Science of Computational Logic
— Working Material' —

Steffen Holldobler
International Center for Computational Logic
Technische Universitat Dresden
D-01062 Dresden
sh@iccl.tu-dresden.de

December 11, 2012

! The working material is incomplete and may contain errors. Any suggestions are greatly
appreciated.

Contents

1 Description Logic

1.1 Terminologies
1.2 Assertions e
1.3 Subsumption
1.4 Unsatisfiability Testing
1.5 Final Remarkso
2 Equational Logic
2.1 Equational Systems.
2.2 Paramodulation Lo
2.3 Term Rewriting Systems
2.3.1 Termination L
2.3.2 Confluence
2.3.3 Completion Lo
2.4 Unification Theory
2.4.1 Unification under Equality
242 Examples
243 Remarks.
244 Multisetso
2.5 Final Remarks
3 Actions and Causality
3.1 Conjunctive Planning Problems
3.2 Blocks World
3.2.1 A Fluent Calculus Implementation
3.2.2 SLDE-Resolution
3.2.3 Solving Conjunctive Planning Problems
3.2.4 Solving the Frame Problem

iii

11
11
13
16
20
21
25
27
28
33
34
35
39

v

325 Remarks.

4 Deduction, Abduction, and Induction

4.1

4.2

4.3

Deduction L oo
411 Sorts.
Abduction
4.2.1 Abductionin Logic
4.2.2 Knowledge Assimilation
4.2.3 Theory Revision
4.2.4 Abduction and Model Generation
425 Remarks. oL
Induction o
4.3.1 Data Structures.
4.3.2 Admissible Programs
4.3.3 Evaluation
4.3.4 Induction Axioms
435 Remarks.,

5 Non-Monotonic Reasoning

5.1
5.2

9.3

5.4
9.5

Introduction oo
Closed World Assumption
52.1 AnExample
5.2.2 The Formal Theory
5.2.3 Satisfiability oo
5.2.4 Models and the Closed World Assumption
525 Remarks. 0.
Completion
5.3.1 AnExample,
5.3.2 The Completion
5.3.3 Parallel Completion

5.3.4 Parallel Completion and Logic Programming

5.3.5 Negation as Failure
Circumscription
Default Logic
5.5.1 Some Examples L.
5.5.2 Default Knowledge Bases

CONTENTS

CONTENTS v

5.6

5.5.3 Extensions of Default Knowledge Bases 94
Answer Set Programming 96
5.6.1 Answer Sets 97
5.6.2 Programming with Answer Sets 99
5.6.3 Computing Answer Sets L. 100

5.7 Remarks e 101

Notation

In this book we will make the following notational conventions:

constant

constant

unary relation symbol denoting a concept

set of concept formulas

non-empty domain of an interpretaion

set of equations

expression containing an occurrence of the term s

expression where an occurrence of the term s has been replaced by ¢
equational system obtained from the term rewriting system R
axioms of equality

empty substitution

function symbol

function symbol

formula

set of formulas

function symbol

formula

HEMY Q-
o

1
[Va)

NG
o~

JR—|

formula

interpretation

a set of formulas often called knowledge base
term; left-hand side of an equation or rewrite rule
literal

relation symbol

term; the right-hand side of equations or rewrite rules
binary relation symbol denoting a role

term rewriting system

term

term

substitution

term

variable

variable

variable

variable

variable

A variable

n

MHEISOE ST ANIT OTASIQS IS 0 M n

In addition, we will consider the following precedence hierarchy among connectives:

{V,3} === {A\,V} = = = <.

CONTENTS

Chapter 1

Description Logic

In the late 1960s and early 1970s, it was recognized that knowledge representation and
reasoning is at the heart of any intelligent system. Heavily influenced by the work of
Quillian on so-called semantic networks [Qui68] and the work of Minsky on so-called
frames [Min75] simple graphs and structured objects were used to represent knowledge
and many algorithms were developed which manipulated these data structures. At first
sight, these systems were quite attractive because they apparently admitted an intuitive
semantics, which was easy to understand. For example, a graph like the one shown in
Figure 1.1 seems to represent the following short story.

Dogs, cats and mice are mammals. Dogs dislike cats and, in particular, the
dog Rudi, which is a German shepherd, has bitten the cat Tom while Tom was
chasing the mouse Jerry.

Simple algorithms operating on this graph can be applied to conclude that, for example,
German shepherds are mammals, Rudi dislikes Tom, etc.

Shortly afterwards, however, it was recognized that systems based on these techniques
lack a formal semantics (see e.g. [Woo75]). What precisely is denoted by a link? What
precisely is denoted by a vertex? It was also observed that the algorithms which operated
on these data structures did not always yield the intended results. This led to a formal
reconstruction of semantic networks as well as frame systems within logic (see e.g. [Sch76,
Hay79]). At around the same time, Brachman developed the idea that formally defined
concepts should be interrelated and organized in networks such that the structure of
these networks allows reasoning about possible conclusions [Bra78|. This line of research
led to the knowledge representation and reasoning system KLONE [BS85], which is the
ancester of a whole family of systems. Such systems have been used in a wide range
of practical applications including financial management systems, computer configuration
systems, software information systems and database interfaces. KLONE has also led to a
thorough investigation of the semantics of the representations used in these systems and the
development of correct and complete algorithms for computing with these representations.
Today the field is called description logic and this chapter gives an introduction into such
logics.

Description logics focus on descriptions of concepts and their interrelationships in cer-
tain domains. Based on so-called atomic concepts and relations between concepts, which
are traditionally called roles, more complex concepts are formed with the help of certain

3

concept formula

4 CHAPTER 1. DESCRIPTION LOGIC

dogs (cats mice
8% dislike @
are
[german shephards] is a
is a
P tom Ferr
s has bitten —— was chasing 1Y

Figure 1.1: A simple semantic network with apparently obvious intended meaning.

operators. Furthermore, assertions about certain aspects of the world can be made. For
example, a certain individual may be an instance of a certain concept or two individuals
are connected via a certain role. The basic inference tasks provided by description logics
are subsumption and unsatisfiability testing. Subsumption is used to check whether a cat-
egory is a subset of another category. As we shall see in the next paragraph, description
logics do not allow the specification of subsumption hierarchies explicitly but these hier-
archies depend on the definitions of the concepts. The unsatisfiability check allows the
determination of whether an individual belongs to a certain concept. A formal account of
these notions will be developed in the following sections.

1.1 Terminologies

We consider an alphabet with constant symbols, the variables X, Y, ..., the connectives
-, A, V, =, <>, the quantifiers V and 3, and the special symbols (, ,,). For notational
convenicence, C shall denote a unary relation symbols and R a binary relation symbol
in the sequel. Informally, C' denotes a concept whereas R denotes a role.

Terms are defined as usual, ie., the set of terms is the union of the set of constant
symbols and the set of variables. The set of role formulas consists of all strings of the
form R(X,Y). The set of atomic concept formulas consists of all strings of the form
C(X). As we will see shortly, each concept formula contains precisely one free variable.
Hence, concept formulas will be denoted by F(X) and G(X), where X is the only
free variable occurring in F' and G. The set of concept formulas is the smallest set C
satisfying the following conditions:

1. All atomic formulas are in C.
2. If F(X) isin C,sois =F(X).

3. If F(X) and G(X) arein C, soare F(X)ANG(X) and F(X)V G(X).

1.1. TERMINOLOGIES)

4. if R(X,Y) is a role formula and F(Y') isin C, then (3Y)(R(X,Y)A F(Y)) and
(VX)(R(X,Y) = F(Y)) arein C as well.

The set of concept azioms consists of all strings of the form (VX)(C(X) — F(X)) or
(VX)(C(X) «+ F(X)). A terminology or T-box is a finite set Kr of concept axioms
such that

1. each atomic concept C' occurs at most once as left-hand side of an axiom and

2. the set does not contain any cycles.!

The set of generalized concept axioms consists of all strings of the form (VX) (F(X) —
G(X)) or (VX) (F(X) + G(X)).

An example of a T-box is shown in Table 1.1. Informally, the concepts woman and
man are not completely defined but a necessary condition is stated, viz. that both are
persons. The remaining concepts are completely defined. For example, a father is a
man who has a child which is a person. By inspection we observe that all axioms are
universally closed in a T-box. Hence, the universal quantifiers can be omitted. Likewise,
because each concept formula has precisely one free variable, this variable can be omitted as
well. Furthermore, the structure of remaining quantified formulas like (3Y") (child(X,Y)A
parent(Y')) and (YY) (child(X,Y) — —man(Y)) is also quite regular, which allows for
further abbreviations like dchild : parent and Vchild : =man , respectively. Alltogether,
Table 1.1 depicts the simple terminology also in abbreviated form, where the usage of the
symbols C, =, M and U instead of —, <>, A and V, respectively, is motivated by the
following semantics.

The semantics for terminologies is the usual semantics for first order logic formulas.
However, the restricted form of concept formulas and concept axioms allows the represen-
tation of the semantics in a more convenient and intuitive form. Let I be an interpretation
with finite, non-empty domain D.

e I assigns to each constant a an element a! of D.

e I assigns to each unary predicate symbol C a subset C! C D. This subset contains
precisely the individuals from D which belong to CT.

e Let I/ and G’ be the subsets of D assigned to the concept formulas D(X) and
E(X), respectively. Then, I assigns D\ F!, FINGy, and F/UG! to the concept
formulas —F(X), F(X)AG(X), and F(X)V G(X), respectively.

e [assigns to each binary relation symbol symbol R aset R C D x D. Let R!(d)
denote the set of all d € D obtained from R! by selecting all tuples whose first
argument is d and projecting this selection onto the second argument, i.e.,

Rl(d)={d e D| (d,d') € R'}.

Then, I assigns
{deD|RI(d)nF! 0}

LA concept C depends on the concept C’ wrt the T-box Kr iff r contains a concept axiom of the
form (VX)(C(X) = F(X)) or (VX)(C(X) +» F(X)) such that C’ occurs in F. A T-box is said to
be cyclic iff it contains a concept which recursively depends on itself.

concept axioms
terminology
T-box

Kr

gerneralized
concept ariom

6 CHAPTER 1. DESCRIPTION LOGIC

(VX) (woman(X) — person(X)),
(VX) (man(X) — person(X)),
(VX) (mother(X) < (woman(X) A (3Y) (child(X,Y) A person(Y)))),
(VX) (father(X) < (man(X) A (3Y) (child(X,Y) A person(Y)))),
(VX) (parent(X) < (mother(X) V father(X))),
(VX)) (grandparent(X) < (parent(X) A (3Y) (child(X,Y) A parent(Y)))),
(VX) (father_without_son(X) <« (father(X) A (VY) (child(X,Y) — —man(Y)))).
woman L person,
man LT person,
mother = woman N 3child : person,
father = man M 3child : person,

parent = mother U father,
grandparent = parent M dchild : parent,
father_without_son = father MYchild : =man.

Table 1.1: A simple terminology as set of first-order concept axioms (top) and in abbreviated form (bot-
tom).

and
{deD|R!(d) C F'}

to the concept formulas
(3X) (R(X,Y) A E(Y))

and
(VX) (R(X,Y) = F(Y)),

respectively.

The meaning of a generalized concept axiom under I is defined as follows, where F(X)
and G(X) are concept formulas

IE(VX)(F(X) = G(X)) iff FIcal
IE(VX)(F(X)+ G(X)) iff FI=aG'.

I is said to be a model for a terminology Kr iff it satisfies all concept axioms in K.

In other words, the semantics of any concept formula is simply a subset of the domain
of the interpretation. The meaning of implications and equivalences between concept
formulas is the subset and equality relation respectively.

1.2 Assertions

Having specified the terminology, the next step is to model the individuals and the facts
known about these individuals along with their relationships and roles. We will call these
facts assertions and we need a language for expressing assertions. This language will use
the concepts defined in Cp. More formally, let C' be a unary relation symbol, R a binary
assertion relation symbol, and a as well as b be constants. Then an assertion is an expression of

1.3. SUBSUMPTION 7

parent(carl), parent(conny),
child(conny, joe), child(conny, carl),
man(joe), man(carl), woman(conny).

Table 1.2: A simple A-box.

the form F'(a) or R(a,b). An A-box is a finite set of assertions and will be denoted by A-Boz
K. Whereas concept formulas provide the terminology for certain aspects of the world, Ka
assertions describe the actual state of the world.

The semantics of assertions is defined in the usual way. Let I be an interpretation with
finite, non-empty domain D then

I=C(a) iff of €Y,
I = R(a,b) iff b € RI(a).

I is said to be a model for K4 iff I satisfies each assertion occurring in 4. As an
example consider the assertions shown in Table 1.2.

There are two basic inferences provided by description logics, viz. subsumption and
unsatisfiability testing. All other inferences can be reduced to these two as shown below.

1.3 Subsumption

Let G and F be two concept formulas (in abbreviated form) and Fr a T-box. G is said

to subsume F wrt Kp iff Fr = F C G. Equivalently, G subsumes F' wrt Fp iff for subsumption
all models I of Kr we find that F! C G!. For example, let Fr be the T-box given in

Table 1.1, then the concept person subsumes both, man and woman. Similarly, parent

subsumes grandparent. One should observe that the latter subsumption is not explicitly

contained in Kr and has to be computed by comparing the concept.

The subsumption relation for the simple description logic presented in this section is
decidable [NS90] but intractable? [Neb90]. In [LB87] a restricted description logic without
negation and disjunction was shown to be tractable.

Several other questions of interest concerning terminologies can be reduced to subsump-
tion. For example, if a knowledge engineer has defined a complex concept based on simpler
concepts, he or she should be interested in whether the complex concept is meaningful in
the sense that there is at least one object in the real world which belongs to that con-
cept. This can be expressed formally by requiring that a concept is satisfiable by some
model of the given T-box Kr, ie. some model of K7 assigns a non-empty subset of the
domain to the concept formula. Alternatively, a concept F' is said to be unsatisfiable iff unsatisfiability
Kr = F = 1, where L denotes an unsatisfiable formula. Unsatisfiability can be reduced
to subsumption with the help of the law FC G = F N -G = L.

Other interesting problems are disjointness and equivalence of concepts:

2 A problem is said to be tractable iff it can be solved in polynomial time wrt the size of the problem.
A relation is said to be tractable iff the problem of whether a given tuple belongs to the relation is
tractable.

disjointness

equivalence

>r

tazonomy

8 CHAPTER 1. DESCRIPTION LOGIC

person
woman parent man
mother grandparent father

father_without_son

Figure 1.2: The taxonomy defined by the T-box given in Table 1.1, where each arrow from concept F to
concept G denotes F >r G .

e Two concepts F' and G are said to be disjoint wrt Kp iff Kp = FNG= 1.

e Two concepts F' and G are said to be equivalent wrt Kr iff Kr E F =G.

Both, disjointness and equivalence can be reduced to subsumption.

Each T-box K7 represents a taxonomy. In fact, the subsumption relation can be used
to compute this taxonomy. Let C denote the set of concepts and let F as well as G be
elements of C. We define

F=rG iff Cp=EF=G

and
FCrG it KprEFLCG.

By definition =7 is an equivalence relation on C. Consequently, C can be partitioned
into its equivalence classes wrt =7. Let C|=, be the quotient of C under =7. One
should observe that Ty is reflexiv, transitive, and antisymmetric on C|~,, i.e.

FLCrF, (reflexivity)
FCr Gand GCr H implies F Cr H, (transitivity)
FCpr Gand GCp Fimplies F =7 G, (antisymmetry)

where F,G,H € C|~,. Thus, Cr is a partial order on C|xr,. Let >7 be the unique
minimal binary relation on C such that Crp is its reflexive and transitive closure. The
restriction of >7 to the set of atomic concept formulas is called the tazonomy defined by
Kr. Figure 1.2 shows the taxonomy defined by the T-box specified in Table 1.1. Such a
taxonomy can be computed using a subsumption algorithm.

1.4 Unsatisfiability Testing

Given a T-box and an A-box like the ones depicted in Tables 1.1 and 1.2, respectively,
we may want to reason about assertions wrt the given terminology. For example, we may
want to know whether Conny is a grandparent, ie.

Kr UK 4 | grandparent(conny),

1.5. FINAL REMARKS 9

whether Carl is a person, ie.
K1 UK 4 = person(carl),
whether Carl is a father without sons, ie.
K1 UK 4 [= father_without_son(carl),
or whether Joe is a child of Conny, ie.
K1 UK 4 [= child(conny, joe).

To answer these questions, we apply a well-known theorem from classical logic, viz. that
F = G iff FU{—-G} is unsatisfiable. With an appropriate calculus for testing unsatisfiable
we are able to conclude that Conny is a grandparent and Carl is a person, but we cannot
conclude Carl is a father without sons or that Joe is a child of Conny.

Other questions can be reduced to unsatisfiability testing as well, for example, the
question of whether there are parents:

FrUF4 E (3X) parent(X).

Another example is the so-called realisation problem: Given a T-box Kp, and A-box realisation
K4, and an individual a, what are the most specific concepts defined in K7 to which a Pproblem
belongs? In this problem, specificity is defined wrt the subsumption relation, where the

concept F' is said to be more specific than the concept G iff G is subsumed by F'. In the

example T-box and A-box shown in Tables 1.1 and 1.2, grandparent is the most specific

concept to which Conny belongs.

1.5 Final Remarks

As we have seen in the examples of the previous section, we were unable to conclude that
Carl is a father without sons although the A-box shown in Figure 1.2 does not mention
any son of Carl. Description logics specify a so-called open world. Additional assertions open world
like
man(fritz), child(carl, fritz)

may be added without the need to withdraw previously derived conclusions. In other
words, description logics are usually classical logics and are monotonic.

Description logics may be extended to include role restrictions, complex and transitive
roles, cyclic concept definitions, or concrete domains like the reals. But sometimes these
logics are more restricted like, for example, disallowing universally quantified concept
formulas.

The Description Logic Handbook [BCM T 03] provides a thorough account of description
logics coverning all aspects from theory over implementations to applications. A more
recent account of developments can be found in [Baall].

10

CHAPTER 1. DESCRIPTION LOGIC

Chapter 2

Equational Logic

The equality relation plays an important role in mathematics, computer science, artificial
intelligence, operations research, and many other areas. For example, many mathematical
structures like monoids, groups, or rings involve equality. Common data structures like
lists, stacks, sets, or multisets can be described with the help of the equality relation.
Functional programming is programming with equations. These are just a few applica-
tions.

2.1 Equational Systems

In this chapter we consider a first-order language over an alphabet which contains the
binary relation symbol a. Usually, =~ is written infix and called equality. An equation is
an expression of the form s~ t, where s and t are terms. An equational system & is a
set of universally closed equations. For example, the equational system given in Table 2.1
specifies a group, where the universal quantifiers are omitted. If equations are negated,
then instead of —s ~t we write the more common s % t.

So far, the equality symbol is just an ordinary relation symbol. But usually we ex-
pect equality to have the properties reflexivity, symmetry, transitivity and substitutivity.
This can be expressed within a first-order logic by the equational system &£ given in
Table 2.2, which consists of the so-called axioms of equality. One should observe that the
substitutivity laws are in fact schemata, which have to be instantiated by every function
and relation symbol occurring in the underlying alphabet. One should also note that £
is not minimal in the sense that axioms may be removed without changing the semantics

(X-Y) Z=X-(Y -Z), (associativity)
1-X =X, (left unit)
X 1=X, (right unit)
X 1. X~1, (left inverse)
X X1zl (right inverse)

Table 2.1: An equational system & specifying a group with binary function symbol - written infix, unary
(inverse) function ~!' written postfix and unit element or constant 1. All equations are assumed to be
universally closed.

11

~
~

equation
equational system

&

Ex

azxioms of
equality

12 CHAPTER 2. EQUATIONAL LOGIC

X ~ X, (reflexivity)
X=Y->Y=X, (symmetry)
X~YNY~Z—>X~Z, (transitivity)
N Xi =Y — f(Xq,..., X)) = f(Yh,...,Y,), (f-substitutivity)
N XimYiAr(Xy, ..., Xy) = r(Ya, ..., Y,). (r—substitutivity)

Table 2.2: The equational system Ex specifying the axioms of equality, where the substitutivity axioms
are defined for each function symbol f and each relation symbol r in the underlying alphabet.

of E~.

As usual we are interested in the logical consequences of an equational system. Formally,
let £ be an equational system and F' a formula. Then we are interested in the relation

EUELETF.

For example, let £ be the equational systems given in Tables 2.1. Suppose we would like
to show that a group which additionally satisfies the equation X - X =~ 1 for all X is
commutative. This can be expressed as

EUELU{X - Xmr1}E(VX,Y)X - YRY X (2.1)

Sometimes we are also interested in existentially closed equations. For example, let a be
a constant, then we may be interested to find a substitution for the variable X such that
X-a~1,ie.

EUELE(EX)X ax1.

Equational systems are sets of definite formulas and, hence, admit a least (Herbrand)
model. For example, suppose that the only function symbols are the constants a, b, and
the binary symbol g. Now, consider £ = {a ~ b}. The least model of £ U Ex is the set

{t=t|tisaground term}
U {axb, bra}
U {g(a,a) = g(b,a), g(a,a) =~ g(a,b), g(a,a) = g(b,b), ...}

We define
sret iff EUEL Vst

where s and ¢ are terms and V denotes the universal closure. ~¢ is the least congruence
relation on terms generated by &.

The relation =~z¢ is defined semantically and we would like to find syntactic character-
izations of this relation in order to mechanize the computation of ~¢. As all formulas
occurring in (2.12) are first-order and in clause form we could apply resolution to deter-
mine whether commutativity is entailed. If we do so, however, it becomes all too obvious
that the single resolution steps are awkward and do not correspond to the way mathe-
maticians would solve such a problem. Moreover the search space is extremely large. In
fact, if the search space is traversed in a breadth-first way then 102! deduction steps are
needed (see [Bun83]). That this technique is clearly impractical was observed almost as
soon as the resolution principle was discovered. The clauses which cause the trouble are
mainly the axioms of equality. J. Alan Robinson proposed to remove these and similar

2.2. PARAMODULATION 13

troublesome clauses from the given set of formulas and to build them into the deductive
machinery [Rob67].

