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Abstract. We introduce theoncept produchs a new expressive feature to de-
scription logics (DLs). While this construct allows us tgeass an arguably very
common and natural type of statement, it can be simulatediynthe very ex-
pressive DLSROIQ for which no tight worst-case complexity is known. How-
ever, we show that concept products can also be added to th&SHEIO7Q and
SHOI, and to the tractable DEL™ without increasing the worst-case com-
plexities in any of those cases. We therefore argue thategdnqroducts provide
practically relevant expressivity at little cost, makitgin a good candidate for
future extensions of the DL-based ontology language OWL.

1 Introduction

The development of description logics (DLs) has been driverthe desire to push
the expressivity bounds of these knowledge representitiaralisms while still main-
taining decidability and implementability. This has leadvery expressive DLs such
asSHOIN, the logic underlying the Web Ontology Language OWL RHOIQ,
and more recenthSROZQ [1] which is the basis for the ongoing standardisation of
OWL2! as the next version of the Web Ontology Language. On the dtted, more
light-weight DLs for which most common reasoning probleras be implemented in
(sub)polynomial time have also been sought, leading, 'aghe tractable DLEL**
[2].

In this work, we continue these lines of research by intraty@ new expressive
feature — theconcept product to various well-known DLs, showing that this added
expressivity does not increase worst-case complexitiaeyrof these cases. Intuitively,
the concept product allows us to define a role that conneety @vstance in one class
with every instance in another class. An example is givehértitle: Given the class of
all elephants, and the class of all mice, we wish to specifijL&kBowledge base that
allows us to conclude that any individual elephant is biggan any individual mouse,
or, stated more formally:

Y(X).Vy.Elephant(x) A Mouse(y) — biggerThan(x, y)

Using common DL syntax, one could also writkephant? x Mouse” C biggerThan’,
which explains the name “concept product” and will also wet# our DL syntax.

Thttp://www.w3.org/2007/0WL



Maybe surprisingly, this semantic relationship cannot jpec&ied in any but the
most expressive DLs today. Using quantifiers, one can oalg ghat any elephant is
bigger tharsomemouse, or that elephants are bigger than nothing but miceniiNgs
also allow us to state that some particular elephant is bithga all mice, and with DL-
safe rules [3], one might say that alhmedelephants are bigger than athmedmice.
Yet, none of these formalisations captures the true irdgardf the informal statement.

Now one could hope that this kind of statement would be rarelded in practical
applications, but in fact it represents a very common mauglbroblem of relating
two individuals based on their (inferred) properties. Naktand life sciences provide a
wealth of typical examples, for example:

— Alkaline solutions neutralise acid solutions.
— Antihistamines alleviate allergies.
— Oppositely charged bodies attract each other.

Reasoning about such relations qualitatively is imporfaniexample in the context
of the HALO project, which sets out to develop reasoning systems for solving-com
plex examination questions from physics, biology, and detrgn Qualitative reasoning
about a given scenario is often required before any conardtenetic processing steps
can be invoked.

Another particularly interesting example is the task ofeleping a knowledge base
capturing our current insights about DL complexities andilable reasoning imple-
mentations. It should entail statements like

— Any reasoner that can hand®s+ 7Q can deal with every DLP-ontology.

— Any problem within &pTime can be polynomially reduced to anyiH me-complete
problem.

— In any description logic containing nominals, inverses anchber restrictions, sat-
isfiability checking is hard for any complexity below or et|EarTiME.

All of those can easily be cast into concept products. Arr@sging aspect of reasoning
about complexities is that it involves uppand lower bounds, and thus also escapes
from most other modelling attempts (e.g. using classegausof instances to repre-
sent concrete DLs). This might be a reason that the DL coritpleavigatof is based
on JavaScript rather than on any of the more advanced DL leumel representation
technologies.

In this paper, we show that it is in fact not sdfdiult to extend a broad array of
existing description logics with enough additional mouhgjlpower to capture all of
the above, while still retaining their known upper comptexiounds. We start with the
short preliminary Section 2 to recall the definition of the BRO7 @, and then proceed
by introducing the concept product formally in Section 3n€ept products there can
indeed be simulated by existing constructs and thus argynésed as syntactic sugar.
This is quite diferent for the tractable DEL** investigated in Section 4. Yet, we will
see that polynomial reasoning 8L+ with concept products is possible, thus further

2http://www.projecthalo.com/
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pushing theSL envelope. In the subsequent Section 5, we show&td07Q with
concept products is still NEeTmve-complete, thus obtaining tight complexity bounds
for a very expressive DL as well. Finally, we establish a Enresult forSHOI and
ExpTiMe-completeness in Section 6, and then provide an outlook cammg work in
Section 7.

2 Preliminaries: the DL SROIQ

In this section, we recall the definition of the expressiveadiption logicSROIQ [1].
We assume that the reader is familiar with description ©{g.

As usual, the DLs considered in this paper are based on tlsind sets ofindi-
vidual names\;, concept namellc, androle names\g containing theuniversal role
Ue NR.

Definition 1. A SROZ7Q Rbox forNg is based on a seR of atomic rolesdefined as
R = NRU{R | R € Ng}, where we selnv(R) := R~ andInv(R") := R to simplify
notation. In the sequel, we will use the symbalS Rpossibly with subscripts, to denote
atomic roles.

A generalisedole inclusion axion{RIA) is a statement of the form 8. . .0 S, C R,
and a set of such RIAs is a generalisetk hierarchyA role hierarchy isegularif there
is a strict partial order< onR such that

- S<R iff Inv(S)<R,and
— every RIA is of one of the forms:

RoORCR, R CR Sj0...05,C R Ro0Sj0...05,C R Sjo...05,0RCR
such that Re Ng is a (non-inverse) role name, and S Rfori=1,...,n.
The set ofsimpleroles for some role hierarchy is defined inductively as folo

— If arole R occurs only on the right-hand-side of RIAs of thenf& C R such that
S is simple, then R is also simple.
— The inverse of a simple role is simple.

