# **Complexity Theory**

Space Complexity

#### Daniel Borchmann, Markus Krötzsch

Computational Logic

2015-11-25

 $\odot$ 

#### **Review**

| © ⊕ @ 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory Space Complexity Space Complexity | 2015-11-25 #1 | ©⊕@ 2015 Daniel Borchmann, Markus Krötzsch<br>Space Co                                                                    | Complexity Theory mplexity Space Complexity | 2015-11-25 | #2         |
|--------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------|------------|
|                                                                                                  |               | Review: Space Complex                                                                                                     | kity Classes                                |            |            |
| Space Complexity                                                                                 |               | O(f(n))-space bounded Tu ► NSPACE(f(n)) is the class                                                                      | of all languages $\mathcal L$ for which t   | nere is an | <u>C</u> . |
|                                                                                                  |               | <ul> <li>Being O(f(n))-space bounded</li> <li>to halt on every input and</li> <li>to use ≤f( w ) tape cells or</li> </ul> |                                             | Μ          |            |

Complexity Theory

2015-11-25 #3 © 🗊 2015 Daniel Borchmann, Markus Krötzsch

#### Space Complexity Space Complexity

logarithmic space

polynomial space

exponential space

nondet. logarithmic space

nondet. polynomial space

nondet. exponential space

## Space Complexity Classes

Some important space complexity classes:

L = LOGSPACE = DSPACE(log n)

 $NL = NLOGSPACE = NSPACE(\log n)$ 

 $\mathrm{PSPACE} = \bigcup_{d \ge 1} \mathrm{DSPACE}(n^d)$ 

 $EXPSPACE = \bigcup_{d>1} DSPACE(2^{n^d})$ 

 $NPSPACE = \bigcup_{d \ge 1} NSPACE(n^d)$ 

 $NEXPSPACE = \bigcup_{d>1} NSPACE(2^{n^d})$ 

## The Power Of Space

Space seems to be more powerful than time because space can be reused.

#### Example 10.2

SAT can be solved in linear space:

Just iterate over all possible truth assignments (each linear in size) and check if one satisfies the formula.

## Example 10.3

TAUTOLOGY can be solved in linear space: Just iterate over all possible truth assignments (each linear in size) and check if all satisfy the formula.

More generally:  $NP \subseteq PS{\scriptstyle PACE}$  and  $coNP \subseteq PS{\scriptstyle PACE}$ 

| ⊕ ● ② 2015 Daniel Borchmann, Markus Krötzsch | Complexity Theory           | 2015-11-25 #5 | ©⊕@ 2015 Daniel Borchmann, Markus Krötzsch | Complexity Theory             | 2015-11-25 #6 |  |
|----------------------------------------------|-----------------------------|---------------|--------------------------------------------|-------------------------------|---------------|--|
| Space                                        | Complexity Space Complexity |               | Spac                                       | e Complexity Space Complexity |               |  |
| Linear Compression                           |                             |               | Tape Reduction                             |                               |               |  |

## Theorem 10.4

For every function  $f : \mathbb{N} \to \mathbb{R}^+$ , for all  $c \in \mathbb{N}$ , and for every f-space bounded (deterministic/nondeterministic) Turing machine  $\mathcal{M}$ :

there is a max{1,  $\frac{1}{c}f(n)$ }-space bounded (deterministic/nondeterministic) Turing machine  $\mathcal{M}'$  that accepts the same language as  $\mathcal{M}$ .

#### Proof idea.

Similar to (but much simpler than) linear speed-up.

This justifies using O-notation for defining space classes.

#### Theorem 10.5

For every function  $f : \mathbb{N} \to \mathbb{R}^+$  all  $k \ge 1$  and  $\mathcal{L} \subseteq \Sigma^*$ :

If  $\mathcal{L}$  can be decided by an f-space bounded k-tape Turing-machine,

it can also be decided by an f-space bounded 1-tape Turing-machine

#### Proof idea.

Combine tapes with a similar reduction as for time. Compress space to avoid linear increase.