Where shall we insert the troublesome axioms? Basically there are two possibilities.
Either a new inference rule is added to the resolution calculus or the resolution rule itself
is modified by building the equational theory into the unification computation. Whereas
the latter idea is investigated in Section 2.4, the former possibility is presented in the next
section.

2.2 Paramodulation

Paramodulation extends resolution in the case of equality. The most important principle

behind equality is that we may replace equals by equals. For example, given any expression

over the natural numbers, we may replace 1+ 1 by 2 as both terms denote the same

object, viz. the natural number 2. This principle can directly be applied to compute the

logical consequences of equational systems. The rule of inference capturing this principle

is called paramodulation and is not restricted to equations but can be applied to general paramodulation
clauses.

Let L[s| denote a literal L which contains an occurrence of the term s and L[s/{]
the literal L where this occurrence has been replaced by t. Let

Cy = [L[s], L1,.. ., Ln]

and
02 = [l ~ T,Ln+1,...,Lm]

be two clauses, where 0 <n < m. If s and [are unifiable with most general unifier 6,
then
[L[s/r], L1 ..., Ln]0

is called paramodulant of C1 and Cs. We also say that paramodulation was applied to C1 paramodulant
using Cy. The notions of derivation and refutation defined for the resolution calculus can derivation
be straightforwardly extended to paramodulation and resolution. One should observe, refutation
that in a derivation the parent clauses of a resolvent must be variable-disjoint. This

condition applies to paramodulants as well. In linear derivations—like the ones considered

in the sequel of this section—this can be achieved by considering new variants of the input

clauses.

As equations are first-order expressions we recall that

EUEL EVs~t

iff Ac.ue. — Vs =t is valid

iff _‘(/\cvgugz — Vs & t) is unsatisfiable

iff (= /\Cgusz V Vs & t) is unsatisfiable
ift —— /\Cgng A —Vs = t is unsatisfiable
iff CgUE~ U{3s %t} is unsatisfiable.

The existential quantifiers can be removed by Skolemization. It can be shown that each
paramodulation step can be simulated by resolution steps using the axioms of equality:
Intuitively, the substitutivity axioms may be applied to move the term s upon which

14 CHAPTER 2. EQUATIONAL LOGIC

1 [=p(g(f(b,a)))] (goal)
2 [f(W,Z) =~ f(Z,W)] (commutativity of f)
3 [=p(9(f(a,0)))] (par,1,2{W = b, Z — a})
4 [p(g(f(a,0)))] (fact)
5 [] (res,3,4,¢)

Table 2.3: A proof of (2.2) by resolution and paramodulation, where par denotes a paramodulation step
followed by the numbers of the parent clauses and the most general unifier used in this step. Likewise, res
denotes a resolution step.

1 [=p(g(f(b,a)))] (goal)
2 [p(Y), -p(X), X #£Y] (r-substitutivity)
3 [_'p(X)a X % g(f(b7 a))} (1"68,1,2,{Y = f(ba a)})
4 [gU)=g(V), U=zV] (f-substitutivity)
5 [=p(g(U)), U # f(b,a)] (res,3,4,{X = g(U), V= f(b,a)})
6 [fW,Z2)=~ f(Z,W)] (commutativity of f)
7 [-p(9(f(a,b)))] (res,5,6,{U — f(a,b), Z+— b, W — a})
8 [p(y(f(a,D)))] (fact)
9 [l (res,7,8.¢)

Table 2.4: A proof of (2.2) by resolution using the substitutivity axioms.

paramodulation was applied to the top level such that it can be unified with the term [.
The following example shall illustrate this intuition. Suppose, we want to show that

{p(9(f(a,0))} U{f(X,Y) = f(Y, X)} U & = pg(f(b,a))) (2.2)

Table 2.3 shows a proof by resolution and paramodulation, whereas Table 2.4 shows a
corresponding proof by resolution using the substitutivity axioms. Formally, Brand has
proven in [Bra75] that resolution, factoring, and paramodulation are sound and complete
if the axiom of reflexivity is added.

Theorem 2.1 £UEL U {3s # t} is unsatisfiable if and only if there is a refutation of
EU{X ~ X, Is#t} with respect to paramodulation, resolution and factoring.

In other words, all equational axioms except the axiom of reflexivity are built into
paramodulation.! We can now apply this theorem to show that (2.12) holds. In particular,
(2.12) holds iff it can be shown that

A S VX, V)X - Y ~Y X
EUELU{X -X~1}
is valid iff
(EUELU{X - X~1)U{IX,Y)X - Y Y X} (2.3)

is unsatisfiable. Skolemizing (2.3) we obtain

EUELU{X - X=~1}U{a-bsb-al, (2.4)

! One should observe that, strictly speaking, the clauses occurring in £ are not axioms with respect to
the resolution and paramodulation calculus. The only axiom in this calculus is the empty clause [].

2.2. PARAMODULATION 15

1 a-b®b-a (initial query)
2 1- X1 ~ X1 (left unit)
3 XorXo (reflexivity)
4 Xi=1-X, (par,2,3,{X2 — 1. Xl})
5 a-b#%(1-b)-a (par,1,4,{X; — b})
6 Xz -Xz=x1 (hypothesis)
T Xyum= Xy (reflexivity)
8 1~ X3 : X3 (par,6,77{X4 — X3 . Xg})
9 a-b ’7fé ((X3 ’ X3) ’ b) ta (par75a875)

f (right unit)

a-b# ((Xz-X3)-b)-(a-1)

: (hypothesis)

a-b# ((Xs-X3)-b)-(a-(Xq-X4))

: (associativity)

a-b# (Xs- (X3-0)-(a-X4))) Xa

: (hypothesis)

a-bz(a-1)-b

: (right unit)
n a-ba-b
n' X;= X; (reflexivity)
n"] (res,n,n’ { X5 — a-b})

Table 2.5: Fragment of a refutation using paramodulation and resolution to show that groups satisfying the
law (VX)X - X a1 are commutative. The subterm whereupon paramodulation is applied is underlined.
One should observe that steps 2 to 4 show how symmetry is captured by paramodulation. In the application
of paramodulation upon the subterm ((Xs-b)-(a-X4)) using a new variant Z-Z = 1 of the hypotheses
the most general unifier is {Z — a-b, X5+ a, X4 — b}.

where a and b are new Skolem constants. We can now apply Theorem 2.1 and obtain
the refutation shown in Table 2.5. The refutation still looks clumsy but Table 2.6 shows
a shorthand notation which can always be used if only equation are involved and which is
very close to the way mathematicians transform expressions using equalities. One should
observe that mathemeticians prove universal statement like (VX,Y)X Y ~ Y -X usually
by selecting arbitrary but fixed elements a and b replacing X and Y, respectively, and
showing that a-b =~ b-a. Arbitrary but fixed elements correspond precisely to the Skolem
constants introduced in the process of turning a formula into clause form.

The search space which has to be investigated by a simple breadth-first search procedure
based on resolution, factoring, and paramodulation is still huge. In the example, it consists
of about 10" nodes. Many steps are redundant and useless. For example, an equation
may be used from left to right, replacing an instance of the left subterm by the instance
of the right one, and some steps later, the equation may be used the other way around,
replacing an instance of the right subterm by the instance of the left one. If we could
somehow restrict the use of these equations so that they are used in one direction only,
then many useless steps could be avoided. This idea has led to term rewriting systems.
On the other hand, if we restrict the use of equations, then we should be prepared to pay
a price in that the expressive power of the restricted system is less than the expressive

term rewriting
system

rewriting
—R

*

—R

16 CHAPTER 2. EQUATIONAL LOGIC
b-a ~ (L-b)-a (left unit)
~ ((X3-X3)-b)-a (hypothesis)
~ ((X3-X3)-b)(a-1) (right unit)
~ (X3-X3)-b) (a-(Xqg-Xy)) (hypothesis)
~ (X3 ((X3:0)-(a-Xy)))- Xy (associativity)
~ (a-1)-b (hypothesis)
~ a-b (right unit)

Table 2.6: Shorthand notation for the refutation shown in Table 2.5.

append([], X) - X,

append([X[Y], Z) = [X[append(Y, Z)],
reverse([]) -],

reverse([X|Y]) — append(reverse(Y), [X]).

Table 2.7: A term rewriting system for the functions append and reverse .

power of equational systems.

2.3 Term Rewriting Systems

~
~

The idea of term rewriting systems is to orient equations s = t into so-called rewrite
rules s — t indicating that instances of s may be replaced by instances of ¢ but not vice
versa. A term rewriting system is a finite set of rewrite rules. As an example consider the
term rewriting system shown in Table 2.7, in which the functions append and reverse
are defined. Informally, append concatenates two lists and reverse reverses a list. Lists
are represented using a binary function symbol : and the constant []. [] denotes the
empty list. If Y is a list and X a term then :(X,Y) denotes a list whose head is X
and whose tail is Y. To ease the notation it is common to abbreviate lists as follows:
[X|Y] is an abbreviation for :(X,Y’), where X is a term and Y is a list; furthermore,
[a1,ag,...,ay] is an abbreviation for :(ai,:(az...:(an,[])...)).

The study of term rewriting systems is concerned with how to orient equations into
rewrite rules and what conditions guarantee that term rewriting systems have the same
computational power as the equational system they were derived from. Moreover, term
rewriting systems can be regarded as the logical basis for a restricted class of functional
programs as will be demonstrated later in this section.

What are term rewriting systems good for? Of course, they shall be used to replace
equals by equals. Let R be a term rewriting system. Let s[u| denote a term s which
contains an occurrence of the (sub-)term w and s[u/v] the term s where this occurrence
has been replaced by v.2 A term s[u] rewrites to a term ¢, in symbols s —x t, iff there
exists a rewrite rule [— r € R and a substitution 6 such that v =10 and t = s[u/rf].
Let =5z be the reflexive and transitive closure of —x . Thus, s - ¢ iff there is a
sequence ui,...,u, of terms such that s = uy, w; =g w1, for all 1 < ¢ < n, and

2 One should note that only one occurrence of w in s is replaced even if u occurs several times in s .

2.3. TERM REWRITING SYSTEMS 17

u, = t. Furthermore, s <>p t iff s >xg t or s +px t. <i>73 is the reflexive and transitive <<z
closure of <+ . For ease of notation we sometimes omit the subscript R if it is obvious &,
from the context which term rewriting system is meant. Recalling the example shown in
Table 2.7 we find that:

append([1,2],[3,4])

— [1] append([2], [3, 4])]
— [1,2 | append([], [3, 4])]
— [1,2,3,4],

(2.5)

where the rewritten (sub-)terms are underlined.

The substitution 6 used in a rewriting step is only applied to the rewrite rule used in
a rewriting step, but not to the term which is rewritten. Given two terms u and [, the
problem of whether there exists a substitution 6 such that uw = [0 is called a matching
problem, and if such a substitution exists, then 6 is called a matcher for [against w. matching
Matching is a restricted form of unification and all notions and notations concerning matcher
unification hold for matching problems as well. In particular, if there exists a matcher 6
such that u = [0 then there exists also a most general one and it suffices to consider such
a most general matcher in computing the rewrite relation —.

In the literature term rewriting systems are often defined such that for all rules [— r
occurring in R it is required that wvar(l) O war(r), where wvar(t) denotes the set of
variables occurring in t. As an immediate consequence of such a condition we obtain that wvar
if s »x t then war(s) 2 var(t). This can be examplified by recalling the term rewriting
system shown in Table 2.7 and considering the term append([V], [W]), where V and W
are variables:

append([V], [W]) — [V |append([], W])] — [V, W]

and we find that
var (append([V], [W])) = {V, W} = var([V; append([], W)) = var([V, W]).
As another example consider the term rewriting system
R = {projection! (X,Y) — X }.
It specifies a function projection! which projects onto its first argument. Here,
projection1 (f(V),W) — f(V)
and we find that

var(projectionl (f(V),W)) = {V,W} D {V} = var(f(V)).

Let &z be the equational system obtained from the rewriting system R by replacing &xr
each rule [— r € R by the equation [=~ r and adding the axioms of equality. It is not
too difficult to see that
if s - t then s =g, t.

In other words, if s rewrites to ¢ then in each model of £z and, in particular, in the
least model of £r the terms s and ¢ denote the same element of the domain. In fact,
an even stronger result can be shown, viz.

s mg, tiff s Spt. (2.6)

18 CHAPTER 2. EQUATIONAL LOGIC

Figure 2.1: Two rewriting derivations for b <> ¢. The one of the left-hand side is in valley form.

This gives another syntactic characterization of logical consequence: In order to show that
two terms s and ¢ are equal under £x, we have to find a derivation from s to ¢ wrt <.
As an example consider the term rewriting system

R={a—b,a—c, b—>d, c—e, d— e}

Then b =g, ¢ because
b—o>d—e+c

or, alternatively,
b+ a—c

Such derivations are often depicted graphically as shown in Figure 2.1. The derivation on

valley form the left is in so-called valley form, whereas this is not the case for the derivation shown on
the right. A derivation in valley-form is desirable because in such a derivation rewriting
has been applied only to the terms b and ¢ and their successors.

Unfortunately, the latter characterization of logical consequence is still unsatisfactory
because in order to determine whether s ~¢, ¢t we cannot simply apply rewriting to s
and t (and their successors). Can we find conditions such that rewriting applied to s
and t is complete?

reducible A term s is said to be reducible with respect to R iff there exists a term ¢ such that
irreducible s —p t, otherwise it is said to be irreducible. If s <> t and t is irreducible, then ¢
normal form is a normal form of s. We also say that t is obtained from s by mormalization. For
example, in (2.13) the term [1,2,3,4] is irreducible and, thus, it is the normal form of
append([1,2],[3,4]).

One should also observe that the term rewriting system R shown in Table 2.7 is in
fact a functional program defining the functions append and reverse. In this view, (2.13)
is an evaluation of the function append called with the arguments [1,2] and [3,4], and
the normal form [1,2,3,4] is the value of this function call. Equivalently, this evaluation
of the function append can be seen as the desired answer to the question of whether
Er E (3X) append([1,2],[3,4]) ~ X holds. From a logic programming point of view, the
answer substitution

o ={X > append([1,2],[3,4])}

is also correct, but in most cases it is not the intended one. This is {X — [1,2,3,4]},
which can be obtained from ¢ by normalizing the terms occurring in the codomain of o
with respect to R.

Rewrite rules of the form X — r can be used to rewrite each subterm. Semantically
such a rule specifies that each term is equal to r and therefore the whole domain of any
interpretation satisfying this rule effectively collapses to a singleton set. Because such
systems are not very interesting, one often disallows such rules in term rewriting systems.

2.3. TERM REWRITING SYSTEMS 19

not(not(X))
not(or(X,Y))
not(and(X,Y))
and(X, or(Y, Z))
and(or(X,Y), Z)

X7

and(not(X), not(Y)),
or(not(X), not(Y)),
or(and(X,Y), and(X, Z)),
or(and(Y,Z), and(Z, X)).

U A

Table 2.8: A non-confluent but terminating term rewriting system for propositional logic.

In each step of (2.13) there was only one way to rewrite the term. Unfortunately, this
is not always the case. As another example, consider the term rewriting system shown
in Table 2.8 which can be applied to convert propositional logic expressions into normal
form. Here, the term

and(or(X,Y), or(U,V))

has two normal forms, viz.
or(or(and(X,U), and(Y,U)), or(and(X,V), and(Y,V)))

and
or(or(and(Y,U), and(Y,V)), or(and(V, X), and(X,U))).

Recall that our goal was to find restrictions such that the question whether two terms
s and t are equal under a given equational theory can be decided by using the equations
only from left to right. To this end we need to introduce two more notions, viz. the notion
of a confluent and terminating term rewriting system.

For terms s and ¢t we write s | t iff there exists a term u such that s —*>R U <i7g t. Iz
We write s 15 t iff there exists a term w« such that s <—g u —»g t. As before, we will 1r
omit the index R if R can be determined from the context. Returning to Figure 2.1
we find that b | ¢ and b1 ¢ because of the derivations shown on the left and the right,
respectively.

A term rewriting system R is said to be confluent iff for all terms s and t we find confluent
s Tt implies s | t. It is said to be ground confluent if it is confluent for ground terms.
In other words, if a term rewriting system is confluent, then any two different rewritings
originating from a term will eventually converge.

A term rewriting system R has the Church-Rosser property iff for all terms s and ¢, Church-Rosser
we find s <& ¢ iff s | ¢. It can be shown that R has the Church-Rosser property iff R is
confluent. Combining this result with (2.6) we learn that rewriting need only be applied
in one direction if the term rewriting system is confluent. In this case s ~g, t holds iff
we find a term u such that both, s and ¢, rewrite to u.

A term rewriting system R is terminating iff it admits no infinite rewriting sequences. terminating
In other words, each rewriting process applied to a term will eventually stop. For example,
the term rewriting systems shown in the Tables 2.7 and 2.8 are terminating. Unfortunately,
it is undecidable whether a term rewriting system is terminating. However, if the system
is terminating then confluence is decidable.

Terminating and confluent term rewriting systems are said to be canonical or convergent. canonical
The question of whether two terms s and ¢ are equal under an equational system & can convergent
be decided if we find a canonical term rewriting system R such that the finest congruence

well-founded
ordering

termination
ordering

full invariance
property
replacement
property

term size

20 CHAPTER 2. EQUATIONAL LOGIC

relations generated by £ and E€r coincide. In this case s =g t iff s | . In other
words, for a canonical term rewriting system R the corresponding equational theory Er
is decidable. In this case, all we have to do in order to decide whether

S %S’R t (27)

is to normalize both terms s and t. If their normal forms are syntactically equal, then
(2.7) holds, otherwise it does not.

Thus, it is desirable that a given term rewriting system is both, terminating and con-
fluent. In the following two sections techniques for showing that a term rewriting system
has these properties will be discussed.

2.3.1 Termination

We now consider the question of how to determine whether a given term rewriting system
is terminating. The problem is undecidable as shown by [HL78]. Hence, we cannot
expect to find an algorithm which proves termination even if the term rewriting system
is terminating. All what we can hope for is to develop techniques such that for large
classes of term rewriting systems these techniques help to find out whether a system is
terminating. These techniques are not confined to term rewriting systems but can be
applied to programs in general.

Let > be a partial order on terms, i.e. > is reflexive, transitive, and antisymmetric.
Let > be defined on terms as follows:

st iff s>t and s #t.

> is said to be well-founded iff there is no infinite descending sequence s1 > s = All
techniques presented in this section make use of a well-founded order > on terms having
the property that

s — t implies s > t.

Formally, a termination ordering > is a well-founded, transitive, and antisymmetric re-
lation on the set of terms satisfying the following properties:

1. Full invariance property: If s >t then s =t for all substitutions 6.

2. Replacement property: if s >t then u[s| > u[s/t] for all terms u containing s.

One should observe that if s = ¢ and > is a termination ordering then all variables
occurring in ¢ must also occur in s.

Theorem 2.2 Let R be a term rewriting system and > a termination ordering. If for
all rules 1 —r € R we find that | = r then R is terminating.

Thus, one way to show that a term rewriting system is terminating is to find a termi-
nation ordering for this system. One of the simplest termination ordering is based on the
size of a term. Let |s| denote the size of a term s, viz. the length of the string s. We
can define a termination ordering > as follows: s =t iff for all grounding substitutions
f we find that

|sf] > [t0].

2.3. TERM REWRITING SYSTEMS 21

With the help of such an ordering we find, for example, that
f(X,Y) = g(X),

but there is no such ordering such that
X, Y) - g(X, X).

The latter observation limits the applicability of such an ordering and more complex
termination orderings have been considered in the literature.

The just mentioned ordering based on the size of the term can be modified by weighting
the symbols so that |s| is the weighted sum of the number of occurrences of the symbols.
Another class of termination orderings are so-called polynomial orderings: Each function polynomial
symbol is interpreted as a polynomial with coefficients taken from the set of natural ordering
numbers. The domain of such an interpretation is the set of polynomials and each variable
assignment assigns each variable to itsself. Thus, each term is interpreted as a polynomial
on natural numbers. For example, we could define an interpretation I such that

[f(X, V)% =2X+Y

and
[g(X,Y)]"? =X 1Y,

where the variable assignment Z is the identity. In this case the ordering

s = tiff £ > 12

is a termination ordering, where > is the greater-than ordering on natural numbers.

There are other widely used orderings such as the recursive path ordering or the lex-
icographic path ordering (see e.g. [Pla93]). But it would be beyond the scope of this
introduction to mention all of them. These orderings are often combined with a variety
of other methods to determine termination of term rewriting systems. For example, in
[FGM * 07] SAT-solvers are applied for termination analysis with polynomial interpreta-
tions.

This subsection will close with a brief discussion of incrementality. An ordering =’ is incrementality
more powerful than (or extends) = iff s =t implies s >’ ¢, but not vice versa. This issue more powerful
will be important in the next subsection. There, we will see that sometimes terminating than
non-confluent term rewriting systems can be turned into a confluent ones by adding addi-
tional rewrite rules. These rules, however, need not comply with the termination ordering
used to show that the given term rewriting system is terminating. However, if the in-
cremental property holds, then the termination ordering can be gradually extended with
each new rule that is added to a term rewriting system.

2.3.2 Confluence

As already mentioned if a term rewriting system is terminating, then confluence is decid-
able. In this section, an algorithm for deciding confluency is developed.

Following the definition of confluency, we have to consider all terms s and ¢ for which
s Tt holds. This can be reformulated as to consider all terms u, s and ¢ such that

locally confluent

redex

overlap

22 CHAPTER 2. EQUATIONAL LOGIC

u rewrites to s and to ¢. Fortunately, in case of a terminating term rewriting system we
do not have to consider arbitrary long rewriting sequences. Rather, we may restrict our
attention to single step rewritings from « to s and .

A term rewriting system is said to be locally confluent iff for all terms u, s and ¢ the
following holds: If w — s and w — ¢t then s | t. The following result was establish by
Newman in [New42]:

Theorem 2.3 Let R be a terminating term rewriting system. R is confluent iff R is
locally confluent.