Arole assertiotis a statement of the forRef(R) (reflexivity), Asy(S) (asymmetry,
or Dis(S, §’) (role disjointnesg where S and Sare simple. ASRO7Q Rboxis the
union of a set of role assertions together and a role hiergroh SRO7Q Rbox is
regular if its role hierarchy is regular.

Definition 2. Given aSROZQ RboxR, the set ofconcept expressiorG is defined as
follows:

—NccCC,TeC,LeC,

—ifC,D e C,Re R, S e Rasimplerole, & N;, and n a non-negative integer, then
-C,CnD,CuD,{a}, YRC,dRC, dS.Self, <n S.C, and>n S.C are also concept
expressions.



Table 1. Semantics of concept constructorsSROZQ for an interpretatiod with domain4?.

Name Syntax|Semantics

inverse role R (X y) € 47 x AT | (y, x) € R}

universal role |U AT x AF

top T A7

bottom 1 0

negation -C |[47\C!

conjunction CnbD |CfnD’

disjunction CubD |CfuD?

nominals {a} {al}

univ. restriction [VRC [{x € 47 | (x,y) € R impliesy € C’}

exist. restriction|aJR.C |{x € 47 | for somey € 47 , (x,y) € Rf andy € C’}
Self concept  |3S.Self|{x € 47 | (x,x) € ST}

qualified numbgxn S.C |{x € 47 | #y € 47 | (x,y) € S’ andy € C'} < n}
restriction >nSC|{(xed? |#lye 4’ | (xy)y e ST andye Cf} > n}

Throughout this paper, the symbols C, D will be used to decateept expressions. A
SROIQ Thoxis a set ofgeneral concept inclusion axior{GCls) of the form GZ D.
Anindividual assertioran have any of the following forms{(8&), R(a, b), =R(a, b),
a# b, with a b € N, individual names, G C a concept expression, andRe R roles
with S simple. ASROZQ Abox s a set of individual assertions.
A SROIQ knowledge base Kis the union of a regular RboR, and an AboxA
and Thox7™ for R.

We further recall the semantics SRO7Q knowledge bases.

Definition 3. An interpretation consists of a set? calleddomain(the elements of it
being calledindividualg together with a functior’ mapping

— individual names to elements 4f,
— concept names to subsets4dt and
— role names to subsets df x 47,

The function? is inductively extended to role and concept expressions@sis in
Table 1. An interpretatiod” satisfiesan axiomy if we find that? = ¢:

- T ESCRIifS' cR,

- T ES;o0...0S8,CRifS[o...0S C R (o being overloaded to denote the
standard composition of binary relations here),

— T E Ref(R) if R is a reflexive relation,

— T E Asy(R) if R? is antisymmetric and irreflexive,

— I EDis(R S)if R” and § are disjoint,

- JEeccDhifcf cDl.

An interpretation satisfiesa knowledge baskB (we then also say thaf is a
modelof KB and write 7 £ KB) if it satisfies all axioms okKB. A knowledge baskB
is satisfiablef it has a model. Two knowledge bases aciivalentf they have exactly
the same models, and they aguisatisfiabléf either both are unsatisfiable or both are
satisfiable.



Further details o6ROZ Q can be found in [1]. We have omitted here several syntac-
tic constructs that can be expressed indirectly, espgcialk assertions for transitivity,
reflexivity of simple roles, and symmetry.

3 Simulating Concept Products inSROZIQ

We now formally introduce the Dkoncept producas a new constructor in description
logic knowledge bases. The D8RO Q extended with this constructor will be denoted
SROIQ*. It will turn out that concept products appearsymtactic sugain SRO7Q*
since they can be represented by combining nominals, iavetss, and complex role
inclusion axioms. On the other hand, the universal roledsgaised as a special case
of concept product, though, as we will discuss below, ountition method imposes
some additional restrictions on simplicity of roles.

Definition 4. A concept product inclusiois a statement of the form £D C R where
C,D € C are SROIQ concepts, and R is an atomBROIQ role.

A SROIQ* Rbox is the union of $ROITQ Rbox with a set of concept product
inclusions based on roles and concepts for that Rbox. Siihypbf roles is defined as
in SROIQ where concept product axioms are considered as additianaskof RIAs.
Especially, any role R occuring in such a statement is nopkrim SRO7Q*.

ASROIQ@" knowledge baskB is the union of aSROIQ* RboxR, and aSROIQ
AboxA andSROIQ ThoxT (for R).

The model theoretic semantics8ROZQ is extended t&SROI Q™ by setting
ITECxDCRIffc! xD' cR

for any interpretatiorf .

In the remainder of this section, we discuss some basic fiqgroperties of the con-
cept product. We immediately observe tikageneralises the universal role, which can
now be defined by the axiom x T C U. However, our extension of the notion of sim-
plicity of roles would then caudd to become non-simple, which is not needed. In fact,
we conjecture that one can generally consider the concegtipt to have no impact on
simplicity of roles, but our below approach of simulatingicept products iIBROIQ
requires us to impose that restriction. We leave it to futwoek to conceive a modified
tableau procedure f@ROIQ* that directly takes the cross product into account — our
subsequent results f#HOI Q" show that this extended version of simplicity does not
impose any problems there.

We now find thaix itself can be expressed by existing constructS8O7 Q:

Lemma 5. Consider aSROIQ* knowledge baskB with some concept product axiom
Cx DC R, andletKB’ be the knowledge base obtained frii® as follows:

— delete the Rbox axiom&€D C R,
— add anew RIARo R, C R, where R, R, are fresh role names,
— introduce fresh nominaja}, and add the Thox axioms € dR;.{a} and D C

3R, {a).



ThenKB andKB’ are equisatisfiable.

Proof. First note that the introduced axioms are indeed admis§iblSROIQ, and
that regularity of the Rbox is not endangered.

Now we show that for any moddl = (47,-) of KB we can construct a model
J = (47,-9) of KB’ as follows:

-4 =4,

— forallieN; \{a}, leti := i’

— leta? = 6, for an arbitrary but fixed, € 47
— forall Ae N, letAT := AT

— forall T e Ng\ {R, R}, letR7 := R!

