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Agenda

1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction (CSP)
7 Evolutionary Algorithms/ Genetic Algorithms
8 Structural Decomposition Techniques (Tree/Hypertree Decompositions)
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Traditional Methods

• There are many classic algorithms to search spaces for an optimal
solution.

• Broadly, they fall into two disjoint classes:
– Algorithms that only evaluate complete solutions (exhaustive

search, local search, . . . ).
– Algorithms that require the evaluation of partially constructed or

approximate solutions.
• Algorithms that treat complete solutions can be stopped any time, and

give at least one potential answer.
• If you interrupt an algorithm that works on partial solutions, the results

might be useless.
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Complete Solutions

• All decision variables are specified.
• For example, binary strings of length n constitute complete solutions for

any n-variable SAT.
• Permutations of n cities constitute complete solutions for a TSP.
• We can compare two complete solutions using an evaluation function.
• Many algorithms rely on such comparisons, manipulating one single

complete solution at a time.
• When a new solution has a better evaluation than the previous best

solution, it replaces that prior solution.
• Exhaustive search, local search, hill climbing as well as modern heuristic

methods such as simulated annealing, tabu search and evolutionary
algorithms fall into this category.

TU Dresden, 22nd October 2019 PSSAI slide 4 of 36



Partial Solutions
There are two forms:

1 incomplete solution to the problem originally posed, and
2 complete solution to a reduced (i.e. simpler) problem.

• Incomplete solutions reside in a subset of the original problem’s search
space.

– In an SAT, consider all of the binary strings where the first two
variables were assigned the value 1 (i.e. TRUE).

– In a TSP, consider every permutation of cities that contains the
sequence 7− 11− 2− 16.

– We fix the attention on a subset of the search space that has a
partial property.

– Hopefully, that property is also shared by the real solution!
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Partial Solutions ctd.

• Decompose original problem into a set of smaller and simpler problems.
– Hope: solving each of the easier problems and combine the partial

solutions, results in an answer for the original problem.
– In a TSP, consider only k out of n cities and try to establish the

shortest path from city i to j that passes through all k of these cities.
– Reduce the size of the search space significantly and search for a

complete solution within the restricted domain.
– Such partial solutions can serve as building blocks for the solution

to the original problem.

TU Dresden, 22nd October 2019 PSSAI slide 6 of 36



Partial Solutions ctd.

• Decompose original problem into a set of smaller and simpler problems.
– Hope: solving each of the easier problems and combine the partial

solutions, results in an answer for the original problem.
– In a TSP, consider only k out of n cities and try to establish the

shortest path from city i to j that passes through all k of these cities.
– Reduce the size of the search space significantly and search for a

complete solution within the restricted domain.
– Such partial solutions can serve as building blocks for the solution

to the original problem.
• But, algorithms that work on partial solutions pose additional difficulties.

One needs to
– devise a way to organize the sub-spaces so that they can be

searched efficiently, and
– create a new evaluation function that can assess the quality of

partial solutions.
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Exhaustive Search

• Checks every solution in the search space until the best global solution
has been found.

• Can be used only for small instances of problems.
• Exhaustive (enumerative) algorithms are simple.
• Search space can be reduced by backtracking.
• Some optimization methods, e.g., branch and bound and A* are based on

an exhaustive search.
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Exhaustive Search

• Checks every solution in the search space until the best global solution
has been found.

• Can be used only for small instances of problems.
• Exhaustive (enumerative) algorithms are simple.
• Search space can be reduced by backtracking.
• Some optimization methods, e.g., branch and bound and A* are based on

an exhaustive search.
• How can we generate a sequence of every possible solution to the

problem?
– The order in which the solutions are generated and evaluated is

irrelevant (because we evaluate all of them).
– The answer for the question depends on the selected

representation.
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Enumerating the SAT

• We have to generate every possible binary string of length n.
• All solutions correspond to whole numbers in a one-to-one mapping.
• Generate all non-negative integers from 0 to 2n − 1 and convert each of

these integers into the matching binary string of length n.

