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Abstract. We introduce theconcept productas a new expressive feature to de-
scription logics (DLs). While this construct allows us to express an arguably very
common and natural type of statement, it can be simulated only by the very ex-
pressive DLSROIQ for which no tight worst-case complexity is known. How-
ever, we show that concept products can also be added to the DLsSHOIQ and
SHOI, and to the tractable DLEL++ without increasing the worst-case com-
plexities in any of those cases. We therefore argue that concept products provide
practically relevant expressivity at little cost, making them a good candidate for
future extensions of the DL-based ontology language OWL.

1 Introduction

The development of description logics (DLs) has been drivenby the desire to push
the expressivity bounds of these knowledge representationformalisms while still main-
taining decidability and implementability. This has lead to very expressive DLs such
asSHOIN, the logic underlying the Web Ontology Language OWL DL,SHOIQ,
and more recentlySROIQ [1] which is the basis for the ongoing standardisation of
OWL21 as the next version of the Web Ontology Language. On the otherhand, more
light-weight DLs for which most common reasoning problems can be implemented in
(sub)polynomial time have also been sought, leading, e.g.,to the tractable DLEL++

[2].
In this work, we continue these lines of research by introducing a new expressive

feature – theconcept product– to various well-known DLs, showing that this added
expressivity does not increase worst-case complexities inany of these cases. Intuitively,
the concept product allows us to define a role that connects every instance in one class
with every instance in another class. An example is given in the title: Given the class of
all elephants, and the class of all mice, we wish to specify a DL knowledge base that
allows us to conclude that any individual elephant is biggerthan any individual mouse,
or, stated more formally:

∀(x).∀y.Elephant(x) ∧Mouse(y)→ biggerThan(x, y)

Using common DL syntax, one could also writeElephantI ×MouseI ⊆ biggerThanI,
which explains the name “concept product” and will also motivate our DL syntax.

1 http://www.w3.org/2007/OWL



Maybe surprisingly, this semantic relationship cannot be specified in any but the
most expressive DLs today. Using quantifiers, one can only state that any elephant is
bigger thansomemouse, or that elephants are bigger than nothing but mice. Nominals
also allow us to state that some particular elephant is bigger than all mice, and with DL-
safe rules [3], one might say that allnamedelephants are bigger than allnamedmice.
Yet, none of these formalisations captures the true intention of the informal statement.

Now one could hope that this kind of statement would be rarelyneeded in practical
applications, but in fact it represents a very common modelling problem of relating
two individuals based on their (inferred) properties. Natural and life sciences provide a
wealth of typical examples, for example:

– Alkaline solutions neutralise acid solutions.
– Antihistamines alleviate allergies.
– Oppositely charged bodies attract each other.

Reasoning about such relations qualitatively is importantfor example in the context
of the HALO project2, which sets out to develop reasoning systems for solving com-
plex examination questions from physics, biology, and chemistry. Qualitative reasoning
about a given scenario is often required before any concretearithmetic processing steps
can be invoked.

Another particularly interesting example is the task of developing a knowledge base
capturing our current insights about DL complexities and available reasoning imple-
mentations. It should entail statements like

– Any reasoner that can handleSHIQ can deal with every DLP-ontology.
– Any problem within ET can be polynomially reduced to any ET-complete

problem.
– In any description logic containing nominals, inverses andnumber restrictions, sat-

isfiability checking is hard for any complexity below or equal ET.

All of those can easily be cast into concept products. An interesting aspect of reasoning
about complexities is that it involves upperand lower bounds, and thus also escapes
from most other modelling attempts (e.g. using classes instead of instances to repre-
sent concrete DLs). This might be a reason that the DL complexity navigator3 is based
on JavaScript rather than on any of the more advanced DL knowledge representation
technologies.

In this paper, we show that it is in fact not so difficult to extend a broad array of
existing description logics with enough additional modelling power to capture all of
the above, while still retaining their known upper complexity bounds. We start with the
short preliminary Section 2 to recall the definition of the DLSROIQ, and then proceed
by introducing the concept product formally in Section 3. Concept products there can
indeed be simulated by existing constructs and thus are recognised as syntactic sugar.
This is quite different for the tractable DLEL++ investigated in Section 4. Yet, we will
see that polynomial reasoning inEL++ with concept products is possible, thus further

2 http://www.projecthalo.com/
3 http://www.cs.man.ac.uk/~ezolin/dl/



pushing theEL envelope. In the subsequent Section 5, we show thatSHOIQ with
concept products is still NET-complete, thus obtaining tight complexity bounds
for a very expressive DL as well. Finally, we establish a similar result forSHOI and
ET-completeness in Section 6, and then provide an outlook on upcoming work in
Section 7.

2 Preliminaries: the DL SROIQ

In this section, we recall the definition of the expressive description logicSROIQ [1].
We assume that the reader is familiar with description logics [4].

As usual, the DLs considered in this paper are based on three disjoint sets ofindi-
vidual namesNI , concept namesNC, androle namesNR containing theuniversal role
U ∈ NR.

Definition 1. A SROIQ Rbox forNR is based on a setR of atomic rolesdefined as
R ≔ NR ∪ {R− | R ∈ NR}, where we setInv(R) ≔ R− and Inv(R−) ≔ R to simplify
notation. In the sequel, we will use the symbols R,S , possibly with subscripts, to denote
atomic roles.

A generalisedrole inclusion axiom(RIA) is a statement of the form S1◦ . . .◦Sn ⊑ R,
and a set of such RIAs is a generalisedrole hierarchy. A role hierarchy isregularif there
is a strict partial order≺ onR such that

– S ≺ R iff Inv(S) ≺ R, and
– every RIA is of one of the forms:

R◦R⊑ R, R− ⊑ R, S1◦. . .◦Sn ⊑ R, R◦S1◦. . .◦Sn ⊑ R, S1◦. . .◦Sn◦R⊑ R

such that R∈ NR is a (non-inverse) role name, and Si ≺ R for i = 1, . . . , n.

The set ofsimpleroles for some role hierarchy is defined inductively as follows:

– If a role R occurs only on the right-hand-side of RIAs of the form S ⊑ R such that
S is simple, then R is also simple.

– The inverse of a simple role is simple.

A role assertionis a statement of the formRef(R) (reflexivity), Asy(S) (asymmetry),
or Dis(S,S′) (role disjointness), where S and S′ are simple. ASROIQ Rbox is the
union of a set of role assertions together and a role hierarchy. A SROIQ Rbox is
regular if its role hierarchy is regular.

Definition 2. Given aSROIQ RboxR, the set ofconcept expressionsC is defined as
follows:

– NC ⊆ C, ⊤ ∈ C, ⊥ ∈ C,
– if C,D ∈ C, R∈ R, S ∈ R a simple role, a∈ NI , and n a non-negative integer, then
¬C, C⊓ D, C⊔ D, {a}, ∀R.C,∃R.C,∃S.Self, ≤n S.C, and≥n S.C are also concept
expressions.