— letR/ = C7 x {8}

— letR] = DY x {5}

Then by construction, the new KB-axion@sC 1R;.{a} andD C dR,.{a} are sat-
isfied in 7. Next note that for all concept expressidasot containingR;, R, or a,
we haveE? = EJ which follows by an easy structural induction from the fdwittthe
interpretation of the previously present roles, atomicoemts and individuals which
coincides inf and 7.

Thereby we obtain that all Tbox axioms from KBKB’ are valid inJ. Moreover,
the construction off and the validity ofC x D C Rin 7 together assuer o RQJ c
A7 x c R7 therefore also the newly introduced RR o R, C Ris satisfied in7.

Finally, we observe that any modglof KB’ is a model of KB: fromC C 3R;.{a}
andD C 3R;.{a} follows C’ x {a’} ¢ Rl as well asD’ x {a’} ¢ R} the latter being
equivalent tofa’} x DY ¢ R,™?. Hence, we can conclude’ x D’ ¢ Rl o REI. Now
due to the RIAR; o R, C R being satisfied ir¥” as well we know thaR{ o RQI CRI,
and can concludeé’ x DY ¢ R?. Hence also the cross product inclus@mx D C Ris
satisfied inZ. All other axioms of KB are present in Kis well and therefore satisfied
anyway. O

Clearly, the elimination step from the above lemma can bdiegpecursively to
eliminate all concept products. A simple induction thuddgehe following result:

Proposition 6. EverySROIQ* knowledge base can be reduced to an equisatisfiable
SROIQ knowledge base in polynomial time. In particular, satisfigbof SROZ7Q*
knowledge bases is decidable.

Decidability of SRO7Q was shown in [1]. SincSROIQ is already NEprTME-
hard, this also flices to conclude that the (currently unknown) worst-caseptexities
of SROIQ* andSROIQ coincide.

4 Polynomial Reasoning with Concept Products i€L**

In this section, we investigate the use of concepts prodadise DL EL** [2], for
which many typical inference problems can be solved in poiyial time.EL£** cannot



Table 2. Normal form transformation foE£**. A, B, C, A, C, andD are concept expressions,
whereA andC are neither concept names nor nominals, Bnid a fresh concept namg;, S,
andT are role names, whefiis fresh. Commutativity of1is assumed to simplify the rule set.

Pl: Ryo...oR_10R, C S = {Rio...oR1CT, ToR,CS}
AxBC R — {ACD,DxBCR
AxBC R — {BCD,AxDCR}
BmAcCC — {ACD,DNBCC}
JRAC B — {ACD,IRDC B}
1 cC - 0
P2: AC BnC — {ACB,ACC}
Ac¢ w {AcD,DCC)
Ac IRC — {AC3IRD,DCC}
AC T - 0

simulate concept products as it does support nominals afd, Rut no inverse roles.
While it is known that the addition of inverses makes satidlity checking EpTime-
complete [5], we show that sound and complete reasoningthétttoncept product is
still tractable. We simplify our presentation by omittingncrete domains frol8L
—they are notfiected by our extension and can be treated as shown in [2].

Definition 7. An &L knowledge baskB is a SROIQ* knowledge base that con-
tains only constructors, L, rm, IR for some (non-inverse) role name=R\g, and{a}
for some individual name a N;, possibly with a non-regular role box.

A polynomial algorithm for checking class subsumptiongifi** has been given
in [2], and it was shown that other standard inference problean easily be reduced to
that problem. We now present a modified subsumption checdgmyithm for& L+
— also using some modified notation — and show its correcfoesisis extended DL.

Without loss of generality, we assume that all Abox axiom& i are expressed
by equivalent Thox axioms using nominals. We can furthetrisour attention to
&L knowledge bases in a certain normal form:

Definition 8. An EL*** knowledge bas&B is in normal formif it contains only ax-
ioms of one of the following forms:

AcCC AnBcC C RC T AxBLC T
JRAC B ALC dRB RoSCT
where ABe NcU{{a} |[ae N JU{T},CeNcU{{a}|aeN}U{L},and RS, T € Ng.

Proposition 9. AnyEL*™ knowledge base can be transformed into an equisatisfiable
EL knowledge base in normal form. The transformation can bedofinear time.

Proof. The transformation is accomplished by the rules of Table lZere each rule
describes the replacement of some axiom by one or more afiiegraxioms. In a first
step, the rules (P1) are applied exhaustively, and afteisvidne rules (P2) are applied
exhaustively to the knowledge base. We omit the easy pratbieaiesult is very similar
to the normal form transformation given in [2]. O



Table 3. Completion rules for reasoning ... SymbolsC, D, possibly with subscripts or
primes, denote elements 8f whereass might be any element # U {AR.C | C € B}.

(R1l) f DcEeKBandCC D e SthenS :=Su{CcC E}.

(R2) IfCinCyc DeKBand{CC C;,CCCy}cSthenS:=Su{CcC D}.

(R3) IfdRCC DeKBand{C;C dRC,,C,C C} C SthenS :=SuU({C; C D}.

(R4) If{CCcIRD,DC 1} c SthenS:=Su{CcLC 1}.

(R5) If{Cc{a},DC{a},DC E} c SandC ~ DthenS:=Su{CLC E}.

(R6) IfRC SeKBandCLC dRD € SthenS := Su{CLC 3S.D}.

(R7) IfRoSC T e KBand{C; C dRC,,C, C IS.C3} € SthenS = SU{C, C IT.C3}.
(R8) fCxDCReKB,D'CDeS, andC ~ D’ thenS:=Su{CC dRD'}.

It is easy to see that the above transformation to normal flwes not change the
relative subsumption hierarchy between classes in thénatignowledge base. Hence,
subsumption testing can equivalently be performed on tihenalised knowledge base.