0000 0 0100 4 1000 8 1100 12
0001 1 0101 5 1001 9 1101 13
0010 2 0110 6 1010 10 1110 14
0011 3 0111 7 1011 11 1111 15

• Bits of the string are the truth assignments of the decision variables.
• Organize the search space, for example partition into two disjoint

sub-spaces. First contains all the vectors where x1 = f (FALSE), and the
second contains all vectors where x1 = t (TRUE).
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Enumerating the SAT ctd.

x1 = f x1 = t

x2 = f x2 = t x2 = f x2 = t

x3 = f x3 = t . . .. . .

Binary search tree for SAT
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Search Strategies

A strategy is defined by picking the order of node expansion.
Strategies are evaluated along the following dimensions:

• Completeness - does it always find a solution if one exists?
• Time complexity - number of nodes generated/expanded.
• Space complexity - maximum number of nodes in memory.
• Optimality - does it always find a least-cost solution?

Time and space complexity are measured in terms of
• b - maximum branching factor of the search tree;
• d - depth of the least-cost solution;
• m - maximum depth of the state space (may be∞).
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Group Work - Posters

• Uninformed Search Strategies
• Informed Search Strategies
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Uninformed Search Strategies
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Informed Search Strategies
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A∗ Search

Idea: avoid expanding paths that are already expensive
• Evaluation function f (n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f (n) = estimated total cost of path through n to goal

• A∗ search uses an admissible heuristic
– i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
– Also require h(n) ≥ 0, so h(G) = 0 for any goal G.

• E.g., hSLD(n) never overestimates the actual road distance

Theorem: A∗ search is optimal
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Admissible Heuristics
E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance (i.e., no. of squares from desired

location of each tile)
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Admissible Heuristics
E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance (i.e., no. of squares from desired

location of each tile)
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h1(S) = 6

h2(S) = 4+0+3+3+1+0+2+1 = 14
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Dominance
If h2(n) ≥ h1(n) for all n (both admissible) then h2 dominates h1 and is better for
search.

Typical search costs:

d = 14 IDS = 3,473,941 nodes
A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb
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Relaxed problems

• Admissible heuristics can be derived from the exact solution cost of a
relaxed version of the problem.

• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h1(n) gives the shortest solution.

• If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution.

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

TU Dresden, 22nd October 2019 PSSAI slide 20 of 36



Dynamic Programming

Principle of finding an overall solution by operating on an intermediate point that
lies between where you are now and where you want to go.

• Procedure is recursive, each next intermediate point is a function of the
points already visited.

• Prototypical problem suitable for dynamic programming has the following
properties.
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Dynamic Programming

Principle of finding an overall solution by operating on an intermediate point that
lies between where you are now and where you want to go.

• Procedure is recursive, each next intermediate point is a function of the
points already visited.

• Prototypical problem suitable for dynamic programming has the following
properties.

• Can be decomposed into a sequence of decisions made at various
stages.

• Each stage has a number of possible states.
• A decision takes you from a state at one stage to some state at the next

stage.
• Best sequence of decisions (policy) at any stage is independent of the

decisions made at prior stages.
• Well-defined cost for traversing from state to state across stages.
• There is a recursive relationship from choosing the best decisions to

make.
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Dynamic Programming ctd.

Procedure
• Starting at the goal and working backward to the current state.
• First, determine the best decision at last stage.
• From there, determine the best decision at the next to last stage,

presuming we will make the best decision at the last stage.
• And so forth . . .
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Dynamic Program for the TSP

L =


0 7 12 8 11
3 0 10 7 13
4 8 0 9 12
6 6 9 0 10
7 7 11 10 0



• Suppose, we start from city 1.
• We split the problem into smaller problems.
• g(i, S) length of the shortest path from city i to 1 that passes through each

city in S.
• g(4, {5, 2, 3}) is the shortest path from city 4 through cities 5, 2 and 3 (in

some unspecified order) and then returns to 1.
• g(1, V − {1}) is the length of the shortest complete tour.
• In general, we claim that

g(i, S) = minj∈S{L(i, j) + g(j, S− {j})}.
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Dynamic Program for the TSP ctd.