This result is still insufficient to decide confluency as we have to consider all terms wu,
and there are infinitely many. Wouldn’t it be nice if we could focus on the term rewriting
system itself or, more precisely, on the left-hand sides of the rules occurring in the term
rewriting system as there are only finitely many? In order to answer this question let us
study cases where a term u rewrites to two different terms. How can this happen? Let
R be a term rewriting system and u a term. A subterm w of u is called a redex if w
is an instance of the left-hand-side of a rule I — r € R, i.e., if there exists a substitution
f such that w =10. Now let I; — r1 and ls — ro be two rules occurring in R which
are both applicable to the term wu, i.e., we find two redeces in t corresponding to the
left-hand sides of the two applicable rules. In general there are exactly three possibilities
of rewriting u in two different ways:

1. The two redeces are disjoint.

2. One redex is a subterm of the other one and corresponds to a variable position in
the left-hand side of the other rule.

3. One redex is a subterm of the other one but does not correspond to a variable
position in the left-hand side of the other rule. In this case the redeces are said to
overlap.

Examples may help to better understand the three cases. Let u be the term

(g(a) - (b)) - <,

where - is a binary function symbol written infix, f and ¢ are unary function symbols,
and a, b, and c¢ are constants.

1. Let
R={a—c, b—c}.

Then u contains two redeces, viz. a and b. These redeces are disjoint. In this case
it does not matter which rule we apply first because we can always apply the other
rule afterwards. After applying both rules we will always end up with the term

(9(c) - f(c) - c.

Alltogether, we obtain the following commuting diagram:

2.3. TERM REWRITING SYSTEMS 23

2. Let
R={a—c g(X)— f(X)}.

In this case w contains the redeces a and g¢(a). Moreover, a corresponds to the
variable position in g(X). Asin the first case it does not matter which rule is applied
first. In any case the rewritings commute to

Alltogether, the following commuting diagram is obtained:

N

(g(a) - f(b)) - ¢
(f(a)- f(b))-c

fle)- fb))-c
3. Let
R={(X-Y)-Z—- X, g(a)- f(b) = c}. (2.8)
In this case u contains the redeces
(9(a) - f(b)) - c, (2.9)
i.e., u itself is a redex, and
g(a) - (b). (2.10)

Applying the first rule of R to ¢ at redex (2.9) yields
9(a),

whereas the application of the second rule of R at redex (2.10) yields
c-c.

Both terms are in normal form and they are different. One should observe that
redex (2.10) does not correspond to a variable position in the left-hand side of the
first rule in R. Alltogether we obtain the following non-commuting diagram:

critical pair
superposition

24 CHAPTER 2. EQUATIONAL LOGIC

(9(a)- f(b))-c
VERN
g(a) c-c

These examples illustrate that the interesting case for determining whether a term
rewriting system is locally confluent is last one and we have to discuss it further. Let
us abstract from the example: Suppoese the term rewriting system R contains the rules
l1 = r1 and [y — ro without common variables. Suppose [y is unifiable with a non-
variable subterm wu of I; using the most general unifier §. Then the pair

((ilu/r2])0, 716)
is said to be critical.® It is obtained by superposing 1, and .

Recalling the previous example we see that the rules
(X-Y)-Z->X

and
g(a) - f(b) = ¢

form a critical pair: The left-hand side of the second rule is unifiable with the subterm
(X-Y)
of the left-hand side of the first rule using the most general unifier

{X —=g(a), Y = f(b)}.
Thus, we obtain the critical pair
(c- Z.g(a)). (2.11)

The analysis has shown that in order to decide whether a term rewriting system is
locally confluent we have to look at all critical pairs. In fact, it is now easy to see that the
following holds:

Theorem 2.4 A term rewriting system R is locally confluent iff for all critical pairs
(s,t) of R we find that s | t.

One should observe that in a finite term rewriting system, i.e., a system with finitely
many rewrite rules, there may be only finitely many critical pairs and these pairs can be
computed in polynomial time. Furthermore, if the term rewriting system is additionally
terminating, then all normal forms of each element of a critical pair can be computed in
finite time. Hence, we find that the problem of determining whether a given terminating
term rewriting system is (locally) confluent is decidable.

Returning to the previous example we find that the elements of the critical pair (2.11)
are already in normal form with respect to the term rewriting system R shown in (2.8).
Because these normal forms are different, this system is not (locally) confluent. However,
in many cases a terminating and non-confluent term rewriting system can be turned into
a confluent one by a so-called completion procedure.

3 One should observe that if the two rules are variants, and u is equal to I; then the critical pair
contains identical elements. This is a so-called trivial critical pair and need not be considered for
obvious reasons.

2.3. TERM REWRITING SYSTEMS 25

Given a term rewriting system R together with a termination ordering >:

1. If for all critical pairs (s,t) of R we find that s | ¢ then return “suc-
cess”; R is a canonical term rewriting system.

2. If R has a critical pair whose elements do not rewrite to a common term
then transform the elements of the critical pair to some normal form.
Let (s,t) be the normalized critical pair:

(a) If s>t then add the rule s — ¢ to R and goto 1.
(b) If ¢ > s then add the rule t — s to R and goto 1.

(c) If neither s>t nor ¢t > s then return “fail”.

Table 2.9: The completion procedure.

2.3.3 Completion

The question considered in this subsection is whether a terminating term rewriting system
R which is not confluent can be turned into a confluent one. As we will see in a moment
this is possible in some cases by adding new rules to the given term rewriting system.
Of course, we should require that the added rules do not change the equational theory
defined by R. We call two term rewriting systems equivalent if they have the same set of
logical consequences. More formally, the term rewriting systems R and R’ are said to
be equivalent iff ~g, = ~¢_,.

The completion procedure is a transformation which adds rules to a terminating term
rewriting system while preserving termination and gaining confluence. The idea is that if
(s,t) is a critical pair, then the rules s — ¢ or ¢t — s can be added without changing the
equational theory. With such a rule the terms s and t rewrite to a common term. If a
procedure adds enough such rules while preserving termination, then it yields a canonical
term rewriting system. This idea goes back to Knuth and Bendix [KB70] and can also be
found in [Buc87].

Such a completion procedure has to cope with several cases.

e The added rules have to preserve termination. Hence, if the elements of a critical pair
cannot be oriented into a rule preserving termination, then the completion procedure
is said to fail.

e The added rules may lead to new critical pairs, which must be considered. This
process may go on forever, in which case the completion procedure is said to loop.

The completion procedure itself is specified in Table 2.9. It can be modified such that it
turns a given equational system into a canonical term rewriting system.

A very simple example taken from [Pla93] will illustrate the completion procedure.
Consider the term rewriting system

R={c—b, f—=b f—a e—a, e—d}

equivalence

completion

failure

loop

26 CHAPTER 2. EQUATIONAL LOGIC

and the alphabetic ordering, i.e.
fre=d=c>b>a.
R is terminating but not confluent because the elements of the critical pairs
(b, a) (2.12)
(obtained by superposing the rules f — b and f — a) and
(d, a)

(obtained by superposing the rules e — a and e — d) are already in normal form. Both
critical pairs can be oriented with respect to > into the rules

b—a (2.13)

and
d— a, (2.14)

respectively. We obtain the term rewriting system
R ={c—b f—b f—a e—a, e—>d b—a, d—a}
which is canonical because now every term rewrites to a. One should observe that
SR, t = s R t.
To understand the completion procedure we consider its effects on the rewrite proof of
crRgy d.

Given R this proof is:

f

e T T
b a d

However, with R’ the shorter proof

c

™~
b d
\a/

is obtained. The critical pair (2.12) covers the part

/f\
b a

of the original sequence which is replaced by (2.13). Likewise, the critical pair (2.13) covers
the part

2.4. UNIFICATION THEORY 27
€
N
a d

of the original sequence which is replaced by (2.14). One should observe that the final
proof is in valley form.

Various extensions of the completion procedure have been developed to overcome its
limitations. An excellent overview is given in [Pla93]. [BN98] is an excellent textbook on
term rewriting systems and other reduction systems. Good German introductions to the
field can be found in [Ave95] and [Biin9s].

2.4 Unification Theory

Unification theory is concerned with problems of the following kind: Let a and b be wunification theory
constants, f and ¢ binary function symbols, X and Y wvariables, and £ an equational

system. Does
EUE FE (3X,Y) f(X,g(a,b)) = f(g(Y,b), X) (2.15)

hold? Such decision problems have a solution iff we find a substitution 6 (often called an
& -unifier) such that & -unifier

f(Xag(av b))H e f(g(Y, b),X)G

holds. In addition to the decision problem there is also the problem of finding a unification
algorithm, i.e., a procedure which enumerates the E-unifiers, given £ and the two terms
to be unified under £. Let us consider some examples:

e If £ is empty, then the decision problem (2.15) is the well-known unificiation problem
and is decidable. The most general unifier of the two terms to be unified is the
unique (modulo variable renaming) minimal solution. Several unification algorithms
are known [Rob65, PW78, MMS82|. For example,

01 ={X — g(a,b), Y — a}
is a solution for (2.15).

o If
E={f(X)~ X}

then
{Y = a}

is an E-unmifier for ¢(f(a),a) and ¢(Y,Y). One should observe that the terms
g(f(a),a) and ¢(Y,Y) are not unifiable (under the empty equational theory).

e If £ states that f is commutative, i.e., if
E={f(X,)Y) = f(Y,X)},

then 6, is still a solution for (2.15). However, it is no longer a minimal one because,

for example,
02 = {Y — CL}

28 CHAPTER 2. EQUATIONAL LOGIC

is also a solution for (2.15). This is because

f(Xag(a7 b))92 - f(X,g(CL,b)) ~e f(g(a,b),X) - f(g(Y, b)vX)02'

Moreover, 6o is more general than 6; because
01 = 02{X — g(a,b)}.

Whereas under the empty equational system there is at most one most general
unifier, this does not hold any longer for unification under commutativity. There
exist terms such that the decision problem under commutativity has more than one
most general unifier, but it can be shown that their maximum number is always
finite.

e The problem becomes entirely different if we assume that

E={f(X, [V, 2)) = f(J(X,Y), 2)},

i.e., if we assume that f is associative. In this case 6; is still a solution for (2.15),
but
03 = {X — f(g(a,b),9(a,b)), Y — a}

is also a solution because

f(ng(aa b))03 = f(f(g(av b)vg(a’ b))ag(aa b))
~g f(g(a7 b)7 f(g(a7 b)v (a7 b)))
= f(g(Y,b), X)03.

One should observe that neither is §; more general than 63 nor is 63 more general
than 6. In addition,

01 = {X — f(g(a,b), f(g(a,b), 9(a,b))), Y = a}

is yet another independent solution, and it is easy to see that there are infinitely
many independent solutions for (2.15).

e Finally, the situation changes once again if we assume that f is associative and
commutative. In this case for any pair of terms, the number of independent solutions
is either zero, in which case the terms are not unifiable, or finite.

2.4.1 Unification under Equality

As shown before, any equational system £ over some alphabet induces a finest congruence
£ -unification relation =¢ on the set of terms over the alphabet. An &-unification problem consists of
an equational system £ and an equation s =t and involves the question of whether

EUEL ETdsrit,

& -unifier where the existential quantifier denotes the existential closure of s ~t. An &-unifier for
this problem is a substitution 6 such that

50 ~g t0

2.4. UNIFICATION THEORY 29

and is a solution for the &£-unification problem. The set of all £-unifiers for this problem
is denoted by Ug(s,t) . Us(s,t)

Two substitutions n and 6 are said to be £-equal on aset V of variables ifft X7 ~¢ X0 &-equal
for all X € V. As an example let substitutions

&={f(X) = X}

and consider the substitutions
{Y = a}

and
{Y = fla)}.
They are €£-equal on {X,Y}.

As in the case where £ is empty, one does not need to consider the set of all £-unifiers
in most applications. It is usually sufficient to consider a complete set of £-unifiers, i.e., a
set of £-unifiers from which all £-unifiers can be generated by instantiation and equality
modulo &£. Let V be a set of variables and 6 and 1 be two substitutions. 7 is called an
E-instance of § on V, in symbols n <g 0[V], iff there exists a substitution 7 such that &-instance
Xn ~¢ X0t for all X € V. Obviously, if 6 is a solution for an &-unification problem =&
and 7 is an £-instance of A, then 7 is a solution for this problem as well. 7 is called
a strict E-instance of 0 on V, in symbols n <g O[V] iff n <¢ 6 and n and O are not strict £-instance
E-equal. If neither 0 <g n[V] nor n <g 6[V] then 6§ and n are said to be incomparable. <€

incomparable
As an example let unifiers

E={f(X,Y) = f(Y,X)},
0 ={X = f(a,Y)},

and
n={Xwr f(bya), Y — b}.

In this case,

n<e 0{X,Y}]
because we find a substitution
7={Y — b}
such that
X77 = f(bva) e f(aab) = X0t
and

Yn=0b0=Y0r
Moreover, # and n are not £-equal on {X,Y} because
Yn=bseY =Y0
and, hence,
n <e I{X, Y},

The substitutions 63 and #; discussed in the introductory example where f was asso-
ciative are incomparable &-unifiers.

Recall that Ug(s,t) denotes the set of all £-unifiers for the terms s and ¢. A set S
of substitutions is said to be a complete set of &-unifiers for s and t if it satisfies the complete set of
following conditions: unifiers

cUs(s,t)

minimal complete
set of unifiers

nUe (s,1)

=¢

30 CHAPTER 2. EQUATIONAL LOGIC

1. § CUg(s,t) and

2. for all n € Ug(s,t) there exists 6 € S such that n <g 0[var(s) U var(t)].

In other words, a set of substitutions is complete for two terms iff each element of this
set is an &-unifier for the terms and each E£-unifier for the terms is an &-instance of
some element of this set. Often, complete sets of £-unifiers for s and ¢ are denoted by
cUg(s,t).

For reasons of efficiency a complete set of £-unifiers should be as small as possible.
Thus, we are interested in minimal complete sets of &-unifiers for s and t. Such a set
S is complete and satisfies the additional condition:

3. for all #,n € S we find that 6 <g¢ n[var(s)U var(t)] implies 6 = .

Often, minimal complete sets of E-unifiers for s and ¢ are denoted by pUg(s,t). Let
0 =¢n[V] iff n<O[V] and 6 < n[V]. A minimal complete set of E-unifiers for s and ¢
is unique modulo =¢ [var(s) U var(t)], if it exists.

As an example consider the terms s = f(X,a) and t = f(a,Y). Let

E={f(X, [(Y,2)) = f(f(X,Y), 2)}

and suppose that the constant symbol a and the binary function symbol f are the only
function symbols in the underlying alphabet. The substitution

0={X—a, Y —a}
is an &-unifier for s and ¢, and so is
n={Xrw f(a,2), Y = f(Z,a)}.

It is easy to see that the set {#,n} is a complete set of E-unifiers. Moreover, because 6
and 7 are incomparable under <g, this set is minimal.

Whenever there exists a finite complete set of £-unifiers and the relation <g is decid-
able, then there exists also a minimal one. This set can be obtained from the complete
set of £-unifiers by removing each unifier which is an E-instance of some other unifier.

In general, however, we must be aware of the following result, which is due to Fages and
Huet [FH83, FH86|:

Theorem 2.5 Minimal complete sets of &€-unifiers do not always exist.

To prove this theorem we consider the term rewriting system
R={f(a,X) = X, g(f(X,Y)) = g(Y)}

and show that pUg, (9(X),g(a)) does not exist. It should be noted that R is canonical.
We define

op = {X = CL}

o = {X = f(X1,0)} = {X — f(X1, Xoo)

o = {X o f(Xi, Xov 1)}

2.4. UNIFICATION THEORY 31

and
S={o;|i>0}.

It is not too difficult to show that S is a complete set of Eg-unifiers for g(X) and g(a).
With
pi = {Xi— a}

we find for all 7 > 0 that
Xoip; = f(a,Xoj_1) ~gp Xoj1.

Hence,
0i-1 <er 0il{X}]

for all 7 > 0. Because
Xoi = f(Xs, X0i-1) #en Xoi1

we conclude
oi—1 <ep 0i[{X}]

for all 7 > 0.

Now assume that S is a minimal and complete set of Eg-unifiers for ¢(X) and g(a).
Because S is complete, we find that for all § € 8’ there exists a 0; € S such that

0 <er oil{X}].

Because
0; <er Oir1[{X}]

we learn that
0 <er oit1[{X}]

Conversely, because S’ is complete we find that there exists o € &’ such that
oit1 <gr o[{X}].

Hence,
0 <er o[{X}]

and, consequently, S’ is not minimal. Figure 2.2 illustrates the situation. This contradicts
our assumption and completes the proof.

Based on these observations, the unification type of an equational theory can be defined wunification type
as follows. It is

o unitary iff a set pUg(s,t) exists for all s, ¢ and has cardinality 0 or 1,
o finitary iff a set puUg(s,t) exists for all s, ¢t and is finite,

o infinitary iff a set puUg(s,t) exists for all s, ¢, and there are terms w and v such
that pUg(u,v) is infinite,

e zero iff there are terms s and ¢ such that a set puUg(s,t) does not exist.

32 CHAPTER 2. EQUATIONAL LOGIC

S S’

o; Zeg 0

A a A
(%433

a7 5

Oitl Sgg- - O

Figure 2.2: The situation leading to the contradiction in the proof of Theorem 2.5.

E-unification An E-unification procedure is a procedure which takes an equation s =t as input and
procedure generates a subset of the set of £-unifiers for s and ¢ as output. It is said to be:

o complete iff it generates a complete set of E£-unifiers,

o minimal iff it generates a minimal complete set of E-unifiers.

A universal €-unification procedure is a procedure which takes an equational system &
and an equation s/t as input and generates a subset of the set of £-unifiers for s and
t as output. The notions of completeness and minimal unification procedures extend to
universal unification procedures in the obvious way.

For a given equational system &, unification theory is mainly concerned with finding
answers for the following questions:

e [s it decidable whether an &-unification problem is solvable?
e What is the unification type of £7

e How can we obtain an efficient &-unification algorithm or a preferably minimal
&-unification procedure?

It is important to note that the answers to these questions depend on the underlying
alphabet or, more generally, the environment in which the unification problems have to be
solved. Let & be an equational system. E-unification problems are classified as follows.
They are called:

e clementary iff the terms of the problem may contain only symbols that appear in &,
e with constants iff the terms of the problem may contain additional free constants,

e general iff the terms of the problem may contain additional free function symbols of
arbitrary arity.

For example, there exists an equational system for which elementary unification is decid-
able whereas unification with constants is undecidable [Biir86].

2.4. UNIFICATION THEORY 33

2.4.2 Examples

In this subsection the £-unification problems for several equational theories are discussed.
Table 2.10 taken from [BS94] shows some results concerning unification with constants.

Ea={f(X,f(Y,2)) = f(f(X,Y), Z)}

defines the associativity of the function symbol f. Unification under €4 is needed for associativity
solving string unification problems or, equivalently, word problems. Ea

Eo={f(X,Y) =~ f(Y,X)}

defines the commutativity of the function symbol f and commutativity
Ec
Eac =EQUEC

defines an Abelian semi-group. This equational system is of particular importance be- Abelian
cause many mathematical operations such as addition or multiplication are associative semi-group
and commutative. £4c cannot be oriented into a terminating term rewriting system and €ac
consequently many questions have to be solved modulo £4¢.

Eac=EacU{f(X.) = X, f(X,X)~ 1}

defines an Abelian group. Unification problems under 4o are equivalent to solving Abelian group
Diophantine equations over the set of integers. Eac

Ear = EAU{f(X, X) ~ X}

=~
Q
S_/
\:.< 22
>

=
=

defines idempotent semi-groups. idempotent
SEML-groups
gCRl—{ f(va(sz))%f(f(X’Y)vZ)v Ear
F(X,0) ~ X,
FX XY =0,
FOX,Y) = F(Y, X),
9(X,9(Y,Z
X
X
X

Q
=
>
=
X

IR
=
=R
I
XN
S
~
XN

}

defines a commutative ring with identity. The unification problem under Ecpri is equiv- commutative ring
alent to Hilbert’s 10th problem, i.e., the problem of Diophantine solvability of polynomial with identity
equations. Ecri

Epr = {9(f(X.Y),2) ~ f(9(X.Z2),9(Y,2))}

E&p = &EpLU&pr

Epa = EpUE4

)

define left and right distributivity, both-sided distributivity as well as distributivity and distributivity

Epr,EpRr,ED,€EDA

Boolean ring

EBR

& -matching

general
& -unification

combination
problem

34

CHAPTER 2. EQUATIONAL LOGIC

Equational | Unification | Unification | Complexity of the
System Type decidable decision problem
Ea infinitary yes NP-hard

Eo finitary yes NP-complete
Eac finitary yes NP-complete
Eaa unitary yes polynomial

Ear ZEro yes NP-hard

Ecrl Z€ero no —

Epr,EpR unitary yes polynomial

Ep infinitary ? NP-hard

Epa infinitary no —

EBR unitary yes NP-complete

Table 2.10: Results on unification types and the decision problem for unification with constants.

associativity respectively. Finally,

9(X. f(V.2)) ~ Fg(X.Y).9(X.2)) }

defines Boolean rings. Unification modulo Egr can be used to build Boolean expressions
into programming languages, which then can be applied to, for example, the verification
of circuit switches.

2.4.3 Remarks

An &-matching problem consists of an equational system £ and an equation s =t and
is the question of whether there exists a substitution 6 such that

s e th.

Hence, it differs from &-unification problems in that the substitution 6 is only applied to
one term. All concepts relating to £-unification can be defined for £-matching as well.

Besides unification under a specific equational theory, one is often interested in so-called
general E-unification problems, i.e. problems, where the equational system is also part
of the input. Such problems arise naturally within equational programming, where the
program is a set of equations. Paramodulation, narrowing and rewriting may be applied
in these cases as discussed in the previous section.