Table 1.Semantics of concept constructors inSROIQ for an interpretationI with domain∆I.

Name Syntax Semantics
inverse role R− {〈x, y〉 ∈ ∆I × ∆I | 〈y, x〉 ∈ RI}
universal role U ∆I × ∆I

top ⊤ ∆I

bottom ⊥ ∅

negation ¬C ∆I \CI

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

nominals {a} {aI}
univ. restriction ∀R.C {x ∈ ∆I | 〈x, y〉 ∈ RI impliesy ∈ CI}
exist. restriction ∃R.C {x ∈ ∆I | for somey ∈ ∆I , 〈x, y〉 ∈ RI andy ∈ CI}
Self concept ∃S.Self {x ∈ ∆I | 〈x, x〉 ∈ SI}
qualified number≤n S.C {x ∈ ∆I | #{y ∈ ∆I | 〈x, y〉 ∈ SI andy ∈ CI} ≤ n}
restriction ≥n S.C {x ∈ ∆I | #{y ∈ ∆I | 〈x, y〉 ∈ SI andy ∈ CI} ≥ n}

Throughout this paper, the symbols C, D will be used to denoteconcept expressions. A
SROIQ Tbox is a set ofgeneral concept inclusion axioms(GCIs) of the form C⊑ D.

An individual assertioncan have any of the following forms: C(a), R(a, b),¬R(a, b),
a 0 b, with a, b ∈ NI individual names, C∈ C a concept expression, and R,S ∈ R roles
with S simple. ASROIQ Abox is a set of individual assertions.

A SROIQ knowledge base KBis the union of a regular RboxR, and an AboxA
and TboxT for R.

We further recall the semantics ofSROIQ knowledge bases.

Definition 3. An interpretationI consists of a set∆I calleddomain(the elements of it
being calledindividuals) together with a function·I mapping

– individual names to elements of∆I,
– concept names to subsets of∆I, and
– role names to subsets of∆I × ∆I.

The function·I is inductively extended to role and concept expressions as shown in
Table 1. An interpretationI satisfiesan axiomϕ if we find thatI |= ϕ:

– I |= S ⊑ R if SI ⊆ RI,
– I |= S1 ◦ . . . ◦ Sn ⊑ R if SI1 ◦ . . . ◦ SIn ⊑ RI (◦ being overloaded to denote the

standard composition of binary relations here),
– I |= Ref(R) if RI is a reflexive relation,
– I |= Asy(R) if RI is antisymmetric and irreflexive,
– I |= Dis(R,S) if RI and SI are disjoint,
– I |= C ⊑ D if CI ⊆ DI.

An interpretationI satisfiesa knowledge baseKB (we then also say thatI is a
modelof KB and writeI |= KB) if it satisfies all axioms ofKB. A knowledge baseKB
is satisfiableif it has a model. Two knowledge bases areequivalentif they have exactly
the same models, and they areequisatisfiableif either both are unsatisfiable or both are
satisfiable.



Further details onSROIQ can be found in [1]. We have omitted here several syntac-
tic constructs that can be expressed indirectly, especially role assertions for transitivity,
reflexivity of simple roles, and symmetry.

3 Simulating Concept Products inSROIQ

We now formally introduce the DLconcept productas a new constructor in description
logic knowledge bases. The DLSROIQ extended with this constructor will be denoted
SROIQ×. It will turn out that concept products appear assyntactic sugarin SROIQ×

since they can be represented by combining nominals, inverse roles, and complex role
inclusion axioms. On the other hand, the universal role is recognised as a special case
of concept product, though, as we will discuss below, our simulation method imposes
some additional restrictions on simplicity of roles.

Definition 4. A concept product inclusionis a statement of the form C× D ⊑ R where
C,D ∈ C areSROIQ concepts, and R is an atomicSROIQ role.

A SROIQ× Rbox is the union of aSROIQ Rbox with a set of concept product
inclusions based on roles and concepts for that Rbox. Simplicity of roles is defined as
in SROIQ where concept product axioms are considered as additional kinds of RIAs.
Especially, any role R occuring in such a statement is not simple inSROIQ×.

ASROIQ× knowledge baseKB is the union of aSROIQ× RboxR, and aSROIQ
AboxA andSROIQ TboxT (for R).

The model theoretic semantics ofSROIQ is extended toSROIQ× by setting

I |= C × D ⊑ R iff CI × DI ⊆ RI

for any interpretationI.
In the remainder of this section, we discuss some basic formal properties of the con-

cept product. We immediately observe that× generalises the universal role, which can
now be defined by the axiom⊤ × ⊤ ⊑ U. However, our extension of the notion of sim-
plicity of roles would then causeU to become non-simple, which is not needed. In fact,
we conjecture that one can generally consider the concept product to have no impact on
simplicity of roles, but our below approach of simulating concept products inSROIQ
requires us to impose that restriction. We leave it to futurework to conceive a modified
tableau procedure forSROIQ× that directly takes the cross product into account – our
subsequent results forSHOIQ× show that this extended version of simplicity does not
impose any problems there.

We now find that× itself can be expressed by existing constructs ofSROIQ:

Lemma 5. Consider aSROIQ× knowledge baseKB with some concept product axiom
C × D ⊑ R, and letKB′ be the knowledge base obtained fromKB as follows:

– delete the Rbox axiom C× D ⊑ R,
– add a new RIA R1 ◦ R2 ⊑ R, where R1, R2 are fresh role names,
– introduce fresh nominal{a}, and add the Tbox axioms C⊑ ∃R1.{a} and D ⊑
∃R−2 .{a}.



ThenKB andKB′ are equisatisfiable.

Proof. First note that the introduced axioms are indeed admissiblefor SROIQ, and
that regularity of the Rbox is not endangered.

Now we show that for any modelI = (∆I, ·I) of KB we can construct a model
J = (∆J , ·J ) of KB′ as follows:

– ∆J := ∆I,
– for all i ∈ NI \ {a}, let iJ := iI

– let aJ = δa for an arbitrary but fixedδa ∈ ∆J

– for all A ∈ NC, let AJ := AI

– for all T ∈ NR \ {R1,R2}, let RJ := RI

– let RJ1 = CI × {δo}
– let RJ2 = DI × {δo}

Then by construction, the new KB-axiomsC ⊑ ∃R1.{a} andD ⊑ ∃R2.{a} are sat-
isfied inJ. Next note that for all concept expressionsE not containingR1, R2 or a,
we haveEI = EJ which follows by an easy structural induction from the fact that the
interpretation of the previously present roles, atomic concepts and individuals which
coincides inI andJ.

Thereby we obtain that all Tbox axioms from KB∩ KB′ are valid inJ. Moreover,
the construction ofJ and the validity ofC × D ⊑ R in I together assureRJ1 ◦ R−2

J
⊆

AJ× ⊆ RJ therefore also the newly introduced RIAR1 ◦ R2 ⊑ R is satisfied inJ.