We now provide an algorithm that checks whether a subsumptioc B between
concept names is entailed by some normali&gif ™ knowledge base KB. As dis-
cussed in [2], this is diicient to solve arbitrary subsumption problems, and to de-
cide knowledge base consistency and instance classificatlee algorithm proceeds
by computing a seS$ of inclusion axioms that are entailed by KB, and it turns oet w
only need to consider very simple axioms of the folthg D andC C dR.D, where
C,D are elements of the s := Nc U {{a} |ae N} U {T, L}.

The setS is initialised by settingS = {CC C | Ce Bju{CC T |C e 8}.
The algorithm then proceeds by applying the rules in Tablentd no possible rule
application further modifies the s&t The rules refer to a binary relatiop C 8 x 8
that is defined based on the current conter®.dflamely,C ~ D holds whenever there
areCy,...,Cy € B8 such that

— C; is equal to one of the followindgC, T, {a} (for some individuak € N;), or A
(where the subsumptiohC B is to be checked),

— G CdRC;1 e SforsomeReNg(i=1,...,k-1),and

- C=D.

Intuitively, C ~ D states thaD cannot be interpreted as the empty set if we assume
thatC contains some element. The option = A reflects the fact that we can base our
conclusions on the assumption tieis not equivalent taL either — if it is, the queried
subsumption holds immediately, so we do not need to cheslctsée'.

After terminating with the saturated s8t the algorithm confirms the subsumption
A C Biff one of the following conditions hold:

ACBeS or ALLeS or {ajc LeS(forsomeaeN;) or TC LeS.

We will show below that this algorithm is indeed correct, dmak it runs in polyno-
mial time.

4 This case is actually missing in [2], and it indeed needs tadbded to obtain a complete
algorithm.



Lemma 10. The above algorithm for checking concept subsumptiaffii™ termi-
nates in polynomial time.

Proof. The setB clearly is linear in the size of the knowledge base, and thez@nly
|B]x 8| x (1+|Ng]) many possible elements# At least one such element is computed
in each step, so that the algorithm terminates after polyalbmmany steps.

In addition, applicability of each rule can be decided inyoamial time. In partic-
ular, the relationw» can be computed in polynomially many steps. O

Lemma 11. LetS be the saturated set obtained by the subsumption checlgogtim
for a normalisedS L*** knowledge baskB and some queried subsumptiorzAB. If
KB E AL B then one of the following holds:

ACBeS or ACLeS or {ajc LeS(forsomeaN;) or TC LeS.

Proof. We show the contrapositive: if none of the given conditioaklhthen there is a
modelZ for KB within which the subsumptioA C B does not hold. The proof proceeds
by constructing this model.

The domaint? of 7 is chosen to contain only one characteristic individualafibr
classes of KB that are necessarily non-empty, factoris¢éakminferred equalities into
account. To this end, we first define a set of concept expmessio .= {C € B| A~
C}. Abinary relation~ on 8~ that will serve us to represent inferred equalities is define
as follows:

C~D if C=D or{CcC{a},DLC {a}} c SforsomeacN,.

We will see below that is an equivalence relation d8~. Reflexivity and symmetry
are obvious. For transitivity, we first show that elementatesl by~ are subject to the
same assertions ifl. Thus conside€, C’ € 8~ such thatC ~ C’. We claim that, for all
concept expressioris, we find thatC C E € S impliesC’ € E € S (Claim ). Assume
C # C’ and{C C {a},C’ C {a}} € S —the other case is trivial. But by our definition of
8-, we find thalC ~» C’, and hence rule (R5) is applicable and establishes therestjui
result.

This also yields transitivity of, since{C; C {a},C, C {a}} € S andC; ~ C3
impliesC; C {a} € S and thusC; ~ C3. We use €] to denote the equivalence class of
Ce B wrt ~.

These observations allow us to make the following definitbf:

- 4" ={[C]|Ce B},

—Cl={D]e4? IDcCeS}forallC e Nc,

— a’ =[{a)]forallae N,

— R ={C],[D]) €4’ x4* |CcIARD € S} forall Re Ng.

Note thatN, was assumed to be fixed and finite, and flaate 8~ for all a € N, such
that [{a}] is well-defined. Roles and concepts not involvedinor S are automatically
interpreted as the empty set by the above definition. Theitlefis of C* andR’ are
well-defined due to«) above.

We can now observe the following desired correspondenceedeet! andS: For
anyC,D € 8-, we find that C] € D? iff C £ D € S (Claim {). We distinguish various
cases based on the structurebof



— D = 1. We can concluded] ¢ 1Y andC © 1 ¢ S by noting that, for any
E € 8~ we have thaE C L ¢ S. To see that, suppose the contrary. By E
there is a chailCy, ..., Cx € 8 as in the definition of» such thalCy = E. Using
Ck-1 C dRE € S and rule (R4), we conclude th&_; C L € S. Applying this
reasoning inductively, we obta®y C 1L € S. But asC; is of the formA, {a}, or T,
this contradicts our initial assumptions.

— D = T. By the initialisation ofS,CC T € Sand also €] € T7.

— D € Nc. This case follows directly from the definition &t

— D = {a} for somea € N,. If [C] € {a} then [C] = [{&}], and henc& ~ {a}. Since
{a} C {a} € S, we obtainC C {a} € S from ().

Conversely, ifC C {a} € S, thenC ~ {a} and hencd[C]} = {[{a}]} = {a}’ as
required.

It is easy to see thaf [ A C B: sinceA € 8-, we find that A] € A’ due to
A C A € S by the initialisation of the algorithm. But singeC B ¢ S, we have that
[A] ¢ B! based on¥).

Finally, it only remains to show that is indeed a model of KB. We argue that each
axiom of KB is satisfied by by considering the possible normal forms:

— DCEwithEe BU{dRE' | E’ € B).1f[C] € D, thenC C D € S by (}) and thus
rule (R1) can be applied to yield C E. If E € 8B, the claim follows from t). For
E = dRFE’, we conclude that ~» E’ and thusE’ € 8. By definition of R, we
find ([C], [E’]) € R, and sinceE’ C E’ € S we can invoke ) to obtain E’] € EZ
as required.

— C1nC, £ D. This case is treated similar to the above case, using rug §rRd
treating only the (simpler) case whebec B.