Another problem which has received much attention is the so-called combination prob-
lem: given two equational systems &£ and &, can the results and unification algorithms

2.4. UNIFICATION THEORY 35

for & and &y be combined to handle unification problems under £ U &y?

Unification problems occur in many application areas such as the following: databases
and information retrieval, computer vision, natural language processing and text ma-
nipulation systems, knowledge based systems, planning and scheduling systems, pattern-
directed programming languages, logic programming systems, computer algebra systems,
deduction systems and non-classical reasoning systems. Excellent overviews are presented
in [BS94] and [BS99].

2.4.4 Multisets

Multisets are an important data structure for many applications in Computer Science
and Artificial Intelligence. They are particularly appropriate whenever production and
consumption of resources are to be modeled.

Informally, multisets are sets in which each element can occur more than once. For-
mally, let () denote the empty multiset and let the parentheses { and } be used to enclose
the elements of a multiset. Analogously to the case of sets, the following relations and
operations on multisets are defined: membership, union, difference, intersection, submul-
tiset and equality. Let M, My, and Ms be finite multisets. Then these relations and
operations apply as follows:

o Membership: X €, M iff X occurs precisely k-times in M, for k > 0.

For example, if M is the multiset
{a, b,c,a,b, a},
then a es M, beag M, c€1 M and d €y M.
e Equality: Mq=Ms iff for all X we find X €, M7 iff X €, Ms.

For example,

{a, b, a}i{a,a, b}.
e Union: X &,, M1UMy, iff there exist k,l > 0 such that X €, My, X € My,

and m =k +1.

For example, if))
Ml = {CL, ba C}

and _)
M2 = {CL, b7 a}a

then

MiUMy = {a, b,c,a,b, a}.

e Difference: X €., Ml\/\/lg iff there exist k,I > 0 such that either X €, Mj,
Xe My, k>l,and m=k—1 or X €, My, X €, My, k<I,and m =0.
For example, if M; and M,y are as above, then

M1 \Mgi{c}

and

Mo\ M; ={al}.

applications

multiset

membership

equality

unLon

difference

36 CHAPTER 2. EQUATIONAL LOGIC

intersection o Intersection: X €,, MiNMs, iff there exist k,I > 0 such that X €, My,
X € My, and m =min{k,l}, where min maps {k,l} to its minimal element.

For example, if M; and My are as above, then

MMy = {a,b}.

submultiset o Submultiset: My g Moy iff MiNMg=M;.

For example,
{a,b,a} C{a,b,c,a,b,a}.

Multisets can be represented (extensionally) with the help of a binary function symbol o
o (written infix) which is associative, commutative, and admits a unit element (constant) 1.
1 Formally, consider an alphabet with set)V of variables and a set F of function symbols
which contains o and 1. Let T(F,V) be the set of terms built over F and V, and
F~ =F\{o, 1}
fluent Let us call the non-variable elements of T(F~,V) fluents.* These are the terms with a

leading function symbol like f(X,a) or c. In the following we will consider multisets of
fluents.

fluent term The set of fluent terms is the smallest set meeting the following conditions

1. 1 is a fluent term,
2. each fluent is a fluent term, and

3. if s and ¢ are fluent terms, then sot is a fluent term.

As the sequence of fluents occurring in a fluent term is not important, we consider the
following equational system:

Eac1={ Xo(YoZ)=(XoY)oZ
XoY=~YoX
XolrX }

For example,
on(a,b) o on(b, c) o ontable(c) o clear(a)

is a fluent term which, informally, can be interpreted to denote the state shown in Fig-

ure 2.3. on(X,Y) states that block X is on block Y, ontable(X) states that block X

is on the table, and clear(X) states that block X is clear, i.e., that nothing is on top of
blocks world it. This example is taken from the so-called blocks world, which is often used in Artificial

Intelligence to exemplify actions and causality (see also Chapter 3). Alternatively, the

table can be interpreted as a container terminal and the blocks as containers. The fluent

term

clear(X) o on(X,Y)

can informally be interpreted as the precondition of a move action which states that block
or container X can be moved if it is on top of some other block Y and is clear.

2.4. UNIFICATION THEORY 37

Figure 2.3: The blocks a, b, and ¢ form a tower standing on a table. Block a is clear.

There is a straightforward mapping from fluent terms to multisets of fluents and vice
versa. The mapping -/ from fluent terms to multisets of fluents is defined as follows. Let
t be a fluent term:

0 ift=1,
th = {t} if t is a fluent, and
u! Uvl ift=wow

The inverse mapping -~/ from multisets of fluents to fluent terms exists and is defined as
follows. Let M be a multiset of fluents:

1 it M =0,
M _{so./\f_[if M = {s}UN.

It is easy to see that for a fluent term ¢ and a multiset M of fluents, the equations

t =acr (t1) 1
and

M= (M

hold. In other words, there is a one-to-one correspondence between fluent terms and
multisets of fluents.

Returning to the blocks world example we find that

(on(a,b) o on(b, c) o ontable(c) o clear(a))’
= {on(a, b), on(b, c), ontable(c), clear(a)} (2.16)

and

(clear(X) o on(X,Y))! = {clear(X), on(X,Y)}. (2.17)

Having defined a representation for multisets of fluents, we are interested in the opera-
tions on this representation. Leaving the definition of the operations union, intersection
and difference on fluent terms to the interested reader, we concentrate on the following
problems:

submultiset
matching problem

submultiset
unification
problem

fluent matching
problem

fluent unification
problem

38 CHAPTER 2. EQUATIONAL LOGIC

o The submultiset matching problem consists of a multiset M and a ground multiset
N. Tt is the question of whether there exists a substitution # such that MO CN .

e The submultiset unification problem consists of two multisets M and N. It is the
question of whether there exists a substitution 6 such that MO C NG.

For example, to determine whether block (or container) a can be moved in the state
depicted in Figure 2.3 we have to solve the submultiset matching problem of the multiset
occurring in (2.17) against the multiset occurring in (2.16). It is easy to see that the
substitution

0={Xr—a, Y—b}

solves this problem.

With the help of the mapping -~/ these problems can be transformed into Eaci-
matching and £a¢1-unification problems:

e The fluent matching problem consists of a fluent term s, a ground fluent term ¢
and a variable X not occurring in s. It is the question of whether there exists a
substitution 6 such that (so X)f ~c t.

e The fluent unification problem consists of two fluent terms s and ¢t and a variable
X mnot occurring in s or t. It is the question of whether there exists a substitution
0 such that (so X)f ~ac1 6.

It is easy to see that 6 is a solution for the fluent matching problem consisting of s, ¢,
and X iff 6,q(s) is a solution for the submultiset matching problem consisting of st
and t!. Moreover, we find that in this case

(X0)T =t'\ (s6) .

Similarly, 6 is a solution for the fluent unification problem consisting of s, t, and X
iff 0]yar(s) is a solution for the submultiset unification problem consisting of sl and t!.
Moreover, we find that in this case

(X0)! = (1) \ (s6)" .

The fluent matching and the fluent unification problem are decidable, finitary, and
there always exists a minimal complete set of matchers and unifiers. Table 2.11 shows an
algorithm for computing minimal complete sets of matchers for fluent matching problems.?

Fluent unification and matching problems will play a major rule in reasoning about
situations, actions and causality as will be demonstrated in Chapter 3.

4 These elements are called fluents because they will denote resources that may or may not be available
in a certain state, and may be produced and consumed by actions (see Chapter 3).

5 A selection step in a procedure is said to be don’t-care non-deterministic iff there is no need to
reconsider; a selection step in a procedure is said to be don’t-know mon-deterministic iff all possible
choices must eventually be taken into account. In other words, one never has to return to a don’t-care
non-deterministic selection, whereas a don’t know non-deterministic selection defines a branching point
of the procedure and all branches need to be investigated.

2.5. FINAL REMARKS 39

Input: A fluent matching problem (30) (s o X)8 ~4¢c1 t7?
(where t is ground and X does not occur in s).

Output: A solution 6 of the fluent matching problem, if it is solvable;
failure, otherwise.

1. 0 =¢;
2. if s~g01 1 then return 6{X — t};

3. don’t-care non-deterministically select a fluent « from s and remove wu
from s;

4. don’t-know non-deterministically select a fluent v from ¢ such that there
exists a substitution n with un =wv;

5. if such a fluent exists then apply 1 to s, delete v from ¢ and let 8 := 0n,
otherwise stop with failure;

6. goto 2;

Table 2.11: An algorithm for the fluent matching problem consisting of s, ¢, and X. A complete set
of matchers is obtained by considering all possible choices in step 4. This set is always finite because s
contains only finitely many fluents and in step 3 an element is deleted from s. A complete minimal set is
obtained by removing redundant elements.

2.5 Final Remarks

Paramodulation has been introduced in [Bra75]. The section on term rewriting is based
on [Pla93], whereas the section on unification theory is based on [BS94]. Fluent matching
and unification problems were considered in [HST93].

40

CHAPTER 2. EQUATIONAL LOGIC

Chapter 3

Actions and Causality

The design of rational agents which perceive and act upon their environment is one of the
main goals of Intellectics, i.e., Artificial Intelligence and Cognition [Bib92]. Inevitably,
such rational agents need to represent and reason about states, actions, and causality, and
it comes as no surprise that these topics have a long history in Intellectics. Already in
1963 John McCarthy proposed a predicate logic formalization, viz. the situation calculus
[McC63, MHG69], which has been extensively studied and extended ever since (see e.g.
[Lif90, Rei91]). The core idea underlying this line of research is that a state is a snapshot
of the world and that actions mapping states onto states are the only means for changing
states.

States are characterized by multisets of fluents, which may or may not be present in
certain states.! Figure 2.3 shows a state where three blocks form a tower. The fluents are
the terms on(a,b), on(b,c), ontable(c), and clear(a). Moving block a from the tower to
the table ¢ leads to another state which can be obtained from the initial state by deleting
the fluent on(a,b) and adding the fluents ontable(a) and clear(b).

Because it is impossible to completely describe the world at a particular time or to
completely specify an action, each state and each action can only be partially known. This
gives rise to several difficult and hence interesting problems like the frame, ramification,
qualification, and prediction problems.

e The frame problem is the question of which fluents are unaffected by the execution
of an action. For example, if we move block a from the tower as described before,
then we typically assume that the blocks b and ¢ are unaffected by this action.

e The ramification problem is the question of which fluents are really present after the
execution of an action. For example, if we move block b in the situation shown in
Figure 2.3, then we typically assume that block a goes with it.

e The qualification problem is the question of which preconditions have to be satisfied
such that an action is executable. For example, block a may be too heavy so that
two robots are needed for moving it around.

e The prediction problem is the question of how long fluents are present in certain

! There are arguments over whether states should be regarded as sets or multisets. Sometimes, it is
more adequate to think of states as sets, whereas sometimes it is not. For example, properties are
typically modeled as sets, whereas resources are modeled as multisets.

41

frame problem

ramification
problem

qualification
problem

precondition
problem

action

condition

effect

conjunctive
planning problem

applicable actions

42 CHAPTER 3. ACTIONS AND CAUSALITY

situations. For example, if you have parked your bycicle outside of the lecture hall
before the lecture, then you typically assume that it is still parked there after the
lecture. Occasionally however, it is not.

All these problems have a cognitive as well as a technical aspect. We are cognitively inter-
ested in how humans solve these problems (because we are faced with them as well) and we
are technically interested in how we can handle these problems on a computer. As far as
the latter aspect is concerned, we are particularly interested in finding a formalism which
allows us to adequately represent these problems and to adequately compute solutions for
these problems.

We take the position that computation requires representation and reasoning. Following
[McC63], we intend to build a system which meets the following specification:?

e General properties of causality and facts about the possibility and results of actions
are given as formulas.

e It is a logical consequence of the facts of a state and the general axioms that goals
can be achieved by performing certain actions.

In this chapter, conjunctive planning problems are considered. Examples are taken from
the so-called simple blocks world. It is shown how these problems can be represented and
solved within the fluent calculus. It is also demonstrated how the technical aspects of the
frame problem can be dealt within the fluent calculus. In doing so, we will use the fluent
matching algorithm developed in Subsection 7?7 and built it into SLD-resolution.

3.1 Conjunctive Planning Problems

The planning problems considered in this section consist of a multiset
T: {Zl,,Zm}

of ground fluents called the initial state, a multiset

g: {917"'7gn}

of ground fluents called the goal state and a finite set of actions of the form

{e1,...,at = {e1,...,ex},

where {cl, e ,cl} and {61, e ,ek} are multisets of fluents called conditions and effects,
respectively. We further assume that each variable occurring in the effects of an action
occurs also in its conditions, i.e., in at least one of its fluents. A conjunctive planning
problem is the question of whether there exists a sequence of actions such that its execution
transforms the initial state into the goal state.

Let S be a multiset of ground fluents. An action

{cl,...,cl}é{el,...,ek}l

is applicable in S iff there is a substitution 6 such that

3.2. BLOCKS WORLD 43

{c16,...,c0} C 8.

One should observe that if 6 is restricted to the variables occurring in {cl, cee cl} and §
is ground then range(f) contains only ground terms. The application of an action leads
to the state o o _

(8 \ {019, e ,019}> U {619, ey eka}.

As a consequence of the assumption that each variable occurring in the effects of an action
occurs also in the condition of an action, the new state is ground whenever S is ground.

A sequence [aq,...,a,] of actions, also called a plan, transforms state S into &' iff &’
is the result of successively applying the actions in [ay,...,a,] to S.
Finally, a goal G is satisfied iff there is a plan p, i.e., a sequence of actions [aq,...,a,],

which transforms the initial state Z into a state S such that G CS. If there exists such
a plan p, then p is called a solution for the planning problem.

In the next subsection these notions are exemplified in a particular scenario, the so-called
blocks worlds.

3.2 Blocks World

The simple blocks world is a toy domain, where blocks can be moved around with the
help of a robot. Alternatively, you may think of a container terminal, where containers
are loaded from trucks to trains or ships and vice versa. There are four actions:

e The pickup action picks up a block V' from the table if the block is clear, and the
arm of the robot is empty.

pickup(V) : {clear(V), ontable(V), empty} = {holding(V)}

e The unstack action unstacks a block V' from another block W if the former block
is clear and the arm of the robot is empty.

unstack(V,W): {clear(V), on(V, W), empty} = {holding(V'), clear(W)}

e The putdown action puts a block V' held by the robot onto the table.

putdown (V) : {holding(V)} = {clear(V'), ontable(V), empty}

e The stack action stacks a block V' held by the robot on another block W if the
latter block is clear.

stack(V,W): {holding(V'), clear(W)} = {on(V, W), clear(V), empty}

Figure 3.1 shows a simple planning problem known as Sussman’s anomaly [Sus75] with

2In [McC63] it is also required that the formal descriptions of states should correspond as closely as
possible to what people may reasonably be presumed to know about them when deciding what to do.
Although this is probably the most interesting and challenging requirement in the context of common
sense reasoning, we do not consider it at the moment.

applicable action

application of
action

plan

satisfied goal

solution

pickup

unstack

putdown

stack

Sussman’s
anomaly

action

causes

44 CHAPTER 3. ACTIONS AND CAUSALITY

Figure 3.1: A blocks world example: Sussman’s anomaly.

initial state _ '
{ontable(a), ontable(b), on(c, a), clear(b), clear(c), empty}

and goal state ' ‘
{ontable(c), on(b,c), on(a,b), clear(a), empty}.

It can be solved by the plan
[unstack(c, a), putdown(c), pickup(b), stack(b, c), pickup(a), stack(a, b)]. (3.1)

One should observe that the various subgoals of the goal state cannot be achieved in-
dependently and one after the other. The interested reader is encouraged to see what
happens if she first attempts to find the shortest plan establishing on(b,c) (or on(a,b))
and, thereafter, to establish the other subgoal on(a,b) (or on(b,c)).

3.2.1 A Fluent Calculus Implementation

The simple fluent calculus is a first order calculus, where conjunctive planning problems
can be represented and solved [HS90]. States as well as conditions and effects are repre-
sented by fluent terms. Actions are represented using a ternary relation symbol action,
where the arguments encode the conditions, the name, and the effects of the action. For
example, the actions of the simple blocks world are represented by the set of clauses

Ka = {action
action
action
action

clear(V)
clear(V)
holding(
holding(

o ontable(V') o empty, pickup(V'), holding(V)),

o on(V,W) o empty, unstack(V,W), holding(V') o clear(W)),
V), putdown(V'), clear(V') o ontable(V') o empty),

V) o clear(W), stack(V,W), on(V,W) o clear(V') o empty) }.

e N N

With the help of a ternary relation symbol causes, we can express that a state is
transformed into another one by applying sequences of actions.

Ko = {causes(X,[],Y)« X~YoZ,
causes(X, [VIW],Y) < action(P,V,Q) NP o Z ~ X N causes(Z o Q,W,Y),
X~X }.

3.2. BLOCKS WORLD 45

The first clause in K¢ states that there is nothing to do ([]), if the goal state Y is
contained in the current state X. The second clause is read declaratively as

the execution of the plan [V|W] transforms state X into state Y if there
is an action with condition P, name V, effect () and there is a Z with
PoZ ~,401 X and the plan W transforms Zo (@ into Y

or procedurally as

to solve the problem of whether there exists a plan [V|W] such that its exe-
cution transforms the state X into Y, find an action with condition P, name
V', and effect Q, find a Z with Po Z =~4c1 X and solve the problem of
whether there exists a plan W such that its execution transforms the state
Zo(into Y.

The third clause is the axiom of reflexivity needed to solve the equations occurring in the
conditions of the first two clauses.

The question of whether there exists a plan P solving a conjunctive planning problem
with initial state Z, goal state G, and a given set of actions is represented by the question
of whether

(3P) causes(T~!, P,G71)

is a logical consequence of K4 UKcUEac1 UE~, where -~! is the mapping from multisets
to fluent terms and £4¢1 is the equational system for fluent terms, both introduced in
the previous Section 2.4.

Having fixed the alphabet and the language of the fluent calculus, we proceed by intro-
ducing its set of axioms and its set of inference rules. Because the calculus is a negative
calculus, the set of axioms contains the empty clause as single element. The set of in-
ference rules also contains only a single element: SLDE-resolution, i.e., SLD-resolution,
where the equational system is built into the unification computation.

3.2.2 SLDE-Resolution

The inference rule SLDE-resolution can be used to compute the logical consequences of a
set of definite clauses, which can be split into an equational system &£ and a set of definite
clauses K which does not contain the equality symbol in the conclusion of a clause except
within the axiom of reflexivity [GR86, H6189a]. This condition is satisfied for the simple
fluent calculus with € = €401 and K = K4 UK. The axioms & of equality are not
explicitely needed in SLDE-resolution; they are built into the unification computation.
The axiom of reflexivity must be kept, however, if I contains an equation s ~ t in the
body of some clause. This equation can only be resolved against the X ~ X.

Let UPg be an &-unification procedure, C' a new variant H < A A... AN A, of a
clause in I and G the goal clause <+ B1 A...AB,. If H and an atom B;, 1 <i<n,
are £-unifiable with 6 € UP¢(H, B;), then

%(Bl/\.../\Bi_l/\Al/\.../\Am /\Bi-i—l/\”-/\Bn)e

is called SLDE-resolvent of C' and G. The concepts of deduction and refutation can be SLDE-resolvent

46 CHAPTER 3. ACTIONS AND CAUSALITY

defined for SLDE-resolution in the obvious way.

SLDE-resolution is sound if the used &-unification procedure is sound. It is also com-
plete if the used &-unification procedure is complete. Moreover, the selection of the atom
B; in each SLDE-resolution step is don’t care non-deterministic (see e.g. [H6189b]). Ta-
ble 3.1 shows an SLDE-refutation for the planning problem depicted in Figure 3.1. One
should observe that all £-unification problems which have to be solved within this refu-
tation are either fluent matching or fluent unification problems.

3.2.3 Solving Conjunctive Planning Problems

Due to the soundness and completeness of SLDE-resolution we find that a conjunctive
planning problem with initial state Z, goal state G, and given set of actions has a solution
P iff there exists an SLDE-refutation of

(3P) causes(T~1, P,G~1)

with respect to the equational system £aci and the logic program K4 U K¢, where -—1

is the mapping from multisets to fluent terms introduced in the previous Section 2.4. In
particular, Figure 3.2 shows the solution to Sussman’s anomaly corresponding to the steps
taken in Table 3.1.

3.2.4 Solving the Frame Problem

The technical frame problem is elegantly solved within the fluent calculus by mapping
it onto the fluent matching and fluent unification problem. Returning to the refutation
shown in Table 3.1 we observe that in the deduction from (3) to (4) the variable Z; is
bound to ontable(a)oontable(b)oclear(b). This fluent term contains precisely those fluents
which are unchanged by the action unstack(c,a) applied in the initial state of Sussman’s
anomaly. More precisely, let

s = ontable(a) o ontable(b) o on(c,a) o clear(b) o clear(c) o empty

and
t = clear(c) o on(c,a) o empty,

then
0 = {Z, — ontable(a) o ontable(b) o clear(b)}

is a most general £-matcher for the £-matching problem
5A01 ': (ElZl) s~to Zl-
Consequently, unstack(c,a) can be applied to s yielding

s1 = ontable(a) o ontable(b) o clear(b) o clear(a) o holding(c).

This solution to the frame problem is ultimately linked to the fact that the fluents are
represented as resources, i.e., that o is a symbol which is associative, commutative, admits
the unit element 1, but is not idempotent. One could be tempted to model situations

3.2. BLOCKS WORLD 47

(1) « causes(ontable(a) o ontable(b) o on(c,a) o clear(b) o clear(c) o empty,
w,
ontable(c) o on(b,) o on(a,b) o clear(a) o empty).

(2) <« action(P,V1,Q1) A
Py o Z) = ontable(a) o ontable(b) o on(c,a) o clear(b) o clear(c) o empty N
causes(Zy o Q1, W1, ontable(c) o on(b, ¢) o on(a,b) o clear(a) o empty).

(3) < clear(v2) o on(va, wa) o empty o Z; ~
ontable(a) o ontable(b) o on(c,a) o clear(b) o clear(c) o empty A
causes(Zy o holding(Va) o clear(Ws),
Wl7

ontable(c) o on(b, c) o on(a,b) o clear(a) o empty).