Finally, we observe that any modelI of KB′ is a model of KB: fromC ⊑ ∃R1.{a}
andD ⊑ ∃R2.{a} follows CI × {aI} ⊆ RI1 as well asDI × {aI} ⊆ RI2 the latter being

equivalent to{aI} × DI ⊆ R2
−I. Hence, we can concludeCI × DI ⊆ RI1 ◦ R−2

I. Now
due to the RIAR1 ◦ R2 ⊑ R being satisfied inI as well we know thatRI1 ◦ R−2

I
⊆ RI,

and can concludeCI × DI ⊆ RI. Hence also the cross product inclusionC × D ⊑ R is
satisfied inI. All other axioms of KB are present in KB′ as well and therefore satisfied
anyway. �

Clearly, the elimination step from the above lemma can be applied recursively to
eliminate all concept products. A simple induction thus yields the following result:

Proposition 6. EverySROIQ× knowledge base can be reduced to an equisatisfiable
SROIQ knowledge base in polynomial time. In particular, satisfiability of SROIQ×

knowledge bases is decidable.

Decidability ofSROIQ was shown in [1]. SinceSROIQ is already NET-
hard, this also suffices to conclude that the (currently unknown) worst-case complexities
of SROIQ× andSROIQ coincide.

4 Polynomial Reasoning with Concept Products inEL++

In this section, we investigate the use of concepts productsin the DL EL++ [2], for
which many typical inference problems can be solved in polynomial time.EL++ cannot



Table 2. Normal form transformation forEL++×. A, B, C, Â, Ĉ, andD are concept expressions,
whereÂ andĈ are neither concept names nor nominals, andD is a fresh concept name.Ri , S,
andT are role names, whereT is fresh. Commutativity of⊓ is assumed to simplify the rule set.

P1: R1 ◦ . . . ◦ Rn−1 ◦ Rn ⊑ S 7→ {R1 ◦ . . . ◦Rn−1 ⊑ T,T ◦ Rn ⊑ S}
Â× B ⊑ R 7→ {Â ⊑ D,D × B ⊑ R}
A× B̂ ⊑ R 7→ {B̂⊑ D,A× D ⊑ R}
B⊓ Â ⊑ C 7→ {Â ⊑ D,D ⊓ B ⊑ C}
∃R.Â ⊑ B 7→ {Â ⊑ D,∃R.D ⊑ B}
⊥ ⊑ C 7→ ∅

P2: A ⊑ B⊓C 7→ {A ⊑ B,A ⊑ C}
Â ⊑ Ĉ 7→ {Â ⊑ D,D ⊑ Ĉ}
A ⊑ ∃R.Ĉ 7→ {A ⊑ ∃R.D,D ⊑ Ĉ}
A ⊑ ⊤ 7→ ∅

simulate concept products as it does support nominals and RIAs, but no inverse roles.
While it is known that the addition of inverses makes satisfiability checking ET-
complete [5], we show that sound and complete reasoning withthe concept product is
still tractable. We simplify our presentation by omitting concrete domains fromEL++

– they are not affected by our extension and can be treated as shown in [2].

Definition 7. AnEL++× knowledge baseKB is aSROIQ× knowledge base that con-
tains only constructors⊤, ⊥, ⊓, ∃R for some (non-inverse) role name R∈ NR, and{a}
for some individual name a∈ NI , possibly with a non-regular role box.

A polynomial algorithm for checking class subsumptions inEL++ has been given
in [2], and it was shown that other standard inference problems can easily be reduced to
that problem. We now present a modified subsumption checkingalgorithm forEL++×

– also using some modified notation – and show its correctnessfor this extended DL.
Without loss of generality, we assume that all Abox axioms inEL++× are expressed

by equivalent Tbox axioms using nominals. We can further restrict our attention to
EL++× knowledge bases in a certain normal form:

Definition 8. AnEL++× knowledge baseKB is in normal formif it contains only ax-
ioms of one of the following forms:

A ⊑ C A⊓ B ⊑ C R ⊑ T A× B ⊑ T
∃R.A ⊑ B A ⊑ ∃R.B R◦ S ⊑ T

where A, B ∈ NC ∪ {{a} | a ∈ NI } ∪ {⊤}, C ∈ NC ∪ {{a} | a ∈ NI } ∪ {⊥}, and R,S,T ∈ NR.

Proposition 9. AnyEL++× knowledge base can be transformed into an equisatisfiable
EL++× knowledge base in normal form. The transformation can be done in linear time.

Proof. The transformation is accomplished by the rules of Table 2, where each rule
describes the replacement of some axiom by one or more alternative axioms. In a first
step, the rules (P1) are applied exhaustively, and afterwards the rules (P2) are applied
exhaustively to the knowledge base. We omit the easy proof asthe result is very similar
to the normal form transformation given in [2]. �



Table 3. Completion rules for reasoning inEL++×. SymbolsC, D, possibly with subscripts or
primes, denote elements ofB, whereasE might be any element ofB ∪ {∃R.C | C ∈ B}.

(R1) If D ⊑ E ∈ KB andC ⊑ D ∈ S thenS ≔ S ∪ {C ⊑ E}.
(R2) If C1 ⊓C2 ⊑ D ∈ KB and{C ⊑ C1,C ⊑ C2} ⊆ S thenS ≔ S ∪ {C ⊑ D}.
(R3) If ∃R.C ⊑ D ∈ KB and{C1 ⊑ ∃R.C2,C2 ⊑ C} ⊆ S thenS ≔ S ∪ {C1 ⊑ D}.
(R4) If {C ⊑ ∃R.D,D ⊑ ⊥} ⊆ S thenS ≔ S ∪ {C ⊑ ⊥}.
(R5) If {C ⊑ {a},D ⊑ {a},D ⊑ E} ⊆ S andC{ D thenS ≔ S ∪ {C ⊑ E}.
(R6) If R⊑ S ∈ KB andC ⊑ ∃R.D ∈ S thenS ≔ S ∪ {C ⊑ ∃S.D}.
(R7) If R◦ S ⊑ T ∈ KB and{C1 ⊑ ∃R.C2,C2 ⊑ ∃S.C3} ⊆ S thenS ≔ S ∪ {C1 ⊑ ∃T.C3}.
(R8) If C × D ⊑ R ∈ KB, D′ ⊑ D ∈ S, andC{ D′ thenS ≔ S ∪ {C ⊑ ∃R.D′}.

It is easy to see that the above transformation to normal formdoes not change the
relative subsumption hierarchy between classes in the original knowledge base. Hence,
subsumption testing can equivalently be performed on the normalised knowledge base.

We now provide an algorithm that checks whether a subsumption A ⊑ B between
concept names is entailed by some normalisedEL++× knowledge base KB. As dis-
cussed in [2], this is sufficient to solve arbitrary subsumption problems, and to de-
cide knowledge base consistency and instance classification. The algorithm proceeds
by computing a setS of inclusion axioms that are entailed by KB, and it turns out we
only need to consider very simple axioms of the formsC ⊑ D andC ⊑ ∃R.D, where
C,D are elements of the setB ≔ NC ∪ {{a} | a ∈ NI } ∪ {⊤,⊥}.