— 3RD C E. If [C] € ARD? then([C],[D]) € R’ for some P’] € D’. By the
definition of R’ and §), there is som®” € [D’] such thaiC = IRD” € S. Since
D” € B8 and D”] = [D’] € DY, we can conclud®” C D € S from (}). Thus rule
(R3) implies thaC C E, and we obtain€] € E? by invoking ().

— RC S. If ([C],[D]) € R then there i€ C ARD’ € S with [D’] = [D]. Rule (R6)
thus entailedC C 3S.D’ € S, which yields([C],[D]) € S’ again by definition of
st

— Ro SC T. This case is treated similar to the previous case, usimy(Ril) instead
of rule (R6).

— CxDLCRIf[C] € C! and D’] € D?, we concluddC’ C C,D’ C D} C S from
(T). SinceD’ € 8-, we haveA ~» D’ which clearly implie<C ~» D’ by definition of
~»>. Hence rule (R8) was applied to yieRlC ARD’ € S and by rule (R1) we also
obtainC’ € ARD’ € S. Now([C'],[D’]) € R follows directly from the definition
of R,

O

Lemma 12. LetS be the saturated set obtained by the subsumption checlgogtm
for a normalisedSL*** knowledge bas&B and some queried subsumptionCAB.
Then, for each moddl of KB, one of the following holds:

— Al =0,0r



-ITES

Especially,if AL Be S, AC L e S, {aJjC L € S(forsomea Nj),orTE L €S,
thenKB £ AC B.

Proof. First note that the second part of the statement indeed isseqoience of the
first: all modelsZ with A? = 0 certainly satisfyA C B, and all other models need to
satisfy the detected axioms #\ which either shows the claim (AC Be SorALC

1 € 8) or demonstrates that such models cannot exi¢afift L e SorTC L € 8).

To show the first part of the claimed statement, consider angaty of KB such
thatA? # 0. A simple induction on the processing steps of the algorishows that all
elements ofS are satisfied by. The base case is obvious, since all form@ae C and
C C T are satisfied by any interpretation. for the induction stegsume thas in the
current stage of computation is such tiigt S. We show that any rule of the algorithm
only adds formulae t& that are also satisfied b

— For rules (R1)—(R4), (R6), (R7) this is very easy to see. &adany interpretation
that satisfies the requirements of the respective rule ejgins clearly must also
satisfy the resulting conclusions.

— For rules (R5) and (R8), we first show th@t~» D entails thatC? # 0 implies
D’ # 0. Indeed, ifC ~» D then there is an according cha, . . ., C, with C, = D
such that, forany = 1,..., k-1, 7  C; c dRC;j,; for someR € Ng. Hence, if
C! # 0 then alsd’ # 0. The claim thus follows from the definition 66, together
with our assumption tha&? # 0.

Based on that observation, it is again easy to see that (R)yeld sound results.
For (R5), note that the preconditions do indeed imply that {a} orC = L, and
that the conclusion is satisfied in both cases.

This finishes the proof. O

Combining the results of Proposition 9, Lemma 10, Lemma fd l&emma 12, we
obtain the main result of this section, where the lower bo{ivadness) follows from
the known hardness &£ [2].

Theorem 13. The problem of checking concept subsumptio&4ii** is P-complete.

Finally, one might ask how concept producfieat other reasoning tasks, such as
conjunctive query answering i.L"**. As we have extended the origirdl.** algo-
rithm in a rather natural way, one would assume that relsgadaning procedures for
EL™ could similarly be extended. Indeed, we expect that theraata-based algo-
rithm for conjunctive query answering that was presentg@linan readily be modified
to coverEL ™, so that the same complexity results for conjunctive qurgrgould be
obtained.

5 The Concept Product inSHOIQ

Below, we investigate the use of concept productSHOZ Q, the description logic un-
derlying OWL DL. SinceSHOIQ does not support generalised role inclusion axioms,



concept products can not be simulated by means of other axiéet, we will see be-
low that the addition of concept products does not incrdasebrst-case complexity of
SHOIQ which is still NExepTiMe even for binary encoding of numbers. Moreover, the
proof shows that roles occurring in concept product indasican still be considered
simple without impairing this result.

Definition 14. A SHOIQ* knowledge baskB is a SROZQ* knowledge base such
that

— all Rbox axioms oKB are of the form SE R, RoRC R, or Cx D C R for Re Nr
arole name, & R an atomic role, and (D € C concept expressions,
— KB does not contain the universal role U or expressions of the faR.Self.

Based on a fixed knowledge ba&®, we definec* as the smallest binary relation d®
such that:

— RLC* R for every atomic role R,
— RC* S andinv(R) C* Inv(S) for every Rbox axiomR S, and
— RCE* T whenever R* S and SC* T.

Given an atomic role R, we writeans(R) € KB as an abbreviationfor: RRC R € KB
or Inv(R) o Inv(R) C Inv(R) € KB.

A SHOIQ* knowledge base can be further normalised. Firstly, whensedind
thatR C* S andS C* R, the rolesR and S are obviously interpreted identically in
any model of KB. Hence in this case, one could syntacticallystitute one of them
by the other, which allows us to assume that all knowledge$asnsidered below
have an acyclic Rbox (i.e* is a partial order). Moreover, we assume that for all
concept product inclusion& x B C R, both A and B are atomic concepts. Obviously,
this restriction does nott#ect expressivity, as complex concepts in such axioms can be
moved into the Thox.

Secondly, given a knowledge base KB, we obtain its negatiomal formNNF(KB)
by converting every Thox concept into its negation normatfin the usual way:

NNF(=T) = 1

NNF(-1) =T

NNF(C) = CifCe{A -A {a},—-{a}, T, 1}
NNF(-—C) := NNF(C)

NNF(C 1 D) = NNF(C) M NNF(D)

NNF(=(C 1 D)) := NNF(=C) LI NNF(=D)
NNF(CLUD)  := NNF(C) L NNF(D)
NNF(=(C L D)) := NNF(=C) 1 NNF(=D)

NNF(YR.C) = YRNNF(C)
NNF(-VRC) := JRNNF(-C)
NNF(IR.C) := IRNNF(C)
NNF(-3RC) := YRNNF(-C)
NNF(<nRC) := <nRNNF(C)
NNF(=<nRC) := >(n+1)RNNF(C)
NNF(=nRC) := >nRNNF(C)

NNF(-=>nRC) = <(n- 1)RNNF(C)



It is well-known that KB andNNF(KB) are semantically equivalent.