(4) < causes(ontable(a) o ontable(b) o clear(b) o clear(a) o holding(c),
Wl7
ontable(c) o on(b,) o on(a,b) o clear(a)empty).

(7) < causes(ontable(a) o ontable(b) o clear(b) o clear(a) o clear(c)o
ontable(c) o empty,
W47
ontable(c) o on(b, c) o on(a,b) o clear(a) o empty).

(10) <« causes(ontable(a) o clear(c) o ontable(c) o clear(a) o holding(b),
W77
ontable(c) o on(b, c) o on(a,b) o clear(a) o empty).

(13) « causes(ontable(a) o ontable(c) o clear(a) o on(b, c) o clear(b) o empty,
Wio,
ontable(c) o on(b,) o on(a,b) o clear(a) o empty).

(16) < causes(ontable(c) o on(b,c) o clear(b) o holding(a),
Wis,
ontable(c) o on(b,c) o on(a,b) o clear(a) o empty).

(19) < causes(ontable(c) o on(b,c) o clear(a) o on(a,b) o empty,
W167
ontable(c) o on(b, c) o on(a,b) o clear(a) o empty).

(20) []

Table 3.1: Solving Sussman’s anomaly by SLDE-resolution. Atoms with predicate symbol action are
given first priority in the selection process. Atoms with the equality symbol are selected next. (2) is
the SLDE-resolvent of (1) and the second rule for causes. (3) is the SLDE-resolent of (2) and the fact
representing the action wunstack . (4) is the SLDE-resolvent of (3) and the axiom of reflexivity. Following
the fourth goal clause only every third goal clause is shown. The selected actions are in this sequence:
putdown, pickup, stack, pickup, stack. One should observe that the variable W is bound to the list
(3.1) by this refutation.

48 CHAPTER 3. ACTIONS AND CAUSALITY

unstack(c, a) putdown(c
pickup(b

stack(a pickup(

(10)

stack(b, c)

Figure 3.2: The execution of plan (3.1) to solve Sussman’s anomaly. The numbers under the table indicate
the correspondence between the situation shown in the circle and the respective step in the SLDE-resolution
proof shown in Table 3.1.

3.2. BLOCKS WORLD 49

as sets of fluents. In other words, one would not only require that o is associative,
commutative, and admits the unit element 1, but is also idempotent, i.e. satisfies the law

XoX~X. (3.2)
Let Eacr1 = Eac1 U {(3.2)}. But now the £-matching problem
Eacnn E (3Z1)s~toZy
has not only 6 as a solution but
n = {Z1 — ontable(a) o ontable(b) o clear(b) o empty}

is a solution as well. Moreover, # and 7 are incomparable with respect to E4cr1. In
this case the binding generated for Z; does not only represent those fluents which remain
unchanged. Computing the successor state in this case yields

s9 = ontable(a) o ontable(b) o clear(b) o clear(a) o holding(c) o empty

which is not the intended result as the arm of a robot cannot be holding a block and be
empty at the same time.

3.2.5 Remarks

The technical frame problem has received much attention in the literature (see e.g. [Hay73,
Bro87, Rei91]). Some people even believed that it cannot be solved within first order logic
(see e.g. [HMS86]). The solution presented in this chapter is discussed in detail in [H6192]

In this section a forward planner was presented, i.e. a procedure which applies actions to
the initial state until the goal state is reached. Equally well a backward planner could have
been presented, i.e. a procedure which is applied to the goal state and reasons backwards
until the initial state is obtained.

In the examples presented so far the initial state was always completely specified. This
need not to be the case. For example, we could be interested in the question of what else
is needed besides a block b lying on the table in order to build a tower as in the goal state
of Sussman’s anomaly, i.e. we would like to know whether

(3X, P,Y) causes(ontable(b) o Y, P, ontable(c) o on(b,c) o on(a,b) o clear(a) o empty o X)

is a logical consequence of F4 U Fo U E4¢1. This problem can also be solved by using
SLDE-resolution.

Actions may have indeterminate effects. For example, if we flip a coin then we do
not know in advance the outcome of this action. The coin may be either heads or tails.
This can be expressed with the help of an additional binary function symbol | which is
associative, commutative, and admits a unit element 0. Depending on the domain | may
be idempotent as well. Additionally some distributivity laws involving | and o have to
be satisfied in such cases.

Common sense reasoning tells us that a robot arm cannot hold an object and be empty
at the same instant. However, this information is not available to a computer unless we

idempotent

Eacn

20 CHAPTER 3. ACTIONS AND CAUSALITY

explicitly state that it is a contradiction. In the fluent calculus, consistency constraints
concerning fluent terms can be formulated and added to the clauses as conditions [HS90].

The simple fluent calculus presented in this chapter is equivalent to the multiplicative
fragment of linear logic and to the linear connection method [GHS96]. It has been extended
in many ways including solutions to the ramification and the qualification problem (see
e.g. []), for hierarchical planning problems, for parallel planning problems, or planning
problems involving specificity.

There are versions of the fluent calculus, where constraints on fluent terms allow fluents
to appear at most once in a fluent. In this case, the fluent calculus becomes quite similar to
modern versions of the situation calculus, which has led to a unified calculus for reasoning
about actions and causality. However, in doing so the relation to linear logic and the linear
connection method is lost.

Chapter 4

Deduction, Abduction, and
Induction

Until now we were concerned with the logical consequences of a set of formulas. More
formally, we were investigating a relation = between a set K of formulas and a single
formula F, i.e.

KEF

So far, I was given and F was either unknown or given. In the former case we were
asking for the logical consequences of X whereas in the latter case we were testing whether
the given formula F was indeed a logical consequence of K. The process of computing
or testing the logical consequences of a given set of formulas within a calculus is called
deduction. However, there are problems which cannot be solved by deduction.

Consider the case where the knowledge base K of a mobile robot consists of the following
rules:

e If the grass is wet then the wheels are wet (g — w).

e If the sprinkler is running then the grass is wet (s — ¢).

e If it is raining then the grass is wet (7 — g).
Furthermore, assume that the robot observes that its wheels are wet (w). Being curious
it would like to know whether this observation follows from what it already knows about

the world. However, K [~ w. Being unsatisfied with this finding the robot would like to
explain the observed fact. What shall it do?

If the robot is rational' then it is aware of the fact that it does not know everything.
In other words, it is aware that its knowledge base is incomplete. One attempt to explain
the observed fact w is to look for a fact p such that

Kuip} Ew

and KU {p} is consistent. There are several possibilities in the example scenario:

1. If p = w, then this is really no new information.

! For a discussion of rational agents see [RN95].

51

deduction

abduction
abducible

deduction

abduction

induction

52 CHAPTER 4. DEDUCTION, ABDUCTION, AND INDUCTION

2. If p = g, then the robot knows that the grass is wet, but it does not know the reason
for the grass being wet.

3. If p=s or p=r then the robot can deduce that the grass is wet.

In any case we say that p has been abduced and the process of finding such an abduced
fact is called abduction. In practical applications the number of atoms that may be ab-
duced, i.e. the so-called abducibles, is restricted. In our example, the number of abducibles
may be the set {s,r}, in which case only the third possibility arises.

The notion of abduction was introduced by the philosopher Peirce (see [HW32]), who
identified three forms of reasoning;:

e Deduction, an analytic process based on the application of general rules to particular
cases, with the inference as a result.

e Abduction, synthetic reasoning which infers a case (or a fact) from the rules and the
result.

e Induction, synthetic reasoning which infers a rule from the case and the result.

4.1 Deduction

So far, all reasoning processes considered in this book have all been deductions. Hence,
there is not much to say at this point except for the following. In the previous chapters
we have assumed that the logic is unsorted. Equivalently, all variables had only one sort,
viz. terms. Likewise, function symbols were mappings from (the n-fold cross-product of)
the set of terms into the set of terms and relation symbols were subsets of (the n-fold
cross-product of) the set of terms. As shown in the following subsection, sorts can easily
be introduced and do not raise the expressive power of a first-order language.

4.1.1 Sorts

In common sense reasoning, computer science, and many applications sorts play an im-
portant role. A statement like

every doggy is an animal
sounds natural, whereas a statement like
every object in the domain that is a doggy is also an animal

sounds somewhat awkward. Already in 1885 the philosopher Pierce has suggested to
annotate quantified variables with so-called sorts denoting sets of objects.

As another and more formal example suppose we are computing with natural numbers
and want to express that addition is commutative. This can be directly specified in first
order logic by the formula

(VX,Y) (number(X) A number(Y) — plus(X,Y) = plus(Y, X)), (4.1)

4.1. DEDUCTION 53

where number is a unary predicate denoting natural numbers and plus is a binary pred-
icate denoting addition. For the moment we are not concerned in how number and plus
are defined; this will be discussed in detail in Section ??. A closer look at formula (4.1)
leads to several observations:

e The formalization itself looks lengthy and clumsy.
e The sort information concerning natural numbers is encoded in a unary predicate.

e The unary predicate restricts the possible bindings for the variables X and Y.

The drawback of the first observation can be removed by writing
(VX,Y : number) plus(X,Y) = plus(Y, X), (4.2)

where X,Y : number specifies that the variables X and Y are of sort number. As will
be shown in this subsection sort information can be expressed in terms of unary predicates
and a formula like (4.2) may be seen as a short hand notation for formula (4.1). Moreover,
building the unary predicates denoting sort information into the deductive machinery may
result in more efficient computations.

Formally, a first order language with sorts is a first order language together with a
function
sort : YV — 27,

where Rg C R is a finite set of unary (or monadic) predicate symbols called base sorts.
A sort s is a set of base sorts, i.e., s € 2Rs. () € 2Rs is called top sort. Usually, variables
are annotated by their sort and we write

X :s

if sort(X) = s. Finally, we assume that for every sort s there are countably many
variables X :s. According to these definitions, formula (4.2) is a well-formed formula of
a first order logic with sort number.

To assign a meaning to sorted formulas we extend the notion of an interpretation I to
sorts. Let D be the domain of I. I maps each sort

s = {pla”'vpn}

to
sI:Dﬂp{ﬂ...ﬁpﬁ,

where pJI- C D is the interpretation of p; wrt I, 1 < j <n. A variable assignment Z is
said to be sorted iff for all variables X : s we find that

X% el

There is a subtlety involved with this definition. Because sorts may denote empty sets,
a sorted variable assignment is only a partial mapping and it is not clear at all what is
meant by an application of a sorted variable assignment to a term which contains the
occurrence of a variable with empty sort. To avoid this problem we assume in the sequel
that sorts are non-empty. Under these conditions sorted variable assignments are total
and the application of a sorted variable assignment to a term is defined as usual.

Rs

sort
top sort

sorted variable
asstgnment

relativization
function

54 CHAPTER 4. DEDUCTION, ABDUCTION, AND INDUCTION

Now let I be an interpretation and Z a sorted variable assignment with respect to I.
The meaning of a formula F in a sorted language under I and Z, in symbols FZ is
defined inductively as follows:

[p(ty, - t)]"? it (1%, %) el
[rhz iff FLZ =1
[Fy A P12 iff F'%=Tand FZ=T.
[FL Vv Fy)l2 ifft FlZ=Tor FP?=T.
[F — Fy)2 iff F/Z=1orFp?=T.
[F| & FBy)h2 iff [F1 —]2 = T and [Fy — Fy]2 =T.
[(3X :s) F]1Z iff there exists d € s’ such that FLIX=dt2 = T
(VX :s) F]I-2 iff for all d € s' we find FIAX=d2 =T,

One should observe that each interpretation I maps the top sort to its domain D.
Hence, variables with top sort are interpreted as standard variables. In this sense the first
order language with sorts seems to be a generalization of the standard first order language.
However, each valid formula in a sorted first order language can be transformed to a valid
formula in an unsorted first order language and vice versa with the help of a so-called
relativization function rel.

rl(pts, o ta) = Pt t)
rel(ﬂF) = —rel(F)
rel(Fy A Fy) = rel(Fy) A rel(Fy)
rel(Fy V Fy) = rel(Fy) V rel(Fy)
rel(F1 — Fy) = rel(Fy) — rel(Fs)
rel(F <> Fy) = rel(Fy) < rel(Fs)
rel(VX :s)F) = (YY) (p1i(Y)AN...App(Y) = rel(F{X — Y}))
if sort(X) =s={p1,...,pn} and Y is a new variable
rel(3X :5)F) = 3Y)m(Y)AN...Apu(Y)Arel(F{X — Y}))

if sort(X) =s={p1,...,pn} and Y is a new variable

Thus, the expressive power of sorted and unsorted first order languages is identical. How-
ever, in a calculus, where the sort information has been built into the deductive machinery,
computations may be considerable faster (see [Wei96]).

So far, we have shown how variables can be sorted by means of a function sort. In
the sequel it will be shown that sorting of variables suffices to sort function and relation
symbols in the presence of the axioms of equality.

The underlying idea is quite simple and will be illustrated by two examples. Suppose
the knowledge base X contains the axioms of equality. Furthermore, suppose that I
contains the fact

7tn)7

,tn are terms. Then this fact can be equivalently replaced by

p(tl, e

where tq,...

(VXl...Xn)(p(Xl,...,Xn)%Xl%tl/\.../\Xn’fb’tn)

using the axiom of substitutivity, where Xi,...,X, are new variables. Likewise, if K

contains the atom
stn) s

Alf(t,. ..

4.2. ABDUCTION 55

then this atom can be equivalently replaced by
(VX1 . X0) (Al f(t1, . tn) f(X, X))« Xim i A AKX, & t).

Using a straightforward generalization of these two replacement techniques each formula
F can be transformed into an equivalent formula F’, in which

e all arguments of function and relation symbols different from ~ are variables and

e all equations are of the form t; ~ ¢ or f(Xi,...,X,)~t, where Xi,...,X,, are
variables and t, ¢1, and 9 are variables or constants.

Sorting the variables occurring in F’ effectively sorts the function and relation symbols.

A formula like the abovementioned F’ is usually quite lengthy and cumbersome to read
if compared to the original formula F'. To ease the notation we will stay with F' but add
so-called sort declarations to sort variables, function and relation symbols. If sort(X) = s
then the sort declaration for the variable X is

X:s

as before. Let s;, 1 <7 < mn, and s be sorts, f an n-ary function and p an n-ary
relation symbol. Then
fis1X...X8, —>s

and
P8y X ... X Sy

are sort declarations for f and p, respectively.

4.2 Abduction

In many real situations observations are made that cannot immediately be explained. For
example, if the car is not starting in the morning after the driver has turned the key then
this observation cannot be explained with respect to the normal behavior of a car. A car
should be built such that the engine is supposed to start as soon as the key is turned.
However, if the engine is not running then this surprising behavior needs to be explained.
For example, the driver checks the battery. If he finds that the battery is empty then this
new fact may explain the observation that the car is not running.

Abduction consists of computing explanations for observations. It has many applica-
tions. The introductory example is taken from fault diagnosis. A specification describes a
normal behavior of a system and abduction has to identify parts of the system which are
not normal to explain a fault. In medical diagnosis, for example, the symptoms are the
observations which have to be explained. In high level vision the camera yields a partial
descriptions of objects in a scene and abduction is used to identify the objects. Sentences
in natural language are often ambiguous and abductive explanations correspond to the
various interpretations of such sentences. Planning problems can be viewed as abductive
problems as well. The generated plan is the explanation for reaching the goal state. In
knowledge assimilation the assimilation of a new datum can be performed by adding to
the knowledge base an abduced fact that explaines the observed new datum.

sort declarations

explanation

abducibles

basic explanation

minimal
explanation

56 CHAPTER 4. DEDUCTION, ABDUCTION, AND INDUCTION

4.2.1 Abduction in Logic

Given a set of formulas K and a formula G, abduction consists — to a first approximation
— of finding a set of atoms F’, called explanation such that

e KUK'EG and

o KUK’ is satisfiable.

The elements of K’ are said to be abduced.

One should note that abducing only sets of atoms is no real restriction as atoms can be
used to name formulas. For example, suppose we want to abduce the formula

(VX) (bird(X) = fly(X))

then we may name this formula by means of an atom birdsFly(X), add to K the clause
(VX (birdsFly(X) — (bird(X) — fly(X)))

and abduce birdsFly(X) instead.

However, the characterization of abduction given so far is too weak. First of all, we need
to distinguish abduction from induction. Moreover, as shown in the introductory example
of this chapter, it allows us to explain the observation that the grass is wet by the fact
that the grass is wet. We need to restrict K’ such that it conveys some reason why the
observation holds. We do not want to explain one effect in terms of another effect, but only
in terms of some cause. For both reasons, explanations are often restricted to belong to a
special class of pre-specified and domain-dependent atoms called abducibles. We assume
that such a set is given. For example, if K is a logic program, then the set of abducibles
is typically the set of predicates for which there is no definition in K, where r is defined
in K iff I contains a definite clause with r being the relation symbol occurring in the
head of the clause (i.e. the only positive literal occurring in the clause).

There may be additional criteria for restricting the number of possible candidates for
explanations.

e An explanation should be basic in the sense that it cannot be explained by another
explanation. Returning to the example shown in the beginning of this chapter,
the explanation g (grass is wet) for the observation w (wheels are wet) is not basic
because it can be explained by either s (sprinkler was running) or r (it was raining).
On the other hand, both s and r are basic explanations.

e An explanation should be minimal in that it cannot be subsumed by another expla-
nation. For example, let
F={p<q¢ pcaqnr}

and
G=np.

Then the explanation
{a.7}

is not minimal because it is subsumed by the explanation

{a}-

4.2. ABDUCTION o7

e Additional information can help to discriminate among different explanations. For
example, an explanation may be rejected if some of its logical consequences are not
observed. Let us return to the introductory example of this chapter. It is raining
(7r) and the sprinkler is running (s) are possible explanations for the observation
that the wheels are wet (w). Suppose the knowledge base contains an additional
clause stating that if it is raining, then there are clouds (¢).

r—c.
Now, if no clouds are observed, then the explanation r should be rejected.

e Domain-dependent preference criteria may be applied to (partially) order the set of
possible explanations. Again, in the introductory example of this chapter we could
choose to prefer explanations which we are able to change. Therefore, because we
cannot change the fact that it is raining (7), but we can change the fact that the
sprinkler is running (s), the explanation s would be preferred.

e So-called integrity constraints can be defined which have to be satisfied by the ex-
planations.

The concept of integrity constraints first arose in the field of databases. An integrity
constraint is simply a formula. The basic idea is that states of a database are only
acceptable iff the integrity constraints are satisfied in these states. This can be directly
applied to abduction in that explanations are only acceptable iff the integrity constraints
are satisfied.

Formally, an abductive framework (IC,Ka,Kic) consists of a set K of formulas, a set
K4 of ground atoms called abducibles and a set of integrity constraints Kjo. Given an
observation G, G is explained by K’ iff

o K'C Ky,
e CUK'=G and

e KUK’ satisfies Kjc.

There are several ways to define what it means that UK’ satisfies Kjc . The satis-
fiability view requires that

K UK satisfies Kic iff KUK UKjc are satisfiable.
The stronger theoremhood view requires that

KUK’ satisfies Kio iff KUK = Kje.

In the next two sections, several applications of abduction in knowledge assimilation
and theory revision are discussed. Thereafter, abduction is related to model generation,
thereby showing how abducibles can be effectively computed.

integrity
constraints

abductive

framework

satisfiability view

theoremhood view

belief revision

58 CHAPTER 4. DEDUCTION, ABDUCTION, AND INDUCTION

4.2.2 Knowledge Assimilation

Knowledge assimilation is the process of assimilating new knowledge into a given knowl-
edge base. Rather than presenting an overview of knowledge assimilation we will show
how abduction can be used to assimilate knowledge by an example.

Let the knowledge base be defined as the following logic program, where we assume that
all clauses are universally closed.

K = {sibling(X,Y) < parents(Z, X) A parents(Z,Y),
parents(X,Y) < father(X,Y),
parents(X,Y) < mother(X,Y),
father(john,mary),
mother(jane, mary)}.

Viewed as a database, the predicates father and mother are extensionally defined, wheras
the predicates sibling and parents are intensionally defined. Let the set of integrity
constraints be defined as

Kic = {X =Y « father(X, Z) A father(Y, Z),
X =Y < mother(X,Z) N mother(Y, Z)},

where = is a ‘built-in’ binary relation symbol written infix. As usual the formulas in K¢
are assumed to be universally closed. In addition we assume that the axiom of reflexivity
(X =~ X) holds and that s % t holds for all distinct ground terms s and ¢. In other
words, the integrity constraints state that an individual can only have one mother and
one father. Furhermore, let the set of abducibles be

K4 ={A| Ais a ground instance of father(john,Y’) or mother(jane,Y)}.

Suppose that we have to assimilate the observation that mary and bob are siblings,
i.e.
sibling(mary, bob).

There are two minimal explanations, viz.
{father(john,bob)}
and
{mother(jane,bob)}.
Both explanations satisfy the integrity constraints with respect to the satisfiability view.
However, if we additionally observe that

mother(joan, bob)

holds, then only the first explanation satisfies the integrity constraints.

The example also demonstrates that newly assimilated knowledge may lead to a revision
of earlier assimilated knowledge. This is a non-monotonic form of reasoning also called
belief revision and will be studied in Chapter 5. The following subsection contains another
example of this kind.

4.2. ABDUCTION 59

4.2.3 Theory Revision

In all real world situations we do not know everything. Rather we have to base our
decisions on so-called rules of thumb which allow us to jump to conclusions if the world
is normal. A typical example is the way we handle the flight schedule of an airline. If we
look at the booklet containing the flight schedule of Lufthansa then we may find that there
are flights from Dresden to Frankfurt at 6:30am, 11:30am, 2:30pm, 5:30pm and 9:30pm
each day. Given this information almost everybody is willing to accept the conclusion that
there is no flight from Dresden to Frankfurt at 8:00am. However, if we observe that there
is as a matter of fact a flight at 8:00am from Dresden to Frankfurt, then we have to revise
our theory.