The setS is initialised by settingS ≔ {C ⊑ C | C ∈ B} ∪ {C ⊑ ⊤ | C ∈ B}.
The algorithm then proceeds by applying the rules in Table 3 until no possible rule
application further modifies the setS. The rules refer to a binary relation{ ⊆ B × B
that is defined based on the current content ofS. Namely,C{ D holds whenever there
areC1, . . . ,Ck ∈ B such that

– C1 is equal to one of the following:C, ⊤, {a} (for some individuala ∈ NI ), or A
(where the subsumptionA ⊑ B is to be checked),

– Ci ⊑ ∃R.Ci+1 ∈ S for someR ∈ NR (i = 1, . . . , k− 1), and
– Ck = D.

Intuitively, C { D states thatD cannot be interpreted as the empty set if we assume
thatC contains some element. The optionC1 = A reflects the fact that we can base our
conclusions on the assumption thatA is not equivalent to⊥ either – if it is, the queried
subsumption holds immediately, so we do not need to check this case.4

After terminating with the saturated setS, the algorithm confirms the subsumption
A ⊑ B iff one of the following conditions hold:

A ⊑ B ∈ S or A ⊑ ⊥ ∈ S or {a} ⊑ ⊥ ∈ S (for somea ∈ NI ) or ⊤ ⊑ ⊥ ∈ S.

We will show below that this algorithm is indeed correct, andthat it runs in polyno-
mial time.

4 This case is actually missing in [2], and it indeed needs to beadded to obtain a complete
algorithm.



Lemma 10. The above algorithm for checking concept subsumption inEL++× termi-
nates in polynomial time.

Proof. The setB clearly is linear in the size of the knowledge base, and thereare only
|B|× |B|× (1+ |NR|) many possible elements inS. At least one such element is computed
in each step, so that the algorithm terminates after polynomially many steps.

In addition, applicability of each rule can be decided in polynomial time. In partic-
ular, the relation{ can be computed in polynomially many steps. �

Lemma 11. LetS be the saturated set obtained by the subsumption checking algorithm
for a normalisedEL++× knowledge baseKB and some queried subsumption A⊑ B. If
KB |= A ⊑ B then one of the following holds:

A ⊑ B ∈ S or A ⊑ ⊥ ∈ S or {a} ⊑ ⊥ ∈ S (for some a∈ NI ) or ⊤ ⊑ ⊥ ∈ S.

Proof. We show the contrapositive: if none of the given conditions hold, then there is a
modelI for KB within which the subsumptionA ⊑ Bdoes not hold. The proof proceeds
by constructing this model.

The domain∆I of I is chosen to contain only one characteristic individual forall
classes of KB that are necessarily non-empty, factorised totake inferred equalities into
account. To this end, we first define a set of concept expressionsB− ≔ {C ∈ B | A{
C}. A binary relation∼ onB− that will serve us to represent inferred equalities is defined
as follows:

C ∼ D iff C = D or {C ⊑ {a},D ⊑ {a}} ⊆ S for somea ∈ NI .

We will see below that∼ is an equivalence relation onB−. Reflexivity and symmetry
are obvious. For transitivity, we first show that elements related by∼ are subject to the
same assertions inS. Thus considerC,C′ ∈ B− such thatC ∼ C′. We claim that, for all
concept expressionsE, we find thatC ⊑ E ∈ S impliesC′ ⊑ E ∈ S (Claim ∗). Assume
C , C′ and{C ⊑ {a},C′ ⊑ {a}} ⊆ S – the other case is trivial. But by our definition of
B−, we find thatC{ C′, and hence rule (R5) is applicable and establishes the required
result.

This also yields transitivity of∼, since{C1 ⊑ {a},C2 ⊑ {a}} ⊆ S andC2 ∼ C3

impliesC3 ⊑ {a} ∈ S and thusC1 ∼ C3. We use [C] to denote the equivalence class of
C ∈ B− w.r.t.∼.

These observations allow us to make the following definitionof I:

– ∆I ≔ {[C] | C ∈ B−},
– CI ≔ {[D] ∈ ∆I | D ⊑ C ∈ S} for all C ∈ NC,
– aI ≔ [{a}] for all a ∈ NI ,
– RI ≔ {〈[C], [D]〉 ∈ ∆I × ∆I | C ⊑ ∃R.D ∈ S} for all R ∈ NR.

Note thatNI was assumed to be fixed and finite, and that{a} ∈ B− for all a ∈ NI such
that [{a}] is well-defined. Roles and concepts not involved inB− orS are automatically
interpreted as the empty set by the above definition. The definitions of CI andRI are
well-defined due to (∗) above.

We can now observe the following desired correspondence betweenI andS: For
anyC,D ∈ B−, we find that [C] ∈ DI iff C ⊑ D ∈ S (Claim†). We distinguish various
cases based on the structure ofD:



– D = ⊥. We can conclude [C] < ⊥I and C ⊑ ⊥ < S by noting that, for any
E ∈ B− we have thatE ⊑ ⊥ < S. To see that, suppose the contrary. ByA { E
there is a chainC1, . . . ,Ck ∈ B as in the definition of{ such thatCk = E. Using
Ck−1 ⊑ ∃R.E ∈ S and rule (R4), we conclude thatCk−1 ⊑ ⊥ ∈ S. Applying this
reasoning inductively, we obtainC1 ⊑ ⊥ ∈ S. But asC1 is of the formA, {a}, or⊤,
this contradicts our initial assumptions.

– D = ⊤. By the initialisation ofS, C ⊑ ⊤ ∈ S and also [C] ∈ ⊤I.
– D ∈ NC. This case follows directly from the definition ofI.
– D = {a} for somea ∈ NI . If [C] ∈ {a}I then [C] = [{a}], and henceC ∼ {a}. Since
{a} ⊑ {a} ∈ S, we obtainC ⊑ {a} ∈ S from (∗).
Conversely, ifC ⊑ {a} ∈ S, thenC ∼ {a} and hence{[C]} = {[{a}]} = {a}I as
required.

It is easy to see thatI 6|= A ⊑ B: sinceA ∈ B−, we find that [A] ∈ AI due to
A ⊑ A ∈ S by the initialisation of the algorithm. But sinceA ⊑ B < S, we have that
[A] < BI based on (†).

Finally, it only remains to show thatI is indeed a model of KB. We argue that each
axiom of KB is satisfied byI by considering the possible normal forms:

– D ⊑ E with E ∈ B∪{∃R.E′ | E′ ∈ B}. If [C] ∈ DI, thenC ⊑ D ∈ S by (†) and thus
rule (R1) can be applied to yieldC ⊑ E. If E ∈ B, the claim follows from (†). For
E = ∃R.E′, we conclude thatC { E′ and thusE′ ∈ B−. By definition ofRI, we
find 〈[C], [E′]〉 ∈ RI, and sinceE′ ⊑ E′ ∈ S we can invoke (†) to obtain [E′] ∈ E′I

as required.
– C1 ⊓ C2 ⊑ D. This case is treated similar to the above case, using rule (R2) and

treating only the (simpler) case whereD ∈ B.
– ∃R.D ⊑ E. If [C] ∈ ∃R.DI then 〈[C], [D′]〉 ∈ RI for some [D′] ∈ DI. By the

definition ofRI and (∗), there is someD′′ ∈ [D′] such thatC ⊑ ∃R.D′′ ∈ S. Since
D′′ ∈ B and [D′′] = [D′] ∈ DI, we can concludeD′′ ⊑ D ∈ S from (†). Thus rule
(R3) implies thatC ⊑ E, and we obtain [C] ∈ EI by invoking (†).