Recall that we still use a separate read-only input tape to define some space complexities, such as  ${\rm LogSPACE}.$ 

#8

| Space Complexity Space Complexity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Space Complexity Space Complexity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Time vs. Space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Number of Possible Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Theorem 10.6<br>For all functions $f : \mathbb{N} \to \mathbb{R}^+$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Let $\mathcal{M} := (Q, \Sigma, \Gamma, q_0, \delta, q_{start})$ be a 2-tape Turing machine<br>(1 read-only input tape + 1 work tape)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| $DTIME(f) \subseteq DSPACE(f)  and  NTIME(f) \subseteq NSPACE(f)$ Proof. Theorem 10.7 For all functions $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) \ge \log n$ : $DSPACE(f) \subseteq DTIME(2^{O(f)})  and  NSPACE(f) \subseteq DTIME(2^{O(f)})$ Proof. Based on configuration graphs and a bound on the number of possible configurations. $O(0.2015 Daniel Bootman, Markus Krötzsc) \qquad Complexity Theorem 2 and a complexity and a compl$ | Recall: A configuration of $\mathcal{M}$ is a quadruple $(q, p_1, p_2, x)$ where<br>• $q \in Q$ is the current state,<br>• $p_i \in \mathbb{N}$ is the head position on tape $i$ , and<br>• $x \in \Gamma^*$ is the tape content.<br>Let $w \in \Sigma^*$ be an input to $\mathcal{M}$ and $n :=  w $ . Then also $p_1 \leq n$ .<br>If $\mathcal{M}$ is $f(n)$ -space bounded we can assume $p_2 \leq f(n)$ and $ x  \leq f(n)$<br>Hence, there are at most<br>$ Q  \cdot n \cdot f(n) \cdot  \Gamma ^{f(n)} = n \cdot 2^{O(f(n))} = 2^{O(f(n))}$<br>different configurations on inputs of length $n$<br>(the last equality requires $f(n) \geq \log n$ ).<br>$(202 \cdot 2015 2 Daniel Borchmann, Markus Krótzsz)$ |  |  |
| Configuration Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time vs. Space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| <ul> <li>The possible computations of a TM M (on input w) form a directed graph:</li> <li>Vertices: configurations that M can reach (on input w)</li> <li>Edges: there is an edge from C<sub>1</sub> to C<sub>2</sub> if C<sub>1</sub> ⊢<sub>M</sub> C<sub>2</sub><br/>(C<sub>2</sub> reachable from C<sub>1</sub> in a single step)</li> <li>This yields the configuration graph</li> <li>Could be infinite in general.</li> <li>For f(n)-space bounded 2-tape TMs, there can be at most 2<sup>O(f(n))</sup><br/>vertices and 2 · (2<sup>O(f(n))</sup>)<sup>2</sup> = 2<sup>O(f(n))</sup> edges</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Theorem 10.6<br>For all functions $f : \mathbb{N} \to \mathbb{R}^+$ :<br>$DT_{IME}(f) \subseteq DS_{PACE}(f)$ and $NT_{IME}(f) \subseteq NS_{PACE}(f)$<br>Proof.<br>Visiting a cell takes at least one time step.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| A computation of $\mathcal{M}$ on input <i>w</i> corresponds to a path in the configuration graph from the start configuration to a stop configuration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | For all functions $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) \ge \log n$ :<br>DSpace $(f) \subseteq DTime(2^{O(f)})$ and NSpace $(f) \subseteq DTime(2^{O(f)})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| <ul> <li>Hence, to test if <i>M</i> accepts input <i>w</i>,</li> <li>construct the configuration graph and</li> <li>find a path from the start to an accepting stop configuration.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Proof.<br>Based on configuration graphs and a bound on the number of possible configurations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |

©€@ 2015 Daniel Borchmann, Markus Krötzsch

Complexity Theory

2015-11-25 #11 © ① 0 2015 Daniel Borchmann, Markus Krötzsch

Complexity Theory

2015-11-25 #12

#### Space Complexity Space Complexity

#### Space Complexity Space Complexity

## Basic Space/Time Relationships

# Nondeterminism in Space

Applying the results of the previous slides, we get the following relations:

 $L \subseteq NL \subseteq P \subseteq NP \subseteq PSpace \subseteq NPSpace \subseteq ExpTime \subseteq NExpTime$ 

We also noted  $P \subseteq coNP \subseteq PSPACE$ .