In this section, a formalization of this kind of theory revision within an abductive frame-
work is given. Again, the method will only be exemplified, this time by another famous
example used quite frequently in the area of knowledge representation and reasoning. For
a formal account of theory revision the reader is referred to [Poo88].

Let the knowledge base be the following universally closed set of formulas:
K = {penguin(X) — bird(X),
birdsFly(X) — (bird(X) — fly(X)),
penguin(X) — —fly(X),
penguin(tweedy),
bird(john)}.

Let the set of integrity constraints be empty and let the set of abducibles be
K4 ={A| Ais a ground instance of birdsFly(X)}.

If we observe
fiy(john)

then this can be explained by the minimal set
{birdsFly(john)}.

On the other hand,
fly(tweedy)

cannot be explained at all, because the set
KC U { birdsFly(tweedy) }

is unsatisfiable. Similarly, if we additionally learn that john is a penguin, i.e. if we add
the fact penguin(john) to KC, then fly(john) cannot be explained and we have to revise
our theory.

In this line of reasoning birdsFly(X) can be seen as a kind of so-called default and
fly(john) is explained by default reasoning. We are willing to accept such a default if it
does not contradict with any other information that we have gained so far.

Default reasoning is another important method within the area of knowledge represen-
tation and reasoning and will be studied in Chapter 5.

default reasoning

60 CHAPTER 4. DEDUCTION, ABDUCTION, AND INDUCTION

4.2.4 Abduction and Model Generation

As pointed out in [Kow91] there is a strong link between deduction and abduction. In
fact, explanations for abductive problems can be computed by deduction. Consider the
following knowledge base

K = {wobblyWheel <+ brokenSpokes \ flatTyre,
flatTyre <> puncturedTube \V leaky Valve}

which can be split into an if-part

Ko = {wobblyWheel < brokenSpokes,
wobbly Wheel + flatTyre,
flatTyre < puncturedTube,
flatTyre < leaky Valve}

and an only-if-part

K-, = {wobblyWheel — brokenSpokes \V flatTyre,
flatTyre — punctured Tube V leaky Valve}.

Let Krc be the empty set and
K4 = {brokenSpokes, puncturedTube, leakyValve}

be the set of abducibles.

One should note that K. is a logic program and, hence, SLD-resolution can be used
to derive answers for questions posed to K. . Furthermore, all abducibles are not defined
within IC._. This ensures that all abductions wrt the abductive framework (K., K4, 7o)
will be basic.

Now consider the case that the observation wobblyWheel has been made and consider
the abductive framework (IC, K4, Krc). There are three minimal and basic explanation,
Viz.

{brokenSpokes},
{puncturedTube},
{leaky Valve}.

These explanations can be obtained in two different ways, one using SLD-resolution and
the other one using model generation.

e Turning to the first method, consider the abductive framework (K. ,K4,Kc). As
soon as an observation like wobbly Wheel has been made, the obvious way to proceed
is to try to show whether the observation is already a logical consequence of the
knowledge base. In case of logic programs like X, this is the case if an SLD-
refutation of the query

< wobbly Wheel

wrt to K. can be found. Figure 4.1 shows the complete search space generated by
SLD-resolution for this query. The search space is finite. At each branch there is a
failing goal. The negation of each goal is a possible explanation of the observation
wobblyWheel wrt (K., K4,0).

4.2. ABDUCTION 61

+— wobbly Wheel

/\

< brokenSpokes < flatTyre

PN

— puncturedTube <« leakyValve

Figure 4.1: The search space generated by SLD-resolution for K. U {« wobbly Wheel}.

e Turning to the second method and having observed wobblyWheel, we may add
wobbly Wheel to our knowledge base, which in this case is K_,. The minimal models
of the extended knowledge base are

{wobblyWheel, flatTyre, puncturedTube},
{wobblyWheel, flatTyre, leakyValve}

and

{wobblyWheel, brokenSpokes}.

Restricting these models to the abducible predicates we obtain precisely the three
explanations as in the first method.

In fact this duality between abduction and model generation can be exploited even in the
case of non-propositional abducibles as shown in [CDT91].

4.2.5 Remarks

In the article [KKT93] an ehm.xcellent overview of abductive logic programming is given.
It is shown that there is a close relation between various non-monotonic reasoning tech-
niques used within knowledge representation and reasoning (see Chapter 5).

Abduction does not only apply to toy examples. In the autumn of 1997 Mercedes Benz
experienced heavy losses when it was demonstrated by example that

{babyBenz} = elchTest,

where the atom babyBenz denotes the specification of a car nicknamed Baby-Benz —
todays A class) — and the atom elchTest denotes the specification of a certain driving
maneuver, viz. driving around an elch which unexpectedly steps on the road. In these
tests, the car overturned. After a lengthy abductive process Meredes-Benz demonstrated
that after adding an electronic stability program ESP to the car, the Baby-Benz passed
the driving maneuver, i.e.

{babyBenz, esp} = elchTest.

induction

Peanos induction
principle

62 CHAPTER 4. DEDUCTION, ABDUCTION, AND INDUCTION

4.3 Induction

As an introductory example for inductive reasoning consider the sorted equational system

Kps = {(VY : number) plus(0,Y) = Y,
(VX,Y : number) plus(s(X),Y) ~ s(plus(X,Y))}

which can be used to define addition (plus) on the natural numbers. Informally, each
natural number is represented by either the constant 0 or by an application of the unary
function symbol s (representing the successor function) to the representation of another
natural number; a precise specification will be given in Section ?7?. Given K5 we would
like to prove some properties of addition like the commutativity of plus, i.e.

(VX,Y : number) plus(X,Y) =~ plus(Y, X).

Is this law a logical consequence of Ky 7 Unfortunately, it is not. This can be seen if
we consider the following interpretation: Let

D=NU{O}

be the domain consisting of the natural numbers N = {0, f(0), f(f(0)),...} extended by
the additional object <. Let the interpretation I be such that

1 ‘ 0 s plus,

0 f ®,
where 10) DN
0 if d =9,
fld) = {d+f(0) if d e N,

0 ifd=e= <3,

& ifd=0and e= 3,
dde = d if d € NT and e = <,

e ifd=< and e € N,

d+e ifd,eeN,

+:N — N is the usual addition on N, and N* = N\ {0}. It is easy to verify that

I): ’Cplus'
However,
I~ (VX,Y : number) plus(X,Y) = plus(Y, X)
because
SD0=0£0=0D.

Almost every student knows that addition is commutative from a freshman mathematics
course. The student probably also still remembers how this can be formally proved: It
can be shown by induction on either the first or the second argument of the definition of
addition. The induction principle applied in this case is Peanos induction principle

(P(0) A (VM : number) (P(M) — P(s(M)))) — (VM : number) P(M). (4.3)

In other words, if a certain property P holds for 0 (the so-called base case) and we find
that for all natural numbers M the property P holds for s(M) given that it holds for

4.3. INDUCTION 63

M (the so-called step case), then we may conclude that P for all natural numbers M.

In our example, it is applied to the so-called induction variable X with induction
variable

P(X) = (VY : number) plus(X,Y) =~ plus(Y, X). (4.4)

To prove the induction base, Peanos induction principle has to be applied recursively (see
Table 4.1).

Thus, if we add to the knowledge base K5 the two instances K; of the induction
principle (4.3) obtained by choosing P as in (4.4) and in (4.7), then we are able to show
that addition is commutative, i.e.

Kps UK = (VX,Y : number) plus(X,Y) =~ plus(Y, X).

To summarize, K, admits some interpretations which are non-standard in the sense non-standard
that the domains and the functions over these domains do not correspond to the set of interpretation
natural numbers and the functions usually defined on this set, respectively. By adding
appropriate induction axioms to K, these non-standard interpretations are excluded.

This process will be analyzed in more detail in this section.

Mathematical induction is an essential proof technique used to verify statements about
recursively defined objects like natural numbers, lists, trees, stacks, logic formulas etc. As
another example consider propositional logic formulas. The use of structural induction
to prove properties of such formulas is sanctioned by a corresponding induction theorem.
Similar theorems can be proven for other recursively defined objects. Because recursively
defined data structures appear almost everywhere, induction plays a central role in the
fields of mathematics, algebra, logic, computer science, formal language theory, to mention
just a few.

The example presented in the introduction of this section already illustrates the main
questions that have to be answered if a property shall be proved by induction:

1. First of all, should induction be really used to prove a statement? There are other
proof techniques like proof by contradiction or contraposition or by resolution, which
are often simpler than induction. Very often only experience can tell which proof
technique should be used.

2. Should the statement be generalized before an attempt is made to prove it by induc-
tion? Sometimes it is simply easier to prove a more general statement or property.

3. Which variable is to be the induction variable? This decision is often combined with
the following two questions.

4. What induction principle is to be used?
5. What is the property used within the induction principle?

6. Should nested induction be taken into account? If we prove the base case and the
induction step then the very same questions may again have to be answered.

In this section I will show how properties of recursively defined programs are verified by
induction. Such programs are typically defined as functions operating on top of recursive
data structures. Therefore, we start out to have a closer look at these structures.

64

To show that

(VY : number) plus(0,Y) ~ plus(Y,0) (4.5)

holds, we observe that the first equation of Kp;s can be applied to reduce the
left-hand-side of (4.5) and we obtain the reduced problem of showing that

(VY : number)Y = plus(Y,0)
holds. By the law of symmetry this is equivalent to showing that
(VY : number) plus(Y,0) = Y (4.6)
holds. The proof of (4.6) is by induction on Y with
P(Y) = plus(Y,0) = Y. (4.7)
In the base case P(0) we find that
plus(0,0) — 0
using again the first equation in /Cpp,s with matching substitution {Y +— 0}. Hence,
P(0) (4.8)
holds trivially. Turning to the induction step we assume that P(n) holds, i.e.
plus(n,0) ~ n, (4.9)

where n is is the representation of an arbitrary but fixed natural number. Now
consider the case P(s(n)): Here we find that

plus(s(n),0) — s(plus(n,0)) — s(n) (4.10)

using the second equation occurring in K,ps with matching substitution {X
n, Y +— 0} in the first rewriting step and the induction hypothesis (4.9) in the
second rewriting step. Thus, we conclude that

plus(s(n),0) ~ s(plus(n,0)) = s(n).

This shows that
(VX : number) (P(X) — P(s(X))) (4.11)

holds. Finally, applying modus ponens to the induction principle (4.3) using (4.8)
and (4.11) yields the desired result.

Table 4.1: A mathematical proof by induction of (VY : number) plus(0,Y") = plus(Y,0).

CHAPTER 4. DEDUCTION, ABDUCTION, AND INDUCTION

4.3. INDUCTION 65

4.3.1 Data Structures

The functions used within a program are usually defined over some data structure. As

already mentioned, commonly used data structures are natural numbers, lists, trees or logic

formulas. Because we intend to model these data structures within a logical language, we

have to designate certain terms to denote the elements of the data structures. Given

an alphabet A, let Ac C Ap be a set of function symbols called constructors and constructor
Ap C Ap be the set of defined function symbols, where we assume that Ac N Ap = (0 defined function
and Ac UAp = Ar. Let T(A) denote the set of terms that can be built from the symbols

symbols occurring in A. The set T'(A¢) is the set of constructor ground terms. constructor

dt
As examples consider the following three data structures: groune term

e The data structure number can be defined by the nullary constructors number
0 : number
and the unary constructor
s : number — number.

Informally, 0 represents the natural number () and s/1 represents the successor
function on natural numbers.

T({0,s}) = {0, 5(0), s(s(0)), ...}
is a set of constructor ground terms which is called the sort number.
e Similarly, the data structure bool can be defined by the two nullary constructors bool
() : bool

and

[]: bool.
The sort bool is

THO, 1) =10, -

e The data structure list(number) (list of natural numbers) can be defined by the list(number)
nullary constructor
[]: list(number)

and the binary constructor
it number x list(number) — list(number).?
The sort list(number) is

{[1, [0, [0,0], [s(0)], ...},

where [by, by, ..., by] is an abbreviation for by : (bg... (b, : [])...).

2 The symbol : is overloaded. Its first occurrence denotes a function symbol : /2, for which a sort
declaration is given. Its second occurrence separates the function symbol from its sort declaration.
Likewise, [] is used to denote the empty list in this item, whereas it was an element of bool in the
previous item. Its intended denotion should always be obvious from the context.

well-sortedness

selector

66 CHAPTER 4. DEDUCTION, ABDUCTION, AND INDUCTION

It is enlightening to specify the data structure of propositional logic formulas and a
function f from this set to number which counts the number of symbols occurring in a
propositional logic formula.

As discussed in Subsection 4.1.1, sort information can be added to a logic without
changing its expressive power. In this section I assume that all variables and function
symbols are sorted. For example, the sort declaration

X : number
represents a variable of sort number and the sort declaration
p : number — number

represents a unary function from number to number, which will later be used to denote
the predecessor function on number. As shown in Sections 7?7 and 7?7 sort information
can be expressed with the help of unary predicate symbols so that whenever a clause
C' contains a term t of sort ¢ then the literal —¢(t) is added to C' as an additional
constraint. These constraints can be used to decide whether a term is well-sorted, where
well-sortedness is defined as follows: A term t is said to be well-sorted wrt to a set of sort
declarations & iff

e ¢ is a constant or a variable of some sort or

e ¢t isof the form f(¢1,...,t,), S contains a sort declaration f : sort; X...x sort, —
sort and for all 1 <i <n we find that ¢; is of sort sort;. In this case ft1,...,ty)
is of sort sort.

For example, the term
[0, 5(0), s(s(0))]

is well-sorted with respect to the sorts list(number) and number, whereas the term

s([])

is not well-sorted. One should also observe that the sort list(number) just contains all
well-sorted lists of natural numbers. In this section I will always assume that terms are
well-sorted.

Returning to data structures we are now in the position to define structures like number
or list(number) but we are not yet able to access the elements of a data structure. There-
fore, we additionally assume that for each constructor ¢/n, n > 0, there are n defined
function symbols s;/1 called selectors, which applied to ¢(t1,...,t,) yield t;. For exam-
ple, the predecessor function p/1 is the selector for the only argument of s/1 in the sort
number, i.e. p/1 is defined by the equation

p(s(n)) =~ n.
Formally, we require that the following conditions are satisfied by a data structures:

1. Different constructors denote different objects.

2. Constructors are injective.

4.3. INDUCTION 67

3. Each object can be denoted as an application of some constructor to its selectors (if
any exists).

4. Each selector is ‘inverse’ to the constructor it belongs to.

5. Each selector returns a so-called witness term if applied to a constructor it does not
belong to (see below).

Because we intend to prove properties about data structures, each sort sort is translated
into a set of first order formulas Fg which satisfies the conditions mentioned above. For
the data structure number these conditions are satisfied by the following clauses:

Froumber = {(VN : numbe'r) 0 7% S(N)7
(VN, M : number) (s(N) ~ s(M) — N ~ M),
(VN : number) (N =~ 0V N ~ s(p(N))], (4.12)
(VN : number)p(s(N)) =~ N,
p(0) ~ 0}.

The first four clauses correspond directly to the first four conditions. Taking the fifth

condition into consideration we observe that p is only a partial function with respect to

the data structure number. For reasons given in the next subsection I like to deal with

total functions. Any ground constructor term can be assigned to p(0). One usually assigns

constants to such terms, which are called witness terms. In the last clause of Fnymper 0 witness term
has been assigned to p(0) as witness term.

This example concludes the presentation of data structures. Clauses similar to the one
mentioned in (4.12) must be specified for each data structure or sort. I am now in a
position to formally define functions over data structures.

4.3.2 Admissible Programs

Functions are defined over recursively specified data structures by means of structural
induction. As an example consider again propositional logic formulas. A function over
propositional logic formulas can be defined according to Theorem ?? which states the
principle of structural recursion. Similar theorems can be proven for other data structures
like number or list(number).

In this subsection functions are specified with the help of a set of conditional equations,
i.e. universally closed equations of the form

l=r«C

such that
var(C) Uwvar(r) C var(l)

and C' denotes a conjunction of equations and negated equations. I will use the notation
shown in the following example, which defines the function plus/2 € Ap. plus/2 takes
two numbers X and Y as arguments and yields a number:

Fows = {(VX,Y : number) (plus(X,Y) =Y ~ X ~=0),
(VX,Y : number) (plus(X,Y) =~ s(plus(p(X),Y)) <+ X #0)}.

program

well-formedness

well-sortedness

determinism

condition-
completeness

rewriting

68 CHAPTER 4. DEDUCTION, ABDUCTION, AND INDUCTION

One should observe that the two conditions X ~ 0 and X % 0 are mutually exclusive.
Similarly, we can define a less-than order (1t/2) on number as a function which takes two
numbers as arguments and returns a boolean:

Fie = {(VX,Y : number) (It(X,Y) =[] +— Y =0),
(VX,Y : number) (It(X,Y) =~ () — X=OAY #0),
(VX,Y : number) (It(X,Y) = It(p(X),p(Y)) «+ X ZO0AY #0)}.

One should observe that the conditions are again mutually exclusive. We will call a set of
clauses consisting of data structure declarations and function definitions a program. For
example, Fnumber U Fpus 1S a program.

Such a program F is said to be

o well-formed iff it can be ordered such that each function symbol occurring in the
definition of a function g in F either is introduced before by a data structure
declaration, or by another function definition, or it is g itself, in which case the
function is said to be recursive;

o well-sorted iff each term occurring in F is well-sorted;

o deterministic iff for each function definition occurring in F the defining cases are
mutually exclusive;

e condition-complete iff for each function definition of a function g/n occurring in
F and each well-sorted n-tuple of constructor ground terms given as input to g/n
there is at least one condition which is satisfied.

For example, the program F = Fnumber U Fpius is well-formed, well-sorted, deterministic
and condition-complete. The alert reader might have noted that the definition of p/1 in
Foumber does not contain an explicit condition. The condition is implicitly contained in
the left-hand-side of the equations because in the first equation the argument of p/1 must
be of the form s(X) and in the second equation it must be of the form 0. In fact, the
final two elements of (4.12) can be equivalently replaced by the universally closed clauses

p(X)~ N« X = s(N)
and
p(X)~0+ X =0
respectively. Because a well-sorted argument of p/1 can be either 0 (exclusively) or s(X),
p/1 is condition-complete.

Such a well-formed, well-sorted, deterministic and condition-complete program F is
called by a well-sorted ground term t. ¢ is rewritten (or evaluated) as follows. If t
contains a subterm of the form g¢(¢1,...,%,) such that each ¢;, 1 <i <mn, is a constructor
ground term, then find the rule

9(Xq,...,. Xp)=r+ CeF

such that g¢(t1,...,t,) and ¢g(Xi,...,X,) are unifiable with most general unifier 6 and
F | C6. In this case, replace g¢(t1,...,t,) by 8. One should observe that there

4.3. INDUCTION 69

is exactly one such rule because F 1is condition-complete. Consequently, this rewrite
relation is confluent. An example can be found in the following subsection.

A program is terminating iff there is no infinite rewriting sequence for any well-sorted
ground term. Finally, a program is admissible iff it is well-formed, well-sorted, determin-
istic, condition-complete and terminating. Because Fnumpber U Fpus is also terminating it
is an admissible program.

In the sequel I will consider admissible programs. Given an admissible program F and
ground term t as input to F, we can now evaluate t.

4.3.3 Evaluation

For admissible programs F the rewrite relation defines a unique evaluator
evalr : T(Ar) — T(Ac),

which maps all well-sorted ground terms to constructor ground terms. evalz(t) is the
normal form of ¢ with respect to the rewrite relation defined in the previous subsection
and is called the value of t. For example, the term

plus(s(0), s(0))

is subsequently rewritten to
s(plus(p(s(0)), 5(0)))

and to

s(plus(0,s(0)))
and to

5(s(0)),

where I have underlined the subterm that was replaced. Hence, its value is s(s(0)). One

should observe that evalr would not be total for well-sorted ground terms if the function
symbols defined in the program were not total. For example, if the clause

p(X)=0+ X =~0
is eliminated from Foumber then the well-sorted term p(0) cannot be rewritten into a
constructor ground term.

evalr can also be viewed as an interpretation whose domain is the set of well-formed
constructor ground terms. ewvalr behaves as a Herbrand interpretation if applied to a
well-sorted constructor ground term ¢, i.e.

eval 7(t) = t,

and if applied to a well-sorted term s containing occurrences of defined function symbols,
then it maps s to its unique value. evalr is called the standard interpretation of the
program JF.

Let F = Fnumber U Fpius- It is easy to verify that the following relations hold:
evalr = F,

evalr = (VX,Y : number) plus(X,Y) ~ plus(Y, X),
evalr = (VX : number) X # s(X).

terminating

admissible

value

standard
interpretation

theory

induction arioms

70 CHAPTER 4. DEDUCTION, ABDUCTION, AND INDUCTION

In other words, under the standard interpretation the addition over natural numbers is
commutative and each number is different from its successor. We say that a formula F
is true with respect to an admissible program F iff

evalr = F.

The set
{F| evalr = F}

of true statements is called the theory of the admissible program JF. Of course, we are
interested in whether a given formula F' belongs to the theory of a program. Because in
general the theory of an admissible program is neither decidable nor semi-decidable,® the
best we can hope for is to find sufficient condititions such that under these conditions F
can be shown to belong to the theory.

Returning to the previous example we note that neither
F E (VXY : number) plus(X,Y) = plus(Y, X)
nor
F E (VX : number) X % s(X)
because there are non-standard interpretations which are models for F but not for
(VX,Y : number) plus(X,Y) =~ plus(Y, X)
or
(VX : number) X % s(X).
This can be demonstrated using a domain with an additional symbol, say <>, as shown in
the introduction of this section.

But we want to model natural numbers and the usual operations on natural numbers
in a correct way. In particular, we want that the theorems about natural numbers can
be obtained as logical consequences of the program. The approach taken here is to add
additional clauses to the program F such that those non-standard interpretations, which
caused the problems, are no longer models of F. The additional clauses are induction
axioms.

4.3.4 Induction Axioms

Let us assume that each admissible program F is associated with a decidable set Fr
of first order formulas called the induction azioms of F. For the moment we shall only
require that the standard interpretation models Fy, i.e.

eval r = F.

For example, let F = Fymber U Fpius and Fy be the set of all formulas of the form

(P(0) A (VX : number) (P(X) — P(s(X)))) = (VX : number) P(X), (4.13)

3 This follows from Godel’s incompleteness result (see Chapter ?7).

4.3. INDUCTION 71

where P(X) is any first order formula with X as the only free variable. Expression (4.13)
is a scheme for an infinite set of induction axioms which are obtained by instantiating
P(X). For example, if P(X) is replaced by

X # s(X)
then (4.13) becomes

(0% s(0) A (VX : number) (X % s(X) — s(X) # s(s(X)))) = (VX : number) X # s((X))
4.14
One should note that
evalr = (4.14).

It can now be shown by any sound and complete calculus for first order logic that
FuU{(4.14)} = (VX : number) X # s(X) (4.15)

holds. One should observe that (4.15) holds if we can show that the condition of (4.14)
holds. This condition is a conjunction. The first conjunct

0 # s(0)

is an immediate consequence of the first element of Fumper Obtained by replacing N by
0. The second conjunct

(VX : number) (X % s(X) — s(X) # s(s(X))]
follows from the second element in Fymper)- In a similar manner it can be shown that
(VX,Y : number) plus(X,Y) =~ plus(Y, X)

is a logical consequence of F and appropriate instances of (4.14).

4.3.5 Remarks

In order to show semantically that
evalr = (VX : number) X # s(X)
we have to replace X by each element d from the sort number and show that

eval; ':{X/d} X 7"3 S(X)

Because the sort number is infinite, the number of proofs to be given is infinite. Using
the induction axiom (4.14) instead, the proof is finite.

We cannot expect to find inductive axioms such that all formulas in the theory of
admissible programs can be proved. This is an immediate consequence of Godel’s first
incompleteness result [G6d31]. Theorem proving by induction is incomplete, i.e. there are
true statements about an admissible program which cannot be deduced.

Because the data structures used in programs are often inductively defined, the com-
putation of induction axioms may be based on the definition of the data structures and

72 CHAPTER 4. DEDUCTION, ABDUCTION, AND INDUCTION

the functions. Heuristics may be applied to guide the selection of the induction variable,
the induction schema and the induction axiom within an attempt to show that a certain
formula in the theory of an admissible program.

Mathematical induction has been investigated within computer science for almost 30
years [Bur69]. Several automated theorem provers based on this principle have been devel-
oped over the years, among which the systems NQTHM [BM88], OYSTER-CLAM [BvHHS90]
and INKA [HS96] are the most advanced. An excellent overview can be found in [Wal94].

In some cases it is unnessary to explicitely use induction axioms to prove inductive
statements. Rather a generalization of the Knuth-Bendix completion procedure presented
in Section 2.3.3 suffices. This technique is known as inductionless induction or proof by
consistency (see [KM8T7]).

Chapter 5

Non-Monotonic Reasoning

Common sense reasoning is non-monotonic in general. But what precisely is
a non-monotonic logic? What is a non-monotonic reasoning system? What
18 our intuition about mon-monotonic reasoning? These and other questions
are discussed in this section. Various mon-monotonic reasoning systems are
presented. It will turn out that there is no general agreement on how to model
common sense reasoning; instead there is a whole family of systems.

In Section 5.1 an introduction to non-monotonic reasoning is given by dis-
cussing the so-called qualification problem, which arises in reasoning about sit-
uations, actions and causality. The closed world assumption is discussed in
Section 5.2. In Section 5.3 the completion semantics is presented together with
its application in logic programming. In particular, it is shown that the comple-
tion semantics is captured by the negation as failure inference rule. Thereafter,
circumscription and default logic are introduced in Sections 5.4 and 5.5 respec-
tively. Finally, answer set computing is presented in Section 5.6.

5.1 Introduction

Propositional, first order and equational logic are monotonic, i.e., the addition of new monotonicity
knowledge to a knowledge base does not invalidate previously drawn logical consequences.

In However, many common sense reasoning scenarios are non-monotonic. Adding new

tuples to a data base or making a new observation may invalidate previously drawn logical
consequences.

A striking example demonstrating the need for non-monotonic behavior was presented
by John McCarthy in [McC90], where he discussed the missionaries and cannibals puzzle. missionaries and
cannibals
Three missionaries and three cannibals come to a river. A rowboat that seats
two is available. If the cannibals ever outnumber the missionaries on either
bank of the river, the missionaries will be eaten. How shall they cross the
river ?

The alert reader can easily solve this problem. For example, considering states as triples
comprising the number of missionaries, cannibals and boats on the starting bank of the

73

74

CHAPTER 5. NON-MONOTONIC REASONING

river, the sequence

(331, 220, 321, 300, 311, 110, 221, 020, 031, 010, 021, 000)

presents one solution (see e.g. [AmaT7l]). But can this solution be derived as a logical
consequence of a first order formalization of the puzzle? This is apparently not the case
for two reasons:

e First, many properties of boats, missionaries or cannibals, or the fact that row-

ing across the river does not change the number of missionaries or cannibals have
not been stated. These properties and facts follow from common sense knowledge.
Although there is the problem of specifying the relevant aspects of common sense
knowledge we assume for the moment that the common sense properties and facts
relevant for the missionaries and cannibals puzzle are given as first order sentences.

The second reason is much deeper. This is best illustrated by quoting [McC90]:

Imagine giving someone the problem, and after he puzzles for a while, he suggests
going upstream half a mile and crossing on a bridge. “What bridge,” you say. “No
bridge is mentioned in the statement of the problem.” And this dunce replies, “Well,
you don’t say there isn’t a bridge.” You look at the English and even at the translation
of the English into first order logic, and you must admit that “they don’t say” there
is no bridge. So you modify the problem to exclude bridges and pose it again, and
the dunce proposes a helicopter, and after you exclude that, he proposes a winged
horse or that the others hang onto the outside of the boat while two row.

You know see that while a dunce, he is an inventive dunce. Despairing of getting
him to accept the problem in the proper puzzler’s spirit, you tell him the solution. To
your further annoyance, he attacks your solution on the grounds that the boat might
have a leak or lack oars. After you rectify that omission from the statement of the
problem, he suggests that a sea monster may swim up the river and may swallow the
boat. Again you are frustated, and you look for a mode of reasoning that will settle
his hash once and for all.

But how shall this form of reasoning look like? We cannot simply state that there
is no other way to cross the river than by boat and that nothing can go wrong with
the boat. There are infinitely many such facts. Moreover, a human does not need
such an ad hoc narrowing of the problem.

The second problem can be solved if we allow statements like

and

unless it can be deduced that an object is present, we conjecture that it is not
present

unless there is something wrong with the boat or something else prevents the
boat from using it, it can be used to cross the river.

Whereas the first statement allows us to exclude bridges and helicopters, the second allows
us to conclude that the boat can in fact be used for crossing the river. Informally, these
statements may be regarded as “rules of thumb”.

5.2. CLOSED WORLD ASSUMPTION 75

One should observe that if we alter the puzzle by adding a sentence about a nearby
bridge, then the first statement can no longer be used to infer that no bridge is present.
Likewise, if we add a sentence about missing oars, then the second statement (in con-
junction with the relevant facts of the encoded common sense knowledge) can no longer
be used to infer that the boat can be used to cross the river. In other words, previously
drawn logical consequences become invalid after new knowledge has been added to the
knowledge base.

Formally, a logic (A, L,) is said to be non-monotonic iff there exist F, F' and G
such that
FEG and FUF [£G,

where F and F’ are sets of formulas in £ and G is a formula in L.

In the sequel I will define various non-monotonic logics, show how statements like unless
it can be deduced or unless there is something wrong can be encoded in these logics and
discuss their main properties, strengths and weaknesses. I start out with logics based on
the closed world assumption.

5.2 Closed World Assumption

The closed world assumption (CWA) has been proposed by Reiter in [Rei77] in an attempt
to model databases in a formal logic. Queries to databases can be answered in two ways.
Under the so-called open world assumption, the only answers given to a query are those
that can be obtained from proofs of the query, given the database, i.e., the answers are
logical consequences of the database. Whereas under the so-called closed world assumption
certain additional answers are admitted as a result of a failure to prove a result, i.e., a
failure to prove that the answers are logical consequences.

5.2.1 An Example

Reconsider the database with the relation lectures presented in Section ?7. From a logical
point of view, this relation is simply a set of atoms, viz.

F = {lectures(steffen, cl001), lectures(steffen, cl005), lectures(michael, cl002),
lectures(heiko, cl004), lectures(horst, cl003), lectures(michael, cl005)}.

Under the open world assumption, queries are evaluated in the usual way for a first order
logic. Hence, queries like
(3X) lectures(steffen, X) (5.1)

are answered positively with X bound to cl001 or cl005. On the other hand, queries
like
—lectures(michael, cl006) (5.2)

cannot be answered at all, because some models of F satisfy (5.2), whereas others do not.

Under the closed world assumption the evaluation of the query (5.1) leads to the same
answers as under the open world assumption. However, the query (5.2) is answered posi-
tively. The positive answer is obtained as a result of attempting to show that

lectures(michael, cl006) (5.3)

non-monotonic
logics

open world
assumption

closed world
assumption

Tewa (F)

Fowa /2

76 CHAPTER 5. NON-MONOTONIC REASONING

is a logical consequence of F. This, however, is not the case. Moreover, the search space
is finite. Because (5.3) is answered negatively, the closed world assumption allows the
conclusion that its negation (5.2) is answered positively.

Evaluating a database under the closed world assumption is a quite natural thing to
do. Students typically evaluate the course program of a semester under the closed world
assumption. If a lecture is not shown in the program then most students are willing to
conclude that this lecture is not given. The closed world assumption leads to a non-
monotonic behavior of the reasoning system, because the announcement of an additional
course may invalidate some of the conclusions previously drawn. For example, if the fact
(5.3) is added to F then the query (5.2) will be answered negatively.

5.2.2 The Formal Theory

Let (A, L,) be a first order logic. First recall that the theory of a satisfiable set F of
formulas is defined as

T(F)=A{G|F G}
In other words, the theory of F contains F and all logical consequences of F. Now let
F ={-A| Ais aground atom in £ and F £ A}
The theory of F wunder the closed world assumption, Towa(F) , is defined as

Towa(F) = T(FUF).

Returning to our example we recall that
F & lectures(michael, cl006)

and hence
=lectures(michael, cl006) € F.

I have mentioned on several occasions that the definition of the logical consequence
relation for first order theories is the standard one but that for certain applications, other
logical consequence relations may better serve our purposes. The theory of a set of for-
mulas under the closed world assumption can alternatively be defined by a new logical
consequence relation =cwa /2. Formally, for a first order logic (A, L,|) we define
(A, L, \=cwa) as follows. Let

® MO = 7-(]:) U ?,
o M; 1 = {H | there exists G € M; such that F U{G} = H} for all i >0 and

e M= UizoMi'

F Ecwa G iff G € M. It is an easy exercise to show that the following theorem holds.

Theorem 5.1 Towa(F) ={G | F Ecwa G}.

5.2. CLOSED WORLD ASSUMPTION 7

There is also a straightforward way of building the closed world assumption into a first
order calculus (A, L, Fa,t), where A denotes the alphabet, £ the language, F4 the
set of axioms and + /2 the inference relation. All we have to do is to extend the set of
inference rules by adding the rule

if ¥ A then conclude —A,

where A is a ground atom in £ .

5.2.3 Satisfiability

Whenever we extend a satisfiable set of formulas, we have to ensure that the new extended
set is also satisfiable because otherwise any formula would be a logical consequence of this
set.?2 We checked for this condition in the abductive framework presented in Section ??
and it is necessary to check it here also.

An example may help to clarify the situation in the case of reasoning under the closed
world assumption. Let

F = {leakyValve V puncturedTube}

Then,
F - leaky Valve

and
F B punctured Tube.

Recall that F contains all ground literals —A, where A is not a logical consequence of
F. Hence, we find that

{=leaky Valve, —punctured Tube} C F.
As a result we find that
F U F D {leakyValve V punctured Tube, —leakyValve, =punctured Tube}
is unsatisfiable. In other words, the theory of a satisfiable set of formulas under the closed

world assumption may be unsatisfiable. However, there is a large class of formulas for
which this theory is satisfiable:

Theorem 5.2 Let F be a satisfiable set of formulas. Towa(F) is satisfiable iff F
admits a least Herbrand model.

The proof is left to the reader as an exercise.

! This rule is in fact a meta-rule since it considers /2 as argument.
21f F is unsatisfiable, then F U {—G} is also unsatisfiable, indifferent to what G is. Therefore, in
this case we know that F }= G for any formula.

submodel

minimal model

least model

78 CHAPTER 5. NON-MONOTONIC REASONING

5.2.4 Models and the Closed World Assumption

To gain a better understanding of the closed world assumption we will have a closer look
at what happens to the set of models of a set F of formulas while reasoning under the
the closed world assumption.

Let F be a set of first order formulas and M = (D,I) and M' = (D',I') be two
models of F, where D as well as D’ are non-empty domains and I as well as I’ are
interpretations. M is said to be a submodel of M’ with respect to a set P of predicate
symbols, in symbols M <p M’, iff the following conditions hold:

e D=D" and

e [and I’ are identical except that for all ¢ € P we find ¢q; C qy.

If P= Ag then we write M < M’ instead of M <p M’.
A model M of F is said to be minimal iff for all models M’ of F we find that

M’ < M implies M = M’

holds. Finally, a model M of F is said to be the least model of F iff for all models M’
of F we find that
M # M' implies M < M’

holds, where M < M’ iff M < M' and M # M'.

To exemplify these definitions we consider Herbrand interpretations. I.e., let the domain
of an interpretation be the Herbrand universe and the assignment to predicate symbols
be subsets of the Herbrand base. For example, let Ap = {tweedy/0, john/0}, Ar =
{penguin/1, bird/1} and

F = {penguin(tweedy), (VX) (penguin(X) — bird(X))}.

F has three Herbrand models, viz.

M, = {penguin(tweedy), bird(tweedy)},
My = {penguin(tweedy), bird(tweedy), bird(john)} and
Ms = {penguin(tweedy), bird(tweedy), bird(john), penguin(john)},

with M7 < My < Ms3. We conclude that
F B bird(john)
and
F [~ penguin(john).

Consequently,
F = {—bird(john), ~penguin(john)}.

It is easy to check that M, and Ms are not models of FUF, whereas M; is a model of
FUPF. In fact, it is the only Herbrand model of FU F. In other words, the closed world
assumption eliminates non-least models.

5.3. COMPLETION 79

5.2.5 Remarks

Because first order logic is undecidable, the relation F [~ A used in the definition of F
cannot be decided. This indicates that there are considerable difficulties in computing the
theory of a set of formulas under the closed world assumption.

Renaming of formulas affects the theory of a set of formulas under the closed world
assumption. For example, if we rename a predicate p occurring in a set F of formulas
by —q to obtain F', then Towa(F) # Towa(F') .

Consider the following set of formulas:

F = { bird(tweedy),

(VX) (bird (X) A ~ab(X) — fiy(X)) }. (5:4)

The second formula in F expresses that unless there is something wrong with a bird we are
willing to conclude that the bird flies. In other words, this formula states the rule of thumb
that birds normally fly. F is not a Horn set and does not admit a least Herbrand model.
Hence, Towa(F) is unsatisfiable. Recall that the closed world assumption minimizes the
sets p; assigned to the predicate symbols p occurring in F by interpretations 7. In
the example, we do not really want to minimize birds or flying objects; instead we just
like to minimize abnormalities. With this idea in mind we could apply the closed word
assumption only to ground atoms of the form ab(t). This idea works out for the example,
but does not work in general.

There are several extensions to the closed world assumption which have been developed
to overcome some of its limitations. Examples are the so-called generalized closed world
assumption [Min82] or extended closed world assumption [GPP89).

IMPLEMENTATIONS, UNIQUE NAME ASSUMPTION AS SPECIAL CASE, FURTHER EXTEN-
SIONS

The closed world assumption is the basis for several further developments of non-
monotonic reasoning such as predicate completion and negation as failure, which are pre-
sented in detail in the following Section 5.3. Virtually all proposals for non-monotonic
reasoning are concerned with minimizing models. As a rule of thumb, we may state that
non-monotonic reasoning is reasoning with respect to the minimal and/or least models of
a set of formulas.

5.3 Completion

In the previous section, we have seen that a non-monotonic behavior can be achieved if
certain assumptions are added to the knowledge base. In the case of the closed world
assumption, only negative ground atoms are added to the knowledge base. In this section
I present a method which allows to add more complex formulas.

5.3.1 An Example
As an introductory example, let Ap = {tweedy/0, john/0}, Ar = {penguin/1} and

F = {penguin(tweedy)}.

completion

80 CHAPTER 5. NON-MONOTONIC REASONING

As discussed at the end of Section 5.2, non-monotonic reasoning can be regarded as rea-
soning in the minimal models of F. In our example there are two models, viz.

M, = {penguin(tweedy)}

and
My = {penguin(tweedy), penguin(john)}

with Mj; < Ms. The minimal model Mj can be computed as follows: The formula
penguin(tweedy)
is replaced by the equivalent formula
(VX) (X =~ tweedy — penguin(X)). (5.5)

This formula is regarded as the “if” half of a definition of penguin/1. One way to exclude
models which satisfy penguin(john) is to extend this formula by adding the “only-if” half:

(VX) (X =~ tweedy + penguin(X)). (5.6)

This extension is called (predicate) completion and the formula (5.6) is called the comple-
tion formula of (5.5).

Let
F = {penguin(tweedy), penguin(john)}.

The “if” half of the definition of penguin is now of the form

(VX) (X = tweedy V X = john — penguin(X))
and is completed by its completion formula

(VX) (X = tweedy V X = john + penguin(X)).

In general, if a predicate is defined by a set of atoms, then the completion is identical to
the closed world assumption. However, the two approaches differ as soon as more complex
formulas are considered.

As an example consider the formula

(VX) (~fly(X) — fly(X)) (5.7)

which is equivalent to (VX) fly(X). Extending (5.7) by its completion formula

(VX) (~fly(X) fly(X))

we obtain the unsatisfiable formula

(VX) (~fly(X) < fly(X))

This example demonstrates that, as with the closed world assumption, we must expect
satisfiability problems when computing the completion of a predicate. Hence, the question
arises of whether there exists a class of formulas for which completion is guaranteed to
yield satisfiable sets of formulas.

5.3. COMPLETION 81

Input: A set F of clauses and a predicate symbol p/m.
Output: The completion formula Cr, of F with respect to p

1. Replace each clause of the form {—Li,...,2Ly,p(t1,...,tm)} occurring in F by

LiN...ANLy—p(ti,....tm). (5.8)

2. Replace each clause of the form (5.8) occurring in F by
VX)@Y)(Xi~ti Ao . AXp =t ALLA ... A Ly — p(X)], (5.9)

where X = Xi,...,X,, is a sequence of ‘new’ variables and Y is a sequence of
those variables which occur in (5.8).

3. Let

{(vX) (Ci = p(X)) |1 <i <k}

be the set of clauses having the form (5.9). Return the completion formula
C}"p = (VY) (C1V...VCi p(Y))

Table 5.1: The completion algorithm computing the completion formula with respect to the predicate
symbol p for a given set F of clauses.

5.3.2 The Completion

I turn now to the specification of a completion algorithm which computes the completion
formula for a given set of clauses with respect to a given predicate. Before doing so however,
I characterize certain sets of clauses as being solitary in a certain predicate symbol. It
will turn out that the completion of a set of clauses with respect to a predicate symbol is
satisfiable if the set is solitary with respect to the predicate symbol.

An occurrence of a predicate symbol p/n in a clause C is said to be

e positive iff we find terms t;, 1 <1i < n, such that p(t1,...,t,) € C and

e negative iff we find terms ¢;, 1 <i <mn, such that —p(t1,...,t,) € C.

A set F of clauses is said to be solitary with respect to the predicate symbol p/n iff for
each clause C' € F we find that if C' contains a positive occurrence of p/n then C does
not contain another occurrence of p/n. For example, the clause

{=fly(tweedy), —fly(john), penguin(tweedy), —penguin(john)}

is solitary in fly/1, but not solitary in penguin/1.

Table 5.1 defines a completion algorithm. Initialized with a set F of clauses and a
predicate symbol p/m, it returns the completion formula Cz,. One should observe that
the clauses considered in the first step of this algorithm may contain several positive occur-
rences of p/m, in which case the algorithm is assumed to choose one of these occurrences
arbitrarily unless otherwise specified.

positive
occurrence

negative
occurrence

solitary set

82 CHAPTER 5. NON-MONOTONIC REASONING

As an example consider the following set F of clauses:

F = { -penguin(Y)V bird(Y),
bird (tweedy), (5.10)
—penguin(john) 1.

Suppose we are calling the completion algorithm with F and bird/1. Then, after the
first step F is replaced by

Fi = { penguin(Y) — bird(Y),
bird (tweedy),
—penguin(john) }.

After the second step we obtain

Fo = { (VX)3Y) (X =Y Apenguin(Y) — bird(X)),
(VX) (X = tweedy — bird(X)),
—penguin(john) }.

One should observe that the two clauses in Fy which define bird/1 are equivalent to
(VX)) ((FY) (X = Y A penguin(Y)) V X = tweedy — bird(X)).
Finally, in the third step the completion algorithm returns

Crpira = (VX)(3FY)(X =Y Apenguin(Y)V X = tweedy «+ bird(X)). (5.11)

Because the completion formula contains occurrences of the equality symbol, we have
to specify the equational theory under which these symbols are to be interpreted. Recall
that one reason for computing with the completion is that it should be possible to derive
negative facts. Hence, inequalities must be stated, along with equalities. The equational
theory F¢ shown in Table 5.2 was introduced by Clark in [Cla78] and serves this purpose.
It consists of five schemes:

e The first scheme tells us that different function symbols (including constants) denote
different data constructors.

e The second scheme corresponds to the occurs check in unification under the empty
equational theory.

e The third scheme tells us that two complex terms are diffirent as soon as one pair
of corresponding arguments is different.

e The fourth formula is the axiom of reflexivity and tells us that objects are equal if
they are syntactically equal.

e The fifth scheme tells us that constructed objects are equal if they are constructed
from equal components by applying the same constructor.

e The sixth scheme tells us that predicates applied to equal components have the same
truth value.