– R ⊑ S. If 〈[C], [D]〉 ∈ RI then there isC ⊑ ∃R.D′ ∈ S with [D′] = [D]. Rule (R6)
thus entailedC ⊑ ∃S.D′ ∈ S, which yields〈[C], [D]〉 ∈ SI again by definition of
SI.

– R◦ S ⊑ T. This case is treated similar to the previous case, using rule (R7) instead
of rule (R6).

– C × D ⊑ R. If [C′] ∈ CI and [D′] ∈ DI, we conclude{C′ ⊑ C,D′ ⊑ D} ⊆ S from
(†). SinceD′ ∈ B−, we haveA{ D′ which clearly impliesC{ D′ by definition of
{. Hence rule (R8) was applied to yieldC ⊑ ∃R.D′ ∈ S and by rule (R1) we also
obtainC′ ⊑ ∃R.D′ ∈ S. Now 〈[C′], [D′]〉 ∈ RI follows directly from the definition
of RI.

�

Lemma 12. LetS be the saturated set obtained by the subsumption checking algorithm
for a normalisedEL++× knowledge baseKB and some queried subsumption A⊑ B.
Then, for each modelI of KB, one of the following holds:

– AI = ∅, or



– I |= S

Especially, if A⊑ B ∈ S, A ⊑ ⊥ ∈ S, {a} ⊑ ⊥ ∈ S (for some a∈ NI ), or ⊤ ⊑ ⊥ ∈ S,
thenKB |= A ⊑ B.

Proof. First note that the second part of the statement indeed is a consequence of the
first: all modelsI with AI = ∅ certainly satisfyA ⊑ B, and all other models need to
satisfy the detected axioms inS, which either shows the claim (ifA ⊑ B ∈ S or A ⊑
⊥ ∈ S) or demonstrates that such models cannot exist (if{a} ⊑ ⊥ ∈ S or⊤ ⊑ ⊥ ∈ S).

To show the first part of the claimed statement, consider any modelI of KB such
thatAI , ∅. A simple induction on the processing steps of the algorithmshows that all
elements ofS are satisfied byI. The base case is obvious, since all formulaeC ⊑ C and
C ⊑ ⊤ are satisfied by any interpretation. for the induction step,assume thatS in the
current stage of computation is such thatI |= S. We show that any rule of the algorithm
only adds formulae toS that are also satisfied byI:

– For rules (R1)–(R4), (R6), (R7) this is very easy to see. Indeed, any interpretation
that satisfies the requirements of the respective rule applications clearly must also
satisfy the resulting conclusions.

– For rules (R5) and (R8), we first show thatC { D entails thatCI , ∅ implies
DI , ∅. Indeed, ifC{ D then there is an according chainC1, . . . ,Ck with Ck = D
such that, for anyi = 1, . . . , k − 1, I |= Ci ⊑ ∃R.Ci+1 for someR ∈ NR. Hence, if
CI1 , ∅ then alsoDI , ∅. The claim thus follows from the definition of{, together
with our assumption thatAI , ∅.
Based on that observation, it is again easy to see that (R8) does yield sound results.
For (R5), note that the preconditions do indeed imply thatC ≡ {a} or C ≡ ⊥, and
that the conclusion is satisfied in both cases.

This finishes the proof. �

Combining the results of Proposition 9, Lemma 10, Lemma 11, and Lemma 12, we
obtain the main result of this section, where the lower bound(hardness) follows from
the known hardness ofEL++ [2].

Theorem 13. The problem of checking concept subsumptions inEL++× is P-complete.

Finally, one might ask how concept products affect other reasoning tasks, such as
conjunctive query answering inEL++×. As we have extended the originalEL++ algo-
rithm in a rather natural way, one would assume that related reasoning procedures for
EL++ could similarly be extended. Indeed, we expect that the automata-based algo-
rithm for conjunctive query answering that was presented in[6] can readily be modified
to coverEL++×, so that the same complexity results for conjunctive querying could be
obtained.

5 The Concept Product inSHOIQ

Below, we investigate the use of concept products inSHOIQ, the description logic un-
derlying OWL DL. SinceSHOIQ does not support generalised role inclusion axioms,



concept products can not be simulated by means of other axioms. Yet, we will see be-
low that the addition of concept products does not increase the worst-case complexity of
SHOIQ which is still NET even for binary encoding of numbers. Moreover, the
proof shows that roles occurring in concept product inclusions can still be considered
simple without impairing this result.

Definition 14. A SHOIQ× knowledge baseKB is a SROIQ× knowledge base such
that

– all Rbox axioms ofKB are of the form S⊑ R, R◦ R⊑ R, or C× D ⊑ R for R∈ NR

a role name, S∈ R an atomic role, and C,D ∈ C concept expressions,
– KB does not contain the universal role U or expressions of the form ∃R.Self.

Based on a fixed knowledge baseKB, we define⊑∗ as the smallest binary relation onR
such that:

– R⊑∗ R for every atomic role R,
– R⊑∗ S andInv(R) ⊑∗ Inv(S) for every Rbox axiom R⊑ S , and
– R⊑∗ T whenever R⊑∗ S and S⊑∗ T.

Given an atomic role R, we writeTrans(R) ∈ KB as an abbreviation for: R◦R⊑ R ∈ KB
or Inv(R) ◦ Inv(R) ⊑ Inv(R) ∈ KB.

A SHOIQ× knowledge base can be further normalised. Firstly, whenever we find
that R ⊑∗ S andS ⊑∗ R, the rolesR andS are obviously interpreted identically in
any model of KB. Hence in this case, one could syntactically substitute one of them
by the other, which allows us to assume that all knowledge bases considered below
have an acyclic Rbox (i.e.,⊑∗ is a partial order). Moreover, we assume that for all
concept product inclusionsA × B ⊑ R, bothA andB are atomic concepts. Obviously,
this restriction does not affect expressivity, as complex concepts in such axioms can be
moved into the Tbox.