Slightly generalising according results from [3], we shbattanySHOZ Q* knowl-
edge base can be transformed into an equisatisfiable kngevlegse not containing
transitivity statements.

Definition 15. Given aSHOIQ knowledge baskB, letclos(KB) denote the smallest
set of concept expressions where

NNF(=C u D) € clos(KB) for any Thox axiom @ D,

D € clos(KB) for every subexpression D of some concejat €los(KB),

NNF(=C) € clos(KB) for any<n RC € clos(KB),

V¥S.C € clos(KB) whenevefTrans(S) € KB and SC* R for a role R withYR.C €
clos(KB).

Moreover, letQ(KB) denote the knowledge base obtained fiéBiby

— removing all transitivity axioms RRC R and
— adding the axionYR.C C YS.(VS.C) for everyYR.C € clos(KB) with Trans(S) €
KB and SC* R.

Proposition 16. KB andQ(KB) are equisatisfiable.

Proof. Obviously we have that KB= Q(KB), hence every model of KB is a model of
Q(KB) as well.

For the other direction, lef = (47, -¥) be a model of2(KB). Then we define a new
interpretationy = (47, -7) as follows:

— a9 =47

— a7 .= a foreveryace N,

— A7 = A for everyA € N¢

— R7 is set to the transitive closure &f if Trans(R) € KB, otherwiseR” := R’ U
UscrsrS”

We now prove thatf is a model of KB by considering all axioms starting with the
Rbox: Firstly, every transitivity axiom of KB is obviouslyffilled by definition of .
Secondly, every role inclusioR; C R, axiom is fulfilled: in caseR, is not transitive,
this follows directly from the definition, otherwise we camnclude it from the fact that
the transitive closure is a monotone operation w.r.t. sgtigion. Thirdly, we find that
every cross product axiom x B C Ris satisfied within7, as the construction ensures
A7 = Al andB” = B? as wellaR! c R7.

We proceed by examining the concept expressions clos(KB) and show via
structural induction tha€? ¢ C7. As base case, for every concept of the foah
—-{a}, A, or=Aforae N, resp.A € N¢ this claim follows directly from the definition of
J . Note also that nominal concepts are correctly mapped theton sets. We proceed
with the induction steps for all possible forms of a complex@eptC (mark that all
C € clos(KB) are in negation normal form):

— Clearly, if D ¢ DY andDZ ¢ Dy by induction hypothesis, we can directly con-
clude O D) c (D111 D) aswell as D1 L Dy)? ¢ (Dy L Dy)Y.



— Likewise, as we hav&®’ ¢ RU for all rolesR and againD? ¢ D7 due to the
induction hypothesis, we can concludD)” c (AR D)7 as well as¢nRD)’ ¢
(=nRD)7.

— Now, consider & = YR.D and assumé € (YR.D)’. If there is nos’ with (6,6") €
R7, thens € (YR.D)7 is trivially true. Now assume there are su¥hFor each of
them, we can distinguish two cases:

e (6,8") € RI,implying &’ € D and, via the induction hypothesi#,e D7,
e (5,0") ¢ RY. Yet, by construction off, this means that there is a rdfewith
S C* RandTrans(S) € KB and a sequencg= 6y, . .., 0, = & With (6k, dk+1) €
S’ for all 0 < k < n. By definition ofQ, the knowledge bas@(KB) contains
the axiomVYRD C VS.(VS.D), hence we havé € ¥S.(VS.D) wherefrom a
simple inductive argument ensurgse D? for all 6 includingé, = &'.
So we can conclude that for all suéhwe haves’ € DZ. Via the induction hypoth-
esis followss € D7 and hence we can conclude (YRD)7.

— Finally, consideC = <nRD and assumé e (<n RD)”. From the fact thaR must
be simple followsR” = RY. Moreover, since botl andNNF(-D) are contained
in clos(KB) the induction hypothesis give®7 = D’. Those two facts together
directly imply s € (<nRD)”.

Now considering an arbitrary KB Thox axio@ = D, we find NNF(-C) u D)? =
47 asT is a model of KB. Moreover — by the correspondence just showre-have
(NNF(=C) L D)* ¢ (NNF(=C) u D)? and hence alsouNF(-~C) u D)7 = 49 making
C C D an axiom satisfied igy. This finishes the proof. O

Thus, we can reduce satisfiability checkingS#OI7 Q" to satisfiability checking
in ALCHOIQ" — the fragment ofSHOIQ™* without transitivity axioms. Following
the approach taken in [7], we can decide the latter problera lduction taC?, the
two-variable fragment of first-order logic with countingantifiers for which this prob-
lem has been shown to be K mme-complete, even for binary coding of numbers [8].
Intuitively, C? admits all formulae of function-free first-order logic tle@intain at most
two variable symbols, and which may additionally use thentimg quantifiersl.,, In,
andd., for any numben > 0. Such quantifiers impose the obvious semantic restric-
tions on the number of individuals satisfying the quantifi@anula. Moreover, binary
equality~ can easily be defined from those constructs. For formalldetae [8].

We transformALCHOIQ* knowledge bases int6? by means of the recursive
functions in Table 4. The transformation is a modificatioritef standard DL to FOL
transformation given e.g. in [3], where further explanasican be found. Omitting
the standard proof that(KB) is indeed equisatisfiable to KB (cf. [3]), we obtain the
following result:

Theorem 17. The problem of checking knowledge base satisfiabilitySlBfO7 Q™ is
NExpTmMe-complete, even for binary encoding of numbers.