### Open questions:

- What is the relationship between space classes and their co-classes?
- What is the relationship between deterministic and non-deterministic space classes?

Most experts think that nondeterministic TMs can solve strictly more problems when given the same amount of time than a deterministic TM: Most believe that  $P \subsetneq NP$ 

How about nondeterminism in space-bounded TMs?

Theorem 10.8 (Savitch's Theorem, 1970) For any function  $f : \mathbb{N} \to \mathbb{R}^+$  with  $f(n) \ge \log n$ :

 $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{DSPACE}(f^2(n)).$ 



| _ |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Image: Space Complexity     Space Complexity     2015-11-25     #13                                                                                                                | Image: Complexity Theory     2015-11-25     #14       Space Complexity     Space Complexity                                                                                                                                                                                                                                                       |
|   | Consequences of Savitch's Theorem                                                                                                                                                  | Proving Savitch's Theorem                                                                                                                                                                                                                                                                                                                         |
|   | Savitch's Theorem: For any function $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) \ge \log n$ :<br>$NSPACE(f(n)) \subseteq DSPACE(f^2(n))$ .<br>Corollary 10.9<br>PSPACE = NPSPACE. | <ul> <li>Simulating nondeterminism with more space:</li> <li>Use configuration graph of nondeterministic space-bounded TM</li> <li>Check if an accepting configuration can be reached</li> <li>Store only one computation path at a time (depth-first search)</li> <li>This still requires exponential space. We want quadratic space!</li> </ul> |
|   | Proof. $PSPACE \subseteq NPSPACE$ is clear. The converse follows since the square of a<br>polynomial is still a polynomial.                                                        | What to do?<br>Things we can do:                                                                                                                                                                                                                                                                                                                  |
|   | Similarly for "bigger" classes, e.g., $ExpSpace = NExpSpace$ .<br>Corollary 10.10                                                                                                  | <ul> <li>Store one configuration:</li> <li>one configuration requires log n + O(f(n)) space</li> <li>if f(n) ≥ log n, then this is O(f(n)) space</li> </ul>                                                                                                                                                                                       |
|   | $NL \subseteq DSPACE(O(\log^2 n)).$                                                                                                                                                | <ul> <li>Store log n configurations (remember we have log<sup>2</sup> n space)</li> <li>Iterate over all configurations (one by one)</li> </ul>                                                                                                                                                                                                   |

Note that  $\log^2(n) \notin O(\log n)$ , so we do not obtain NL = L from this.

Complexity Theory

# Proving Savitch's Theorem: Key Idea

To find out if we can reach an accepting configuration, we solve a slighly more general question:

## YIELDABILITY

Input: TM configurations  $C_1$  and  $C_2$ , integer k

*Problem:* Can TM get from  $C_1$  to  $C_2$  in at most k steps?

Approach: check if there is an intermediate configuration C' such that

- (1)  $C_1$  can reach C' in k/2 steps and
- (2) C' can reach  $C_2$  in k/2 steps
- $\rightsquigarrow$  Deterministic: we can try all C' (iteration)

return  $(C_1 = C_2)$  or  $(C_1 \vdash_M C_2)$ 

if CANYIELD( $C_1, C, k/2$ ) and

CANYIELD $(C, C_2, k/2)$ :

 $\rightsquigarrow$  Space-efficient: we can reuse the same space for both steps

for each configuration C of  $\mathcal{M}$  for input size n:

An Algorithm for Yieldability

- O1 CANYIELD $(C_1, C_2, k)$  {
- 02 if k = 1:
- 03 return  $(C_1 = C_2)$  or  $(C_1 \vdash_{\mathcal{M}} C_2)$
- 04 else if k > 1:
- 05 for each configuration C of  $\mathcal{M}$  for input size n:
- **06** if CANYIELD( $C_1, C, k/2$ ) and
- 07 CANYIELD $(C, C_2, k/2)$ :
- 08 return true
- 09 // eventually, if no success:
- 10 return false
- 11 }
  - ▶ We only call CanYield only with *k* a power of 2, so  $k/2 \in \mathbb{N}$

| ©⊕@ 2015 Daniel Borchmann, Markus Krötzsch<br>Space Complexi | Complexity Theory<br>Space Complexity | 2015-11-25 | #17 | @⊕@ 2015 Daniel Borchmann, Markus Krötzsch<br>Space C | Complexity | Complexity Theory<br>Space Complexity | 2015-11-25   | #18 |
|--------------------------------------------------------------|---------------------------------------|------------|-----|-------------------------------------------------------|------------|---------------------------------------|--------------|-----|
| Space Requirement for the                                    | Algorithm                             |            |     | Simulating Nondetermin                                | nistic     | Space-Bounded                         | ГMs          |     |
| 01 CanYield( $C_1, C_2, k$ ) {<br>02 if $k = 1$ :            |                                       |            |     | Input: TM ${\cal M}$ that runs in ${ m NSPA}$         | ACE(f(I    | n)); input word w of len              | gth <i>n</i> |     |

Algorithm:

- Modify *M* to have a unique accepting configuration *C*<sub>accept</sub> when accepting, erase tape and move head to the very left
- Select *d* such that  $2^{df(n)} \ge |Q| \cdot n \cdot f(n) \cdot |\Gamma|^{f(n)}$
- Return CanYield( $C_{\text{start}}, C_{\text{accept}}, k$ ) with  $k = 2^{df(n)}$

Space requirements:

CANYIELD RUNS IN

$$O(f(n) \cdot \log k) = O(f(n) \cdot \log 2^{df(n)}) = O(f(n) \cdot df(n)) = O(f^2(n))$$

Calls in lines 06 and 07 can reuse the same space

• During iteration (line 05), we store one C in O(f(n))

Maximum depth of recursive call stack: log<sub>2</sub> k

Overall space usage:  $O(f(n) \cdot \log k)$ 

return true

// eventually, if no success:

else if k > 1:

return false

03

04

05

06 07

80

09

10

11 }

| Space Complexity Space Complexity                                                                                                                                                                                                                                                                                                                                                                                                                             | Space Complexity Space Complexity                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Did We Really Do It?                                                                                                                                                                                                                                                                                                                                                                                                                                          | Relationships of Space and Time                                                                                                                                                                                                                                                                           |
| <ul> <li>"Select <i>d</i> such that 2<sup>df(n)</sup> ≥  Q  · n · f(n) ·  Γ <sup>f(n)</sup>"</li> <li>How does the algorithm actually do this?</li> <li>f(n) was not part of the input!</li> <li>Even if we knew <i>f</i>, it might not be easy to compute!</li> </ul>                                                                                                                                                                                        | Summing up, we get the following relations:<br>$L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq ExpTIME \subseteq NExpTIME$<br>We also noted $P \subseteq coNP \subseteq PSPACE$ .                                                                                           |
| <ul> <li>Solution: replace f(n) by a parameter l and probe its value</li> <li>(1) Start with l = 1</li> <li>(2) Check if M can reach any configuration with more than l tape cells (iterate over all configurations of size l + 1; use CANYIELD on each)</li> <li>(3) If yes, increase l by 1; goto (2)</li> <li>(4) Run algorithm as before, with f(n) replaced by l</li> <li>Therefore: we don't need to know f at all. This finishes the proof.</li> </ul> | <ul> <li>Open questions:</li> <li>Is Savitch's Theorem tight?</li> <li>Are there any interesting problems in these space classes?</li> <li>We have PSPACE = NPSPACE = CONPSPACE.<br/>But what about L, NL, and coNL?</li> <li>~&gt; the first: nobody knows; the others: see upcoming lectures</li> </ul> |
| © ⊕ @ 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-11-25                                                                                                                                                                                                                                                                                                                                                                                     | #21 <sup>©</sup> ⊕ © 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-11-25 #22                                                                                                                                                                                                              |