Secondly, given a knowledge base KB, we obtain its negation normal formNNF(KB)
by converting every Tbox concept into its negation normal form in the usual way:

NNF(¬⊤) ≔ ⊥

NNF(¬⊥) ≔ ⊤

NNF(C) ≔ C if C ∈ {A,¬A, {a},¬{a},⊤,⊥}
NNF(¬¬C) ≔ NNF(C)
NNF(C ⊓ D) ≔ NNF(C) ⊓ NNF(D)
NNF(¬(C ⊓ D)) ≔ NNF(¬C) ⊔ NNF(¬D)
NNF(C ⊔ D) ≔ NNF(C) ⊔ NNF(D)
NNF(¬(C ⊔ D)) ≔ NNF(¬C) ⊓ NNF(¬D)
NNF(∀R.C) ≔ ∀R.NNF(C)
NNF(¬∀R.C) ≔ ∃R.NNF(¬C)
NNF(∃R.C) ≔ ∃R.NNF(C)
NNF(¬∃R.C) ≔ ∀R.NNF(¬C)
NNF(≤n R.C) ≔ ≤n R.NNF(C)
NNF(¬≤n R.C) ≔ ≥(n+ 1)R.NNF(C)
NNF(≥n R.C) ≔ ≥n R.NNF(C)
NNF(¬≥n R.C) ≔ ≤(n− 1)R.NNF(C)



It is well-known that KB andNNF(KB) are semantically equivalent.
Slightly generalising according results from [3], we show that anySHOIQ× knowl-

edge base can be transformed into an equisatisfiable knowledge base not containing
transitivity statements.

Definition 15. Given aSHOIQ×knowledge baseKB, letclos(KB) denote the smallest
set of concept expressions where

– NNF(¬C ⊔ D) ∈ clos(KB) for any Tbox axiom C⊑ D,
– D ∈ clos(KB) for every subexpression D of some concept C∈ clos(KB),
– NNF(¬C) ∈ clos(KB) for any≤n R.C ∈ clos(KB),
– ∀S.C ∈ clos(KB) wheneverTrans(S) ∈ KB and S⊑∗ R for a role R with∀R.C ∈

clos(KB).

Moreover, letΩ(KB) denote the knowledge base obtained fromKB by

– removing all transitivity axioms R◦ R⊑ R and
– adding the axiom∀R.C ⊑ ∀S.(∀S.C) for every∀R.C ∈ clos(KB) with Trans(S) ∈

KB and S⊑∗ R.

Proposition 16. KB andΩ(KB) are equisatisfiable.

Proof. Obviously we have that KB|= Ω(KB), hence every model of KB is a model of
Ω(KB) as well.

For the other direction, letI = (∆I, ·I) be a model ofΩ(KB). Then we define a new
interpretationJ = (∆J , ·J ) as follows:

– ∆J := ∆I

– aJ := aI for everya ∈ NI

– AJ := AI for everyA ∈ NC

– RJ is set to the transitive closure ofRI if Trans(R) ∈ KB, otherwiseRJ := RI ∪
⋃

S⊑∗R,S,R SJ

We now prove thatJ is a model of KB by considering all axioms starting with the
Rbox: Firstly, every transitivity axiom of KB is obviously fulfilled by definition ofJ.
Secondly, every role inclusionR1 ⊑ R2 axiom is fulfilled: in caseR2 is not transitive,
this follows directly from the definition, otherwise we can conclude it from the fact that
the transitive closure is a monotone operation w.r.t. set inclusion. Thirdly, we find that
every cross product axiomA× B ⊑ R is satisfied withinJ, as the construction ensures
AJ = AI andBJ = BI as well asRI ⊆ RJ .

We proceed by examining the concept expressionsC ∈ clos(KB) and show via
structural induction thatCI ⊆ CJ . As base case, for every concept of the form{a},
¬{a}, A, or¬A for a ∈ NI resp.A ∈ NC this claim follows directly from the definition of
J. Note also that nominal concepts are correctly mapped to singleton sets. We proceed
with the induction steps for all possible forms of a complex conceptC (mark that all
C ∈ clos(KB) are in negation normal form):

– Clearly, if DI1 ⊆ DJ1 andDI2 ⊆ DJ2 by induction hypothesis, we can directly con-
clude (D1 ⊓ D2)I ⊆ (D1 ⊓ D2)J as well as (D1 ⊔ D2)I ⊆ (D1 ⊔ D2)J .



– Likewise, as we haveRI ⊆ RJ for all rolesR and againDI ⊆ DJ due to the
induction hypothesis, we can conclude (∃R.D)I ⊆ (∃R.D)J as well as (≥n R.D)I ⊆
(≥n R.D)J .

– Now, consider aC = ∀R.D and assumeδ ∈ (∀R.D)I. If there is noδ′ with (δ, δ′) ∈
RJ , thenδ ∈ (∀R.D)J is trivially true. Now assume there are suchδ′. For each of
them, we can distinguish two cases:
• (δ, δ′) ∈ RJ , implying δ′ ∈ DI and, via the induction hypothesis,δ′ ∈ DJ ,
• (δ, δ′) < RJ . Yet, by construction ofJ, this means that there is a roleS with

S ⊑∗ RandTrans(S) ∈ KB and a sequenceδ = δ0, . . . , δn = δ′ with (δk, δk+1) ∈
SI for all 0 ≤ k < n. By definition ofΩ, the knowledge baseΩ(KB) contains
the axiom∀R.D ⊑ ∀S.(∀S.D), hence we haveδ ∈ ∀S.(∀S.D) wherefrom a
simple inductive argument ensuresδk ∈ DI for all δk includingδn = δ′.

So we can conclude that for all suchδ′ we haveδ′ ∈ DI. Via the induction hypoth-
esis followsδ ∈ DJ and hence we can concludeδ ∈ (∀R.D)J .

– Finally, considerC = ≤n R.D and assumeδ ∈ (≤n R.D)I. From the fact thatRmust
be simple followsRJ = RI. Moreover, since bothD andNNF(¬D) are contained
in clos(KB) the induction hypothesis givesDJ = DI. Those two facts together
directly implyδ ∈ (≤n R.D)I.

Now considering an arbitrary KB Tbox axiomC ⊑ D, we find (NNF(¬C) ⊔ D)I =
∆I asI is a model of KB. Moreover – by the correspondence just shown –we have
(NNF(¬C) ⊔ D)I ⊆ (NNF(¬C) ⊔ D)I and hence also (NNF(¬C) ⊔ D)J = ∆J making
C ⊑ D an axiom satisfied inJ. This finishes the proof. ⊓⊔

Thus, we can reduce satisfiability checking inSHOIQ× to satisfiability checking
in ALCHOIQ× – the fragment ofSHOIQ× without transitivity axioms. Following
the approach taken in [7], we can decide the latter problem bya reduction toC2, the
two-variable fragment of first-order logic with counting quantifiers for which this prob-
lem has been shown to be NET-complete, even for binary coding of numbers [8].
Intuitively,C2 admits all formulae of function-free first-order logic thatcontain at most
two variable symbols, and which may additionally use the counting quantifiers∃≤n,∃≥n,
and∃=n for any numbern > 0. Such quantifiers impose the obvious semantic restric-
tions on the number of individuals satisfying the quantifiedformula. Moreover, binary
equality≈ can easily be defined from those constructs. For formal details, see [8].