L =


0 7 12 8 11
3 0 10 7 13
4 8 0 9 12
6 6 9 0 10
7 7 11 10 0


The problem is to find g(1, {2, 3, 4, 5}).
We start backwards with S = ∅.

g(2, ∅) = L(2, 1) = 3,
g(3, ∅) = L(3, 1) = 4,
g(4, ∅) = L(4, 1) = 6, and

g(5, ∅) = L(5, 1) = 7.
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Dynamic Program for the TSP ctd.

L =


0 7 12 8 11
3 0 10 7 13
4 8 0 9 12
6 6 9 0 10
7 7 11 10 0


Next iteration, find the solutions to all problems where |S| = 1 (12
sub-problems).

g(2, {3}) = L(2, 3) + g(3, ∅) = 10 + 4 = 14,
g(2, {4}) = L(2, 4) + g(4, ∅) = 7 + 6 = 13, and

g(2, {5}) = L(2, 5) + g(5, ∅) = 13 + 7 = 20.
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Dynamic Program for the TSP ctd.

For city 3:

g(3, {2}) = L(3, 2) + g(2, ∅) = 8 + 3 = 11,
g(3, {4}) = L(3, 4) + g(4, ∅) = 9 + 6 = 15,
g(3, {5}) = L(3, 5) + g(5, ∅) = 12 + 7 = 19.

For city 4:

g(4, {2}) = L(4, 2) + g(2, ∅) = 6 + 3 = 9,
g(4, {3}) = L(4, 3) + g(3, ∅) = 9 + 4 = 13,
g(4, {5}) = L(4, 5) + g(5, ∅) = 10 + 7 = 17.

For city 5:

g(5, {2}) = L(5, 2) + g(2, ∅) = 7 + 3 = 10,
g(5, {3}) = L(5, 3) + g(3, ∅) = 11 + 4 = 15,
g(5, {4}) = L(5, 4) + g(4, ∅) = 10 + 6 = 16.
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Dynamic Program for the TSP ctd.

L =


0 7 12 8 11
3 0 10 7 13
4 8 0 9 12
6 6 9 0 10
7 7 11 10 0


Next iteration, |S| = 2.

g(2, {3, 4}) = min{L(2, 3) + g(3, {4}), L(2, 4) + g(4, {3})}
= min{10 + 15, 7 + 13} = min{25, 20} = 20,

g(2, {3, 5}) = min{L(2, 3) + g(3, {5}), L(2, 5) + g(5, {3})}
= min{10 + 19, 13 + 15} = min{29, 28} = 28,

g(2, {4, 5}) = min{L(2, 4) + g(4, {5}), L(2, 5) + g(5, {4})}
= min{7 + 17, 13 + 16} = min{24, 29} = 24.

TU Dresden, 22nd October 2019 PSSAI slide 28 of 36



Dynamic Program for the TSP ctd.

For city 3:

g(3, {2, 5}) = min{L(3, 2) + g(2, {5}), L(3, 5) + g(5, {2})}
= min{8 + 20, 12 + 10} = min{28, 22} = 22,

g(3, {2, 4}) = min{L(3, 2) + g(2, {4}), L(3, 4) + g(4, {2})}
= min{8 + 13, 9 + 9} = min{21, 18} = 18,

g(3, {4, 5}) = min{L(3, 4) + g(4, {5}), L(3, 5) + g(5, {4})}
= min{9 + 17, 12 + 16} = min{26, 28} = 26.

For city 4:

g(4, {2, 3}) = min{L(4, 2) + g(2, {3}), L(4, 3) + g(3, {2})}
= min{6 + 14, 9 + 11} = min{20, 20} = 20,

g(4, {2, 5}) = min{L(4, 2) + g(2, {5}), L(4, 5) + g(5, {2})}
= min{6 + 20, 10 + 10} = min{26, 20} = 20,

g(4, {3, 5}) = min{L(4, 3) + g(3, {5}), L(4, 5) + g(5, {3})}
= min{9 + 19, 10 + 15} = min{28, 25} = 25.
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Dynamic Program for the TSP ctd.