Proof. Hardness follows from the according hardness resultS$fO7Q [7]. The
NExrTiME upper bound is obtained by applying the above polynomialictdns to
transform aSHOIQ* knowledge base KB into an equisatisfialflieeCHOI Q™ knowl-
edge bas&(Q2(KB)), the satisfiability of which can be checked in NH e (even for
binary encoding of humbers) according to [8]. O



Table 4. Transformation fromALCHOI Q" to C2. X is a meta-variable for representing various
term symbols in the final translation. The transformatiepare assumed to be analogous to the
given transformations for,.

a(CC D) = ¥xay(-CuD,Xx)
7(RCS) = VXVY.(=R(XY) V S(XY))
7(CxDCR) = YXVYy.(-C(X) vV =D(y) vV R(x,Y))
n(KB) = A ()
(T, X) =T
(L, X) = L
(A, X) = A(X) for any concept namA € N¢
mx({a}, X) = a~ Xfor any individual name € N,
mx(=C, X) = —m4(C, X)
mx(C 1D, X) = mx(C, X) A mx(D, X)
mx(C U D, X) = mx(C, X) v my(D, X)
mx(YRC, X) = YX(R(X,X) = ny(C, X))
mx(ARC, X) = IX(R(X, X) A 1y(C, X))
mx(=NRC, X) = F:nX(R(X, X) A my(C, X))
mx(€nRC, X) = X (R(X, X) — 71y(C, X))

6 The Concept Product inSHOTI

Following the common nomenclature, 8O ™ denote the description logic obtained
from SHOIQ by disallowing all kinds of number restrictions. It is wéihown that
deciding satisfiability o8HOI knowledge bases iskeTmme-complete [9], and we will
show that this worst case complexity is not increased wheimgaconcept products.

As was shown by Property 16, transitivity axioms can be elateéd fromSHOIQ*
knowledge bases withoutfacting satisfiability. Obviously, if applied to SHOI™
knowledge base, the result of this transformation would ro@iLCHOI™. In this
section, we provide a way of further reducing ZI'CHOI™* knowledge base to an
equisatisfiableALCHOTI knowledge base in polynomial time.

In addition to the standard negation normal form, we now iregqanother normal-
isation step that simplifies the structure of KB Bgtteningit to a knowledge base
FLAT(KB). This is achieved by transforming KB into negation nairform and ex-
haustively applying the following transformation rules:

— Select an outermost occurrence@R.D in KB, such that) € {3,¥} andD is a
non-atomic concept.

— Substitute this occurrence wihR.F whereF is a fresh concept name (i.e. one not
occurring in the knowledge base).

— Add =F u D to the knowledge base.

Obviously, this procedure terminates yielding a flat knalgke basé-LAT(KB) all
Thox axioms of which are Boolean expressions over formuldlesoformT, L, A, —A,
or QR Awith A an atomic concept name. Obviously, the flattening can béckout in
polynomial time.

Proposition 18. Any ALCHOI™ knowledge baskB is equisatisfiable tGLAT(KB).



Proof. We first prove inductively that every model 6f AT(KB) is a model of KB.
Let KB’ be an intermediate knowledge base and let'Ki# the result of applying one
single substitution step to KBs described in the above procedure. We now show that
any modell of KB” is a model of KB. Let OR.D be the term substituted in KBNote
that after every substitution step, the knowledge basdllisnshegation normal form.
Thus, we see thapR.D occurs outside the scope of any negation or quantifier in an
KB’-axiomE’, the same is the case fOR.F in the respective KB-axiomE" obtained
after the substitution. Hence, if we show theRF)? ¢ (QR D), we can conclude
thatE”/ ¢ E’Z. FromI being a model of KB and therefor&”? = 4, we would then
easily derive thaE’Y = 47 and hence find thaf = KB’, as all other axioms from KB
are trivially satisfied due to their presence in’KB

It remains to show@R.F)? c (DR D). We distinguish two cases:

-0=13
Consider & € (ARF)’. Then exists an individual’ € 47 with (5,6’) € R? and
& € FL. As a consequence of the KBaxiom—F LI D (being equivalent to the GCI
F C D), we find thats’ € D’ as well, leading straightforwardly to the conclusion
6 € (AR.D)’. Hence we havedR F)? c (ARD)".

—0=V
Consider & € (YR.F)’. This implies for every individual’ € 47 with (5, ¢") € RY
thats’ € FZ. Again, the KB’ axiom —F LI D entails¢’ € D’ for every suchy,
leading tos € (YR.D). Hence, we have/R.F)? c (YRD) .

Every modell’ of KB can be transformed into a modglof FLAT(KB) by following
the flattening process described above: Let’'KBsult from KB by substitutingDR.D
by OR.F and adding the respective axiom. Furthermorelldie a model of KB. Now
we construct the interpretatidit’ as follows:F” := (QR.D)?" and for all other concept
and role namebl we setN?” := N". ThenZ” is a model of KB'. o

Lemma 19. Consider a flatteneddLCHOI™ knowledge bas&B. LetCx D C R
with C,D € N¢c be some concept product axiom containedB and letKB’ be the
knowledge base obtained fraiB as follows:

— delete the Rbox axiom&€D C R,
— add CC 3S,.{o} and D C 1S,.{o} where S, S, are fresh roles and o is a fresh
individual name
— for every role T with RZ* T (including R itself)
e substitute any occurrence @f.A by dT.AL 3S;.3S;.A
e substitute any occurrence @f.A byVT.AMV¥S,.¥S;.A

Then,KB andKB’ are equisatisfiable.

Proof. To show equisatisfiability, we prove, that any modedf KB can be converted
into a mode|J of KB’ and vice versa.

First, letZ = (4%,-7) be a model of KB. We define the interpretatign= (47, -)
by choosing an arbitrary but fixe%j € 4 and setting

— 49 =4,



— forallieN; \{o}, leti7 := i’

— leto? =6,

— forall Be Ng, letB7 := B!