We transformALCHOIQ× knowledge bases intoC2 by means of the recursive
functions in Table 4. The transformation is a modification ofthe standard DL to FOL
transformation given e.g. in [3], where further explanations can be found. Omitting
the standard proof thatπ(KB) is indeed equisatisfiable to KB (cf. [3]), we obtain the
following result:

Theorem 17. The problem of checking knowledge base satisfiability forSHOIQ
× is

NET-complete, even for binary encoding of numbers.

Proof. Hardness follows from the according hardness result forSHOIQ [7]. The
NET upper bound is obtained by applying the above polynomial reductions to
transform aSHOIQ× knowledge base KB into an equisatisfiableALCHOIQ× knowl-
edge baseπ(Ω(KB)), the satisfiability of which can be checked in NET (even for
binary encoding of numbers) according to [8]. �



Table 4.Transformation fromALCHOIQ× toC2. X is a meta-variable for representing various
term symbols in the final translation. The transformationsπy are assumed to be analogous to the
given transformations forπx.

π(C ⊑ D) ≔ ∀x.πy(¬C ⊔ D, x)
π(R⊑ S) ≔ ∀x.∀y.(¬R(x, y) ∨ S(x, y))

π(C × D ⊑ R) ≔ ∀x.∀y.(¬C(x) ∨ ¬D(y) ∨R(x, y))
π(KB) ≔

∧
ϕ∈KB π(ϕ)

πx(⊤,X) ≔ ⊤
πx(⊥,X) ≔ ⊥
πx(A,X) ≔ A(X) for any concept nameA ∈ NC

πx({a},X) ≔ a ≈ X for any individual namea ∈ NI

πx(¬C,X) ≔ ¬πx(C,X)
πx(C ⊓ D,X) ≔ πx(C,X) ∧ πx(D,X)
πx(C ⊔ D,X) ≔ πx(C,X) ∨ πx(D,X)
πx(∀R.C,X) ≔ ∀x.(R(X, x)→ πy(C, x))
πx(∃R.C,X) ≔ ∃x.(R(X, x) ∧ πy(C, x))
πx(≥n R.C,X) ≔ ∃≥nx.(R(X, x) ∧ πy(C, x))
πx(≤n R.C,X) ≔ ∃≤nx.(R(X, x)→ πy(C, x))

6 The Concept Product inSHOI

Following the common nomenclature, letSHOI× denote the description logic obtained
from SHOIQ×by disallowing all kinds of number restrictions. It is well-known that
deciding satisfiability ofSHOI knowledge bases is ET-complete [9], and we will
show that this worst case complexity is not increased when adding concept products.

As was shown by Property 16, transitivity axioms can be eliminated fromSHOIQ×

knowledge bases without affecting satisfiability. Obviously, if applied to aSHOI×

knowledge base, the result of this transformation would be in ALCHOI×. In this
section, we provide a way of further reducing anALCHOI× knowledge base to an
equisatisfiableALCHOI knowledge base in polynomial time.

In addition to the standard negation normal form, we now require another normal-
isation step that simplifies the structure of KB byflattening it to a knowledge base
FLAT(KB). This is achieved by transforming KB into negation normal form and ex-
haustively applying the following transformation rules:

– Select an outermost occurrence ofQR.D in KB, such that Q∈ {∃,∀} andD is a
non-atomic concept.

– Substitute this occurrence withQR.F whereF is a fresh concept name (i.e. one not
occurring in the knowledge base).

– Add¬F ⊔ D to the knowledge base.

Obviously, this procedure terminates yielding a flat knowledge baseFLAT(KB) all
Tbox axioms of which are Boolean expressions over formulae of the form⊤, ⊥, A, ¬A,
or QR.A with A an atomic concept name. Obviously, the flattening can be carried out in
polynomial time.

Proposition 18. AnyALCHOI× knowledge baseKB is equisatisfiable toFLAT(KB).



Proof. We first prove inductively that every model ofFLAT(KB) is a model of KB.
Let KB′ be an intermediate knowledge base and let KB′′ be the result of applying one
single substitution step to KB′ as described in the above procedure. We now show that
any modelI of KB′′ is a model of KB′. Let QR.D be the term substituted in KB′. Note
that after every substitution step, the knowledge base is still in negation normal form.
Thus, we see that QR.D occurs outside the scope of any negation or quantifier in an
KB′-axiomE′, the same is the case forQR.F in the respective KB′′-axiomE′′ obtained
after the substitution. Hence, if we show that (QR.F)I ⊆ ( QR.D)I, we can conclude
thatE′′I ⊆ E′I. FromI being a model of KB′′ and thereforeE′′I = ∆I, we would then
easily derive thatE′I = ∆I and hence find thatI |= KB′, as all other axioms from KB′

are trivially satisfied due to their presence in KB′′.
It remains to show (QR.F)I ⊆ ( QR.D)I. We distinguish two cases:

– Q= ∃
Consider aδ ∈ (∃R.F)I. Then exists an individualδ′ ∈ ∆I with 〈δ, δ′〉 ∈ RI and
δ′ ∈ FI. As a consequence of the KB′′ axiom¬F ⊔D (being equivalent to the GCI
F ⊑ D), we find thatδ′ ∈ DI as well, leading straightforwardly to the conclusion
δ ∈ (∃R.D)I. Hence we have (∃R.F)I ⊆ (∃R.D)I.

– Q= ∀
Consider aδ ∈ (∀R.F)I. This implies for every individualδ′ ∈ ∆I with 〈δ, δ′〉 ∈ RI

that δ′ ∈ FI. Again, the KB′′ axiom¬F ⊔ D entailsδ′ ∈ DI for every suchδ′,
leading toδ ∈ (∀R.D)I. Hence, we have (∀R.F)I ⊆ (∀R.D)I.

Every modelI of KB can be transformed into a modelJ of FLAT(KB) by following
the flattening process described above: Let KB′′ result from KB′ by substituting QR.D
by QR.F and adding the respective axiom. Furthermore, letI′ be a model of KB′. Now
we construct the interpretationI′′ as follows:FI

′′

≔ ( QR.D)I
′

and for all other concept
and role namesN we setNI

′′

≔ NI
′

. ThenI′′ is a model of KB′′. �

Lemma 19. Consider a flattenedALCHOI× knowledge baseKB. Let C× D ⊑ R
with C,D ∈ NC be some concept product axiom contained inKB and letKB′ be the
knowledge base obtained fromKB as follows:

– delete the Rbox axiom C× D ⊑ R,
– add C ⊑ ∃S1.{o} and D ⊑ ∃S2.{o} where S1,S2 are fresh roles and o is a fresh

individual name
– for every role T with R⊑∗ T (including R itself)
• substitute any occurrence of∃T.A by∃T.A⊔ ∃S1.∃S−2 .A
• substitute any occurrence of∀T.A by∀T.A⊓ ∀S1.∀S−2 .A

Then,KB andKB′ are equisatisfiable.

Proof. To show equisatisfiability, we prove, that any modelI of KB can be converted
into a modelJ of KB′ and vice versa.