For city 5:

g(5, {2, 3}) = min{L(5, 2) + g(2, {3}), L(5, 3) + g(3, {2})}
= min{7 + 14, 11 + 11} = min{21, 22} = 21,

g(5, {2, 4}) = min{L(5, 2) + g(2, {4}), L(5, 4) + g(4, {2})}
= min{7 + 13, 10 + 19} = min{20, 29} = 20,

g(5, {3, 4}) = min{L(5, 3) + g(3, {4}), L(5, 4) + g(4, {3})}
= min{11 + 15, 10 + 13} = min{26, 23} = 23.
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Dynamic Program for the TSP ctd.

L =


0 7 12 8 11
3 0 10 7 13
4 8 0 9 12
6 6 9 0 10
7 7 11 10 0


Next iteration, |S| = 3.

g(2, {3, 4, 5}) = min{L(2, 3) + g(3, {4, 5}), L(2, 4) + g(4, {3, 5}, L(2, 5) + g(5, {3, 4})}
= min{10 + 26, 7 + 25, 13 + 23} = min{36, 32, 34} = 32,
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Dynamic Program for the TSP ctd.

Next iteration, |S| = 3.

g(2, {3, 4, 5}) = min{L(2, 3) + g(3, {4, 5}), L(2, 4) + g(4, {3, 5}, L(2, 5) + g(5, {3, 4})}
= min{10 + 26, 7 + 25, 13 + 23} = min{36, 32, 34} = 32,

g(3, {2, 4, 5}) = min{L(3, 2) + g(2, {4, 5}), L(3, 4) + g(4, {2, 5}), L(3, 5) + g(5, {2, 4})}
= min{8 + 24, 9 + 20, 12 + 20} = min{32, 29, 32} = 29,

g(4, {2, 3, 5}) = min{L(4, 2) + g(2, {3, 5}), L(4, 3) + g(3, {2, 5}), L(4, 5) + g(5, {2, 3})}
= min{6 + 28, 9 + 22, 10 + 21} = min{34, 31, 31} = 31.

g(5, {2, 3, 4}) = min{L(5, 2) + g(2, {3, 4}), L(5, 3) + g(3, {2, 4}), L(5, 4) + g(4, {2, 3})}
= min{7 + 20, 11 + 18, 10 + 20} = min{27, 29, 30} = 27.
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Dynamic Program for the TSP ctd.

L =


0 7 12 8 11
3 0 10 7 13
4 8 0 9 12
6 6 9 0 10
7 7 11 10 0


Last iteration, |S| = 4, original problem:

g(1, {2, 3, 4, 5}) = min{L(1, 2) + g(2, {3, 4, 5}), L(1, 3) + g(3, {2, 4, 5}),
L(1, 4) + g(4, {2, 3, 5}), L(1, 5) + g(5, {2, 3, 4})}

= min{7 + 32, 12 + 29, 8 + 31, 11 + 27} = min{39, 41, 39, 38} = 38.

Shortest tour has length 38.
Which tour is that?
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Dynamic Program for the TSP ctd.

Last iteration, |S| = 4, original problem:

g(1, {2, 3, 4, 5}) = min{L(1, 2) + g(2, {3, 4, 5}), L(1, 3) + g(3, {2, 4, 5}),
L(1, 4) + g(4, {2, 3, 5}), L(1, 5) + g(5, {2, 3, 4})}

= min{7 + 32, 12 + 29, 8 + 31, 11 + 27} = min{39, 41, 39, 38} = 38.

Shortest tour has length 38. Which tour is that?
• Additional data structure W with information on the next city with minimal

path.
• W(1, {2, 3, 4, 5}) = 5.
• W(5, {2, 3, 4}) = 2, W(2, {3, 4}) = 4, W(4, {3}) = 3,
• last we arrive at city 1.
• Length of this tour is 11 + 7 + 7 + 9 + 4 = 38.
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Properties of Dynamic Programming

• Computationally intensive: O(n22n).
• DP algorithms tend to be complicated to understand, because the

construction of the program depends on the problem.
• How to formulate sub-problems?
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Summary

• Heuristic functions estimate costs of shortest paths
• Good heuristics can dramatically reduce search cost
• Greedy best-first search expands lowest h

– incomplete and not always optimal
• Dynamic programming

– complete and optimal
– time and space consuming
– how to define the sub-problems?

• A∗ search expands lowest g + h
– complete and optimal
– also optimally efficient

• Admissible heuristics can be derived from exact solution of relaxed
problems
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