5.3. COMPLETION 83

Fo = {(VX,Y)f(X)#g(Y) |
for each pair f/n, g/m of different function symbols occurring in Ag}

U
{(VX)t[X] % X | for each term ¢ which is different from X
but contains an occurrence of X}
U
{(vX.Y) (Vs Xi 2 Yi = f(X) # f(Y)) |
for each function symbol f/n occurring in Ag}
U
{(VX) X =~ X}
U [— —
{(VX.)Y) (Npmy Xi =Y — f(X) = f(Y)) |
for each function symbol f/n occurring in Ap}
U

{V (Ao Xi=YiAp(X) = p(Y)) |

r=1
for each predicate symbol p/n occurring in Ap}

Table 5.2: The equational system F¢ for predicate completion consisting of five schemes, where X and
Y denote the sequences Xi,...,X, and Yi,...,Y, of variables respectively and ¢[X] denotes a term ¢
which contains an occurrence of the variable X.

We can now formally define predicate completion: Let F be a set of formulas, which
is solitary in p/n. The predicate completion T (F,p) of p is defined as To(F,p)

Tc(F,p) ={G | FUCr,UFc [G}.

Theorem 5.3 Let F be a set of formulas which is solitary in p/n. If F is satisfiable,
then so is To(F,p).

Returning to the knowledge base F specified in (5.10) and the completion of bird/1
as computed in (5.10) we now find that

=bird(john) € To(F, bird). (5.12)
Predicate completion is non-monotonic which can be demonstrated by adding the fact
bird(john)
to F. Now, (5.12) no longer holds.

Reasoning with the completion of p/n with respect to a knowledge base F amounts
to nothing more than computing in the minimal models of F with respect to p. In
this respect, predicate completion is similar to the closed world assumption. However,
reasoning with the completion may lead to different results from those obtained when
reasoning under the closed world assumption.

5.3.3 Parallel Completion

As in Section 5.2 we are not just interested in minimizing the extension of a single predicate
symbol, but in minimizing the extension of several predicate symbols in parallel. This,

normal logic
programs

defined predicate
symbol

Ap

To(F)

84 CHAPTER 5. NON-MONOTONIC REASONING

however, may lead to some complications as the following example demonstrates. Let

F = { bird(tweedy),

(VX) (bird(X) A —ab(X) — fly(X)) }. (5.13)

Informally, the second formula in F states that birds normally fly. Intuitively, we would
like to minimize the models of F with respect to abnormalities and flying objects. How-
ever, completing ab/1 and fly/1 in parallel leads to a cyclic definition between the two
relations. We simply cannot use the second formula occurring in F to define both ab/1

and fly/1.

Who is going to decide in cases like F above which relation is defined and which one
is not? This question cannot be answered easily if F is an arbitrary knowedge base.
However, there is an easy answer if F is a logic program. In this case the user has made
the decision.

5.3.4 Parallel Completion and Logic Programming

A normal logic program is a set F of clauses of the form
p(t) « AL A ANAR A—Appl A A DA, (5.14)

where p/m is a predicate symbol, ¢ is a sequence t1,...,t;, of terms and A;, 1 <i <mn,
are atoms over some first order alphabet A. Likewise, a normal query is a clause of the
form

— AN NAR A DAl AL AN DA,. (5.15)

Given a normal logic program F, a predicate symbol p/m is said to be defined in F
iff F contains a clause of the form shown in (5.14). Let Ap denote the set of defined
predicate symbols in a logic program F.

For example, reconsider the set F of formulas specified in (5.13). F is a normal logic
program and contains definitions for the predicate symbols bird/1 and fly/1. Applying
the completion algorithm shown in Table 5.1 to F and completing both defined function
symbols yields the two completion formulas

(VX) (bird(X) — X ~ tweedy) (5.16)

and
(VX) (fly(X) = —ab(X) A bird(X)). (5.17)

The completion To(F) of a normal logic program F with defined predicate symbols
Ap is defined as

Te(F) ={G | FU{CF, | p € Ap} UFc U{(VX) p(X) |p € Ap\ Ap} G}.

One should observe that for all non-defined predicate symbols p/n € Ap \ Ap it has
been assumed that (VX)-p(X) holds. In other words, it is assumed that the extension
of these predicate symbols is empty.

Returning to the example we find that

To(F) ={G | FU{(5.16), (5.17)} U Fc U{(VX) =ab(X)} = G}

5.3. COMPLETION 85

and consequently

{—ab(tweedy), fly(tweedy)} C To(F, {bird, fiy}).

Thus, the completion encodes the statement that unless there is something wrong with a
bird we are willing to conclude that the bird flies. There is nothing wrong with tweedy
and hence tweedy flies.

We have already observed that adding the completion formula to a satisfiable set of
formulas may lead to unsatisfiable knowledge bases. Such cases must be excluded and
hence we are interested in finding sufficient conditions such that the completion of a
normal logic program is guaranteed to be satisfiable. An example for such a condition is
given in the remainder of this section. Much more refined conditions can be found in the
literature.

Given an alphabet A, a level mapping is total mapping from Ap to IN assigning a
so-called level to each predicate symbol occurring in A. For example, the mapping which
assigns level 1 to bird/1, 2 to ab/1 and 3 to fly/1 is such a level mapping.

A normal logic program F is said to be stratified iff in each clause of the form

p(t) = p1(ST) Ao APm(Fm) A =Pmg1(Sma1) Ao A =pn(3n)

of F the level of p is greater or equal than the level of each p;, 1 < i <'m, and strictly
greater than the level of each p;, m < j <n.

Theorem 5.4 Let F be a stratified normal logic programs. Then To(F) is satisfiable.

A proof of this result can be found e.g. in [L1093].

5.3.5 Negation as Failure

We have defined the completion of a normal logic program purely semantically. Informally,
a normal logic program consists of the “if” halves of the definitions of relations. The
completion is obtained by adding to the program the “only-if” parts of these definitions,
the equational system JF¢, the negative facts for each undefined relation symbols and
considering the logical consequences of the extended program. But how can we compute
with the completion?

For practical purposes, we do not want to include either F¢ or the “only-if” halves
of the definitions of relations or the negative facts of the undefined relation symbols to
the program. Instead we would like to compute with the “if” halves of the definitions of
relations, i.e., with the program only. In doing so, however, we realize almost immediately
that a calculus based on the SLD-resolution rule is incomplete. In the context of normal
logic programs goal clauses may contain negative literals. SLD-resolution cannot be ap-
plied to negative literals occurring in a goal clause. On the other hand, we do not want to
give up the merits of SLD-resolution which allows for an efficient implementation of logic
programming.

It is straightforward to verify that

{mA[-AeT(F)} #{-A[-AeTo(F)}

level mapping

stratified
programs

negation as
failure

finitely failed
search tree

SLDNF-
resolution

86 CHAPTER 5. NON-MONOTONIC REASONING

In other words, the negation occurring in normal logic programs evalutated under the
completion semantics is not the usual negation in logic. To make this distinction explicit,
we replace the negation sign —/1 occurring in normal logic programs by ~/1, i.e., (5.14)
and (5.15) become

pt) < AL A ANAp A~Apia A A ~A,

and
— AN NARGNAN~NAp I A N ~A,

respectively. ~ 1is called negation as failure for reasons which are explained below. As a
concrete example, the logic program shown in (5.13) becomes

F = { bird(tweedy), (5.18)
fy(X) « bird(X) A~ ab(X) 1}, '
where I have omitted the universal quantifier and have written the second clause using
the reverse implication.

Before turning to the definition of the calculus for computing with the “if” halves only,
we need an auxiliary definition. The derivations of a linear resolution calculus can be
represented as a so-called search tree in a straightforward manner. Such a search tree is
said to be finitely failed iff the search tree is finite and each leaf is labelled as a failure.
As an example consider the program

F' = { ab(X) < brokenWing(X),
ab(X) « ratite(X),?

ratite(X) < ostrich(X), (5.19)
ratite(X) < emu(X),
ratite(X) < kiwi(X) }
and the query
+— ab(tweedy). (5.20)

Its search tree is shown in Figure 5.1. It has only finitely many nodes and no leaf can be
evaluated further.

To compute with the “if” halves only, we define a new rule of inference called SLDNF-
resolution (for SLD-resolution with negation as failure) as follows: Let G be a goal clause
consisting of positive and negative literals, F a normal logic program, L be the selected
literal in G and A be a ground atom.

e If L is positive, then each SLD-resolvent of G using L and some new variant of a
clause in F is also an SLDNF-resolvent.

e If L isa ground negative literal, i.e., L = ~ A and the query < A finitely fails with
respect to F and SLDNF-resolution, then the SLDNF-resolvent of G is obtained
from G by deleting L.

e If L is a ground negative literal, i.e., L = ~ A and the query < A suceeds with
respect to F and SLDNF-resolution, then the SLDNF-derivation of G fails.

3 A ratite is a bird with a flat unkeeled breastbone, unable to fly.

5.3. COMPLETION 87

+ ab(tweedy)

< broken Wing(tweedy) <« ratite(tweedy)

< kiwi(tweedy) +— emu(tweedy) < ostrich(tweedy)

Figure 5.1: A finitely failed search tree.

e If L is negative and non-ground, then without loss of generality we may assume
that each literal in G is negative and non-ground.* In this case G is said to be
blocked. blocked goal
clause
As before, the notions of derivation and refutation can be extended to hold for SLDNF-

resolution. A normal logic program F and a goal clause G are said to flounder if some floundering
SLDNF-derivation of G with respect to F is blocked.

It should be obvious from this definition why ~ is called negation as failure: Let G be
the goal clause <+ ~ A. If the query <+ A finitely fails, then SLDNF-resolution concludes
that <+ ~ A is successful. In other words, the failure to prove < A leads to the success
of < ~ A. Conversely, if the query < A is successful, then + ~ A fails.

Returning to our example, let F be the union of the clauses shown in (5.18) and (5.19)
and let G be the goal clause

+— fly(tweedy). (5.21)

Applying SLDNF-resolution using the clause defining fly in F yields
— ~ab(tweedy) A bird(tweedy) (5.22)

If the selection function selects the first literal in (5.22) then we have to consider the goal
clause (5.20). As shown in Figure 5.1 this query finitely fails and, consequently, (5.22)
reduces to

<+ bird(tweedy),

which can be solved using the clause defining bird in F. Hence, the initial goal clause is
answered positively. As another example consider the query

— ~ab(X),

which flounders immediately.

4 Like SLD-resolution, the selection function applied within SLDNF resolution selects literals in a don’t-
care non-deterministic manner. Hence, if the first choice of the selection function is a negative and
non-ground literal, then the selection function may choose another literal.

88 CHAPTER 5. NON-MONOTONIC REASONING

Computing with negation as failure is non-monotonic. Suppose we learn that tweedy
is in fact an ostrich and add the fact

ostrich(tweedy)

to the union of the clauses shown in (5.18) and (5.19). Reconsidering query 5.21 we again
obtain (5.22) in one step. But now the query

— ab(tweedy)

can be successively reduced to
<« ratite(tweedy)

and
<« ostrich(tweedy),

which in turn succeeds. Hence, the initial goal fails in this case.

Theorem 5.5 Let F be a logic program. SLDNF-resolution is sound with respect to the
completion of F .

This result was shown in [Cla78]. On the other hand, SLDNF-resolution is generally
incomplete, but complete for restricted classes of programs. For a detailed discussion see
[AB94].

One should observe, that sometimes negation as failure in logic programs leads to un-
desirable results. The following example is due to McCarthy and can be found in [GL90]:
A school bus may cross railway tracks under the condition that there is no approaching
train. The naive solution

€T0o8s — ~ train

allows the bus to cross tracks when there is no information about either the presence or
the absense of a train — for instance, when the driver’s vision is blocked. In this case the
use of classical negation

cross +— —train

leads to the desired result: Crossing tracks is only allowed if the negative fact —train is
established. Whenever we cannot assume that the available positive information about a
predicate is complete, then the closed world assumption cannot be applied. We will come
back to this and related examples in Section 5.6.

5.4 Circumscription

Using the closed world assumption or the completion does not lead to the intended result
if we have to deal with formulas like

p(a) V p(b) (5.23)

or

(3X) green(X).

5.4. CIRCUMSCRIPTION 89

We are interested in the minimal models of these formulas. Intuitively, the minimal models
for (5.23) are the models of

(VX) (p(X) > X ~ a) V (VX) (p(X) < X ~b).

In other words, either a is the only element in the extension of p/m or so is b but not
both. More generally, we want to conjecture that the tuples (Xi,...,X,,) which can be
shown to satisfy a relation p/m are all the tuples satisfying this relation. Speaking with
McCarthy [McC90], we want to circumscribe the set of relevant tuples.

Formally, we consider a formula F'. Let p(X) denote the atom p(Xi,...,X,,) and

F{p/p"}

the formula obtained from F' by replacing each occurrence of p/m by p*/m. The cir-
cumscription of p in F is the second order scheme

Cire(F,p) = (F{p/p"} A (VX) (p"(X) — p(X))) = (VX)(p(X) = p" (X))

It is a scheme because p* is a predicate parameter which may be substituted by an
arbitrary first order formula. F{p/p*} states that any condition imposed on p/m is
imposed on p*/m as well. (VX) (p*(X) — p(X)) states that any tuple in the extension
of p*/m is also in the extension of p/m. Likewise, (VX)(p(X) — p*(X)) states that
any tuple in the extension of p/m is also in the extension of p*/m .

As a first example taken from the blocks world consider the formula
F = isblock(a) A isblock(b) A isblock(c)

In this example, only the objects a, b and ¢ must be any extension of the predicate
symbol isblock/1, but there may be other objects. We want to make sure that a, b and
¢ are all the objects in any extension of p/m . Circumscribing isblock in F' yields

(p* (@) Ap* (D) AP* () N(VX) (p*(X) — isblock(X))) — (VX) (isblock(X) — p*(X)). (5.24)

If we substitute
pPPX)e (X=aVX=bVX~=c
in (5.24) and use F', we find the the condition of the implication (5.24) is satisfied and,
consequently, its conclusion
(VX) (isblock(X) = (X ~aVX~=bVX =c)

holds. In other words, there are just the three blocks a, b and c¢ in this rather simple
scenario.

As a second example reconsider the disjunction (5.23). Circumscribing p in this formula
yields

((p*(a) v p" (b)) A (VX) (p*(X) = p(X))) = (VX) (p(X) — p*(X)). (5.25)

We may now substitute
p'(X)e X=a

F{p/p*}

circumscription
Clirc(F,p)

follows minimally

}:{p}

90 CHAPTER 5. NON-MONOTONIC REASONING

in (5.25) to obtain
((axaVbrma)NVX) (X ~a—pX))) = (VX) (p(X) = X = a)
which simplifies to
p(a) = (VX) (p(X) = X ~ a). (5.26)

Similarly, we may substitute
p(X)+ X=b

in (5.25) to obtain
((a=bVvb=b ANVX)(X=b—pX))) — (VX)(p(X) = X ~b)
which simplifies to
p(b) = (VX) (p(X) = X =~ b). (5.27)
Finally, (5.26), (5.27) combined with (5.23) leads to
VX)(p(X) > X =~a)V(VX)(p(X) = X =)
which is the intended result. More examples can be found in [McC90].

In order to characterize the circumscription of a predicate p/m in a formula F se-
mantically, we consider the minimal models of F' with respect to {p/m}. G follows
minimally from F with respect to p/m, written F =g, G, iff G holds in all models of
F which are minimal in {p/m}.

Theorem 5.6 Clirc(F,p) holds in all models of F which are minimal in {p/m}.

A proof of this theorem can be found in [McC90]. Moreover, as an immediate conse-
quence of this result we find that:

Corollary 5.1 If F'A Circ(F,p) F G then F =y, G.
Some remarks are helpful at this point:

e It is easy to show that computing with circumscription is a non-monotonic form of
reasoning.

e The circumscription of a predicate may again lead to an unsatisfiable theory. As
in the case of the closed world assumption and the completion there are known
sufficient conditions, which guarantee satisfiability (see e.g. [Lif86]).

e Although the circumscription of a predicate involves a second order scheme there
are cases in which circumscription can be reduced to first order reasoning (see e.g.
[Lif85]). But this is not always possible as can be demonstrated by the following
formula.

WV, W) (g(V, W) = p(V, W) A (VX Y, Z) (p(X,Y) Ap(Y, Z) = p(X, Z)) (5.28)

This formula specifies that the set of tuples satisfying p/2 contains the transitive
closure of the set of tuples satisfying ¢/2. The circumscription of p/2 in (5.28)
specifies that the set of tuples satisfying p/2 is exactly the set of tuples satisfying
q/2. Because the transitive closure of a binary relation cannot be defined in first
order logic, we cannot reduce the circumscription of p/2 in (5.28) to first order logic.

5.5. DEFAULT LOGIC 91

e Many extensions of circumsciption are known. We may circumscribe more than
one predicate in parallel, we may allow to enlarge the extension of some predicate
symbols while circumscribing others, we may circumscribe predicates using priorities
or we may circumscribe a predicate only in one point (see e.g. [Lif87]).

5.5 Default Logic

The reasoning patterns considered so far in this chapter are of the form “unless any
information to the contrary is known assume that ... holds.” Under the closed world
assumption, in programming with completed predicates as well as circumscribing pred-
icates, this line of reasoning was modelled by extending the knowledge base. We have
already seen that a similar effect can be achieved by altering the logical consequence re-
lation. The most prominent approach in this respect is the so-called default logic, which
was introduced by Reiter in [Rei80].

5.5.1 Some Examples

Many examples in common sense reasoning are of the following form: “Most objects of
sort s have property p. Object o is of sort s. Does object o have property p?” For
example, most birds fly. Given a particular bird, say tweedy, what do we know about its
capabilities to fly? Well, most of us are willing to conclude that tweedy flies unless we
happen to know that it belongs to one of the known exceptions like being an ostrich or a
penguin.

How can we represent our knowledge about birds and their capabilities to fly? In first
order logic this can naturally be done by explicitely stating the exceptions:

(VX) (bird(X) A —penguin(X) A —ostrich(X) A ... — fly(X)) (5.29)
There are at least two difficulties with this approach.

e In common sense reasoning we usually do not know all exceptions. In other words,
we usually do not know what is really meant by “...” in (5.29). For example, a yet
unknown species of non-flying birds may live in the rain forest.

e Suppose that we happen to know all exceptions, then (5.29) does not allow us to
conclude that ftweedy flies if we just happen to know that it is a bird, because we
cannot conclude that tweedy is not a penguin and not an ostrich etc.

In other words, using first order logic in a straightforward manner blocks us from conclud-
ing that tweedy flies, although we intuitively would like to do so.

Just knowing that tweedy is a bird, we somehow would like to conclude that tweedy
flies by default. How is the default to be interpreted? We may take it as saying that
“unless any information to the contrary is known we conclude that tweedy flies.” But,
then, what is the precise meaning of this phrase? Does it mean that the exceptions are
not logical consegences of our knowledge gathered so far, or does it mean that we finitely
failed to prove the exceptions?

default

92 CHAPTER 5. NON-MONOTONIC REASONING

In default logic we interpret the phrase “unless any information to the contrary is known
we assume that tweedy flies” by “it is consistent to assume that tweedy can fly.” More
formally, this interpretation is represented by a new kind of inference rule called default
rule

bird(X) : fly(X) / fly(X) .

Informally, this rule is read as “if X is a bird and it is consistent to assume that X flies,
then conclude that X flies.” The exceptions to flight are then given by standard first

order sentences:
{ (VX) (penguin(X) — —fly(X)),
(VX) (ostrich(X) — —fly(X)), }

One should observe that a conclusion like fly(tweedy) drawn with the help of a default
rule has the status of a belief. It may change if additional information like tweedy being
a penguin is discovered.

There still remains the problem of how to interprete the phrase “it is consistent to
assume that tweedy flies”. This is probably the most difficult issue in default logic.
Informally, consistency is defined with respect to all first order formulas in the knowledge
base and all other beliefs sanctioned by all other default rules in force. A formal definition
will be given in Section 5.5.2.

Default rules can also be used to represent phrases like “Few objects of sort s have
property p”. For example, the statement few men have been on the moon, is represented
by

man(X) : —moon(X) / ~moon(X) .

5.5.2 Default Knowledge Bases

default rule Let (A, L, =) be a first order logic. A default rule is any expression of the form
F:Gy,....,G, /| H.

F' is called prerequisite, G1,...,G, are called justifications and H is called consequent
of the default rule. A default rule is said to be closed iff all formulas occurring in it are
closed, and it is said to be open iff it is not closed. An open default rule is a scheme and
represents the set of its ground instances.

There are several special cases of default rules.

e If F' is missing, then this is interpreted as F' = (). In other words, the prerequisite
does always hold in this case.

e If n =0, then the default rule is a rule in the underlying first order logic. This case
is not of interest in this chapter as it is subsumed by the first order logic.

e If n=1 and G; = H, then the default rule is said to be normal.

e If n=1 and G; = H A H', then the default rule is said to be semi-normal.

Most of the examples considered here and in the literature are either normal or semi-
normal.

5.5. DEFAULT LOGIC 93

A default knowledge base® is a pair (Fp, Fi), where Fp is a set of at most countably
many default rules and Fyy is a set of at most countably many closed first order formulas
over A. A default knowledge base is said to be closed iff all default rules occurring in it
are closed, and it is said to be open iff it is not closed.

As an example consider the following simple scenario: Jane and John are married. John
lives in Munich. Jane works at the Computer Science Department of the TU Dresden.
Most people’s hometown is the hometown of his/her spouse. Most people’s hometown is
where his/her employer is located. This scenario can straightforwardly be