First, letI = (∆I, ·I) be a model of KB. We define the interpretationJ = (∆J , ·J)
by choosing an arbitrary but fixedδo ∈ ∆I and setting

– ∆J := ∆I,



– for all i ∈ NI \ {o}, let iJ := iI

– let oJ = δo
– for all B ∈ NC, let BJ := BI

– for all T ∈ NR \ {S1,S2}, let TJ := TI

– let SJ1 = CI × {δo}
– let SJ2 = DI × {δo}

We now show thatJ is indeed a model of KB′. Clearly, the new axiomsC ⊑ ∃S1.{o}
andD ⊑ ∃S2.{o} are obviously fulfilled. Now note that the construction ofJ and the
KB-Axiom C × D ⊑ R assureSJ1 ◦ S−2

J
⊆ RJ . Therefore, we have (∃S1.∃S−2 .A)J ⊆

(∃R.A)J implying (∃R.A⊔∃S1.∃S−2 .A)J = (∃R.A)J∪(∃S1.∃S−2 .A)J = (∃R.A)J , hence
the KB′-axiom containing∃R.A⊔ ∃S1.∃S−2 .A is satisfied inJ due to theI-validity of
the corresponding KB-axiom containing just∃R.A instead.

Furthermore, we have (∀R.A)J ⊆ (∀S1.∀S−2 .A)J implying (∀R.A⊓∀S1.∀S−2 .A)J =
(∀R.A)J ∩ (∀S1.∀S−2 .A)J = (∀R.A)J , so the same argumentation applies.

Second, assumeJ = (∆J , ·J ) is a model of KB′. Then let the interpretationI =
(∆I, ·I) be defined by:

– ∆I := ∆J ,
– for all i ∈ NI , let iI := iJ

– for all B ∈ NC, let BI := BJ

– for everyT ∈ NR, if R⊑∗ T, let TI := TJ ∪ (SJ1 ◦ S−2
J ), otherwiseTI := TJ

It remains to show thatI is a model of KB. Obviously, all role inclusion statements
from KB (coinciding with those from KB′) are valid inI ensured by the construction.
Moreover, note that the axiomC ⊑ ∃S1.{o} enforcesCJ × {oJ } ⊆ SJ1 , likewiseC ⊑
∃S1.{o} ensures{oJ } × DJ ⊆ S−2

J . This allows to concludeCI × DI = CJ × DJ ⊆
SJ1 ◦S−2

J . Now we see that by construction, the KB-axiomC×D ⊑ R is satisfied inI.
As to the Tbox axioms, we inductively show for every concept expressionE occur-

ring in KB and the respective (possibly substituted) KB′-concept expressionE′, that we
haveE′J = EI. Clearly, this entails for every KB′-Tbox axiomF′ that the respective
F is satisfied inI due to∆I = ∆J = F′J = FI. For the base case, note that due to
the construction ofI, all atomic concepts and nominals as well as their negationshave
the same extensions inJ andI. For the induction step, we find for all rolesT with
R 6⊑∗ T that (∃T.A)J = (∃T.A)I and (∀T.A)J = (∀T.A)I due toAJ = AI as well as
TJ = TI. In the caseR⊑∗ T, we would haveTI = TJ ∪ (SJ1 ◦S−2

J ) which then yields
us (∃T.A⊔ ∃S1.∃S−2 .A)J = (∃T.A)I as well as (∀T.A⊓ ∀S1.∀S−2 .A)J = (∀T.A)I. Fi-
nally, invoking the induction hypothesis for conceptsC1,C2, the claim trivially carries
over toC1 ⊓C2 andC1 ⊔C2. �

Like for SROIQ×, the elimination step from the above lemma can be applied it-
eratively to eliminate all concept products. Note that having a flat knowledge base is
essential to ensure that the reduction can be done in polynomial time and space. So, a
simple induction yields the following result:

Proposition 20. EveryALCHOI× knowledge base can be reduced to an equisatisfi-
ableALCHOI knowledge base in polynomial time.



SHOI has shown to be ET-complete in [9]. Hence, we can eventually use the
established results to prove ET-completeness also for knowledge base satisfiabil-
ity checking withinSHOI×.

Theorem 21. The the problem of checking satisfiability forSHOI× knowledge bases
is ET-complete.

Proof. As shown in Property 16, transitivity axioms can be eliminated from aSHOIQ×

knowledge base while preserving satisfiability. Applied toaSHOI× knowledge base
KB, this polynomial reduction yields anALCHOI× knowledge baseΩ(KB). More-
over, due to Proposition 18,Ω(KB) and its flattened versionFLAT(Ω(KB)), which can
again be computed in polynomial time, are equisatisfiable aswell. Finally, Lemma 19
ensures that another polynomial time conversion transfersthis knowledge base into
an equisatisfiableALCHOIknowledge base KB′. Hence, satisfiability of KB can be
checked by computing KB′ in polynomial time and then checking satisfiability of KB′.
As ALCHOI is contained inSHOI, which in turn is contained inSHOI×, the
ET-completeness ofSHOI shown in [9] carries over toSHOI×. �

7 Conclusion

We have introduced theconcept productas a new expressive feature for description log-
ics. It allows statements of the formC×D ⊑ R, expressing that all instances of the class
C are related to all instances ofD by the roleR. While this construct can be simulated
in SROIQ with a combination of inverse roles, nominals, and role inclusion axioms,
we have shown that it can also be added to many weaker DLs that do not support such
simulation. In particular, we have investigated the extended DLsEL++×, SHOIQ×,
andSHOI×, showing that each of these preserves its known upper complexity bound
P, NET, and ET. For the tractable logicEL++×, we also provided a detailed
algorithm that might serve as a basis for extending existingEL++ implementations with
that new feature.

Our results indicate that concept products, even though they are hitherto only avail-
able inSROIQ, do in fact not have a strong negative impact on the difficulty of rea-
soning in simpler DLs. In contrast, the features used to simulate concept products in
SROIQ may have much more negative impact in general. Inverse roles, for example,
are known to renderEL++ ET-complete [5]. Since concept products provide a
valuable modelling tool that can be applied in many scenarios, they appear as a nat-
ural candidate for future extensions of the DL-based Web Ontology Language OWL,
possibly even in the ongoing OWL2 effort.

Our results also entail a number of research questions for future works. First of
all, one might ask what other features available (indirectly) in SROIQ could be easily
ported back to less complex DLs. We are currently investigating a broad generalisation
of concept products that appears to be rather promising in this respect.

But also the study of concept products as such bears various open problems. As
remarked in Section 3, the simulation of concept products inSROIQ causes roles to be
classified as non-simple. Yet, their use in number restrictions merely provides an alter-
native way of describing nominals, so that it might be conjectured that this restriction



could be relaxed. Other obvious next steps are the investigation of concept products
for SHIQ andSHOQ, the direct treatment of concept products in further reasoning
algorithms, and the possible augmentation of other populartractable DLs with this fea-
ture. Moreover, implementations and concrete syntacticalencodings for OWL would
be important to make concept products usable in practice.
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