— forall T e Ng\ {S1,S}, let T :=T7
— letSY = C7 x {60}

— letSJ = D7 x {6}

We now show thaf is indeed a model of KB Clearly, the new axiom@ C 3S;.{0}
andD C 3S,.{o} are obviously fulfilled. Now note that the construction‘6fand the
KB-Axiom C x D C RassureS] o S;7 ¢ R7. Therefore, we haved,.3S;.A)Y c
(ARA)Y implying AR AL3S,.3S;.A)Y = (ARA) U(3S1.3S;.A) = (ARA), hence
the KB'-axiom containingdR AL 3S;.3S; A is satisfied inJ due to theZ-validity of
the corresponding KB-axiom containing julR A instead.

Furthermore, we have/R A7 C (VS1.¥S;.A)7 implying (YRANVS1.YS; . A) =
(VRA) N (¥S1.¥S,.A)Y = (YRA)Y, so the same argumentation applies.

Second, assumg = (47,-7) is a model of KB. Then let the interpretatiofi =
(4%,-1) be defined by:

— A =47,

— foralli e Ny, letif :=iJ

— forall Be Ng, letB? := BY

— foreveryT € Ng, if RC* T, let TZ := TT U (SY 0 S;7), otherwiseT” := T

It remains to show thaf is a model of KB. Obviously, all role inclusion statements
from KB (coinciding with those from KB are valid inJ ensured by the construction.
Moreover, note that the axio® = 3S;.{o} enforcesC? x {07} C Slj, likewiseC C
3S;.{o} ensureqo’} x DI ¢ SEJ. This allows to conclud€f x DY = CI x DI ¢
817 o SEJ. Now we see that by construction, the KB-axi@w D C Ris satisfied inZ.

As to the Thox axioms, we inductively show for every conceqairessiorE occur-
ring in KB and the respective (possibly substituted) KiBncept expressiof’, that we
haveE’J = EZ. Clearly, this entails for every KBTbox axiomF’ that the respective
F is satisfied inZ due to4? = 47 = F*J = FZ, For the base case, note that due to
the construction of , all atomic concepts and nominals as well as their negatians
the same extensions i and 7. For the induction step, we find for all roldswith
Rz* T that @T.A)Y = @AT.A)Y and ¢T.A)7 = (VT.AY due toA” = A’ as well as
TJ =T Inthe casRC* T, we would havel ¥ = TT U(SY o S;7) which then yields
us A@T.Au3S..3S;.A)7 = (AT.A)Y as well as(T.AnVS..¥S,.A)Y = (VT.A). Fi-
nally, invoking the induction hypothesis for concefis C,, the claim trivially carries
over toC; mC, andCy U Co. |

Like for SROIQ*, the elimination step from the above lemma can be applied it-
eratively to eliminate all concept products. Note that hgva flat knowledge base is
essential to ensure that the reduction can be done in polightime and space. So, a
simple induction yields the following result:

Proposition 20. Every ALCHOI™ knowledge base can be reduced to an equisatisfi-
able ALCHOI knowledge base in polynomial time.



SHOI has shown to be e Tive-complete in [9]. Hence, we can eventually use the
established results to proveaH me-completeness also for knowledge base satisfiabil-
ity checking withinSHOI™.

Theorem 21. The the problem of checking satisfiability f8#/O1 knowledge bases
is ExpTiMe-complete.

Proof. As shown in Property 16, transitivity axioms can be elimgnsfrom aSHOI Q"
knowledge base while preserving satisfiability. Appliedat§ O™ knowledge base
KB, this polynomial reduction yields aflLCHOI™ knowledge bas&(KB). More-
over, due to Proposition 1&(KB) and its flattened versioRLAT(Q(KB)), which can
again be computed in polynomial time, are equisatisfiableels Finally, Lemma 19
ensures that another polynomial time conversion trangfeéssknowledge base into
an equisatisfiableA LCHOIknowledge base KB Hence, satisfiability of KB can be
checked by computing KBn polynomial time and then checking satisfiability of KB
As ALCHOI is contained inSHOZ, which in turn is contained i8HOI™, the
ExpTiMe-completeness a8HOI shown in [9] carries over t6HOI ™. O

7 Conclusion

We have introduced theoncept producas a new expressive feature for description log-
ics. It allows statements of the for@x D C R, expressing that all instances of the class
C are related to all instances bBfby the roleR. While this construct can be simulated
in SROIQ with a combination of inverse roles, nominals, and roleusimn axioms,
we have shown that it can also be added to many weaker DLsahadtdsupport such
simulation. In particular, we have investigated the exeh®LsEL™, SHOTQ",
andSHOI™, showing that each of these preserves its known upper caitypbound

P, NExpTmve, and EpTmve. For the tractable logi€ L™+, we also provided a detailed
algorithm that might serve as a basis for extending existifig* implementations with
that new feature.

Our results indicate that concept products, even thoughateshitherto only avail-
able inSROIQ, do in fact not have a strong negative impact on th&atilty of rea-
soning in simpler DLs. In contrast, the features used to Etawoncept products in
SROIQ may have much more negative impact in general. Inverse,rfdesxample,
are known to rende€L** ExeTime-complete [5]. Since concept products provide a
valuable modelling tool that can be applied in many scesatitey appear as a nat-
ural candidate for future extensions of the DL-based Welnl@gy Language OWL,
possibly even in the ongoing OWL Zfert.

Our results also entail a number of research questions farduvorks. First of
all, one might ask what other features available (indiygdti SROZQ could be easily
ported back to less complex DLs. We are currently investigad broad generalisation
of concept products that appears to be rather promisingsmelspect.

But also the study of concept products as such bears varipers problems. As
remarked in Section 3, the simulation of concept produc®R07Q causes roles to be
classified as non-simple. Yet, their use in number restrictinerely provides an alter-
native way of describing nominals, so that it might be conjezd that this restriction



could be relaxed. Other obvious next steps are the invéistigaf concept products
for SHIQ andSHOQ, the direct treatment of concept products in further regspn
algorithms, and the possible augmentation of other pojrdatable DLs with this fea-
ture. Moreover, implementations and concrete syntactinabdings for OWL would
be important to make concept products usable in practice.
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