.

Recall that we still use a separate read-only input tape to define some space complexities, such as LogSpace.

## Time vs. Space

Theorem 10.6
For all functions $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$:

$$
\operatorname{DTime}(f) \subseteq \operatorname{DSPACE}(f) \quad \text { and } \quad \operatorname{NTime}(f) \subseteq \operatorname{NSPACE}(f)
$$

Proof.
Visiting a cell takes at least one time step.
Theorem 10.7
For all functions $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$with $f(n) \geq \log n$ :

$$
\operatorname{DSPACE}(f) \subseteq \operatorname{DTime}\left(2^{O(f)}\right) \quad \text { and } \quad \operatorname{NSPACE}(f) \subseteq \operatorname{DTIME}\left(2^{O(f)}\right)
$$

Proof.
Based on configuration graphs and a bound on the number of possible configurations.

| ©(O) 2015 Daniel Borchmann, Markus Krötzsch | Complexity Theory | 2015-11-25 \#9 |  |
| ---: | ---: | ---: | ---: |
| Space Complexity | Space Complexity |  |  |

## Configuration Graphs

The possible computations of a TM $\mathcal{M}$ (on input $w$ ) form a directed graph:

- Vertices: configurations that $\mathcal{M}$ can reach (on input $w$ )
- Edges: there is an edge from $C_{1}$ to $C_{2}$ if $C_{1} \vdash_{\mathcal{M}} C_{2}$ ( $C_{2}$ reachable from $C_{1}$ in a single step)
This yields the configuration graph
- Could be infinite in general.
- For $f(n)$-space bounded 2 -tape TMs, there can be at most $2^{O(f(n))}$ vertices and $2 \cdot\left(2^{O(f(n))}\right)^{2}=2^{O(f(n))}$ edges

A computation of $\mathcal{M}$ on input $w$ corresponds to a path in the configuration graph from the start configuration to a stop configuration.

Hence, to test if $\mathcal{M}$ accepts input $w$,

- construct the configuration graph and
- find a path from the start to an accepting stop configuration.


## Number of Possible Configurations

Let $\mathcal{M}:=\left(Q, \Sigma, \Gamma, q_{0}, \delta, q_{\text {start }}\right)$ be a 2-tape Turing machine (1 read-only input tape +1 work tape)

Recall: A configuration of $\mathcal{M}$ is a quadruple ( $q, p_{1}, p_{2}, x$ ) where

- $q \in Q$ is the current state,
- $p_{i} \in \mathbb{N}$ is the head position on tape $i$, and
- $x \in \Gamma^{*}$ is the tape content.

Let $w \in \Sigma^{*}$ be an input to $\mathcal{M}$ and $n:=|w|$. Then also $p_{1} \leq n$.
If $\mathcal{M}$ is $f(n)$-space bounded we can assume $p_{2} \leq f(n)$ and $|x| \leq f(n)$
Hence, there are at most

$$
|Q| \cdot n \cdot f(n) \cdot|\Gamma|^{f(n)}=n \cdot 2^{O(f(n))}=2^{O(f(n))}
$$

different configurations on inputs of length $n$ (the last equality requires $f(n) \geq \log n$ ).
@®® 2015 Daniel Borchmann, Markus Krötzsch
Complexity Theory
2015-11-25 \#10

Time vs. Space
Theorem 10.6
For all functions $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$:

$$
\operatorname{DTime}(f) \subseteq \operatorname{DSPACE}(f) \quad \text { and } \quad \operatorname{NTime}(f) \subseteq \operatorname{NSPACE}(f)
$$

Proof.
Visiting a cell takes at least one time step.
Theorem 10.7
For all functions $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$with $f(n) \geq \log n$ :

$$
\operatorname{DSPACE}(f) \subseteq \operatorname{DTIME}\left(2^{O(f)}\right) \quad \text { and } \quad \operatorname{NSPACE}(f) \subseteq \operatorname{DTIME}\left(2^{O(f)}\right)
$$

Proof.
Based on configuration graphs and a bound on the number of possible configurations.

## Basic Space/Time Relationships

## Nondeterminism in Space

Applying the results of the previous slides, we get the following relations:
$\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPAce} \subseteq$ NPSpace $\subseteq$ ExpTime $\subseteq$ NExpTime
We also noted $\mathrm{P} \subseteq$ coNP $\subseteq$ PSPACE.
Open questions:

- What is the relationship between space classes and their co-classes?
- What is the relationship between deterministic and non-deterministic space classes?
©(○) 2015 Daniel Borchmann, Markus Krötzsch
Complexity Theory
Space Complexity


## Proving Savitch's Theorem

Simulating nondeterminism with more space:

- Use configuration graph of nondeterministic space-bounded TM
- Check if an accepting configuration can be reached
- Store only one computation path at a time (depth-first search)

This still requires exponential space. We want quadratic space!
What to do?
Things we can do:

- Store one configuration:
- one configuration requires $\log n+O(f(n))$ space
- if $f(n) \geq \log n$, then this is $O(f(n))$ space
- Store $\log n$ configurations (remember we have $\log ^{2} n$ space)
- Iterate over all configurations (one by one)

Note that $\log ^{2}(n) \notin O(\log n)$, so we do not obtain NL $=\mathrm{L}$ from this.

## Proving Savitch's Theorem: Key Idea

To find out if we can reach an accepting configuration, we solve a slighly more general question:

```
Yieldablity
    Input: TM configurations }\mp@subsup{C}{1}{}\mathrm{ and }\mp@subsup{C}{2}{}\mathrm{ , integer }
Problem: Can TM get from C C to C2 in at most k steps?
```

Approach: check if there is an intermediate configuration $C^{\prime}$ such that
(1) $C_{1}$ can reach $C^{\prime}$ in $k / 2$ steps and
(2) $C^{\prime}$ can reach $C_{2}$ in $k / 2$ steps
$\leadsto$ Deterministic: we can try all $C^{\prime}$ (iteration)
$\leadsto$ Space-efficient: we can reuse the same space for both steps

## An Algorithm for Yieldability

```
01 CanYield \(\left(C_{1}, C_{2}, k\right)\) \{
    if \(k=1\) :
        return \(\left(C_{1}=C_{2}\right)\) or \(\left(C_{1} \vdash_{\mathcal{M}} C_{2}\right)\)
    else if \(k>1\) :
        for each configuration \(C\) of \(\mathcal{M}\) for input size \(n\) :
            if CanYield ( \(C_{1}, C, k / 2\) ) and
                CanYield \(\left(C, C_{2}, k / 2\right)\) :
                return true
    // eventually, if no success:
    return false
\(11\}\)
```

- We only call CanYield only with $k$ a power of 2 , so $k / 2 \in \mathbb{N}$


## Space Requirement for the Algorithm

```
CanYield ( }\mp@subsup{C}{1}{},\mp@subsup{C}{2}{},k)
    if k=1 :
        return ( }\mp@subsup{C}{1}{}=\mp@subsup{C}{2}{})\mathrm{ or ( (C1 }\mp@subsup{\vdash}{\mathcal{M}}{}\mp@subsup{C}{2}{}
    else if k>1:
        for each configuration C of }\mathcal{M}\mathrm{ for input size n :
            if CanYield ( }\mp@subsup{C}{1}{},C,k/2) an
                CanYigld (C, C2,k/2) :
            return true
    // eventually, if no success:
    return false
```

$1\}$

- During iteration (line 05), we store one $C$ in $O(f(n))$
- Calls in lines 06 and 07 can reuse the same space
- Maximum depth of recursive call stack: $\log _{2} k$

Overall space usage: $O(f(n) \cdot \log k)$

## Did We Really Do It?

"Select $d$ such that $2^{d f(n)} \geq|Q| \cdot n \cdot f(n) \cdot|\Gamma|^{f(n) "}$
How does the algorithm actually do this?

- $f(n)$ was not part of the input!
- Even if we knew $f$, it might not be easy to compute!

Solution: replace $f(n)$ by a parameter $\ell$ and probe its value
(1) Start with $\ell=1$
(2) Check if $\mathcal{M}$ can reach any configuration with more than $\ell$ tape cells (iterate over all configurations of size $\ell+1$; use CanYield on each)
(3) If yes, increase $\ell$ by 1 ; goto (2)
(4) Run algorithm as before, with $f(n)$ replaced by $\ell$

## Relationships of Space and Time

Summing up, we get the following relations:
$\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE}=\mathrm{NPSPACE} \subseteq$ ExpTime $\subseteq$ NExpTime
We also noted $\mathrm{P} \subseteq$ coNP $\subseteq$ PSPACE .
Open questions:

- Is Savitch's Theorem tight?
- Are there any interesting problems in these space classes?
- We have PSpace = NPSpace = coNPSpace. But what about L, NL, and coNL?
$\leadsto$ the first: nobody knows; the others: see upcoming lectures

Therefore: we don't need to know $f$ at all. This finishes the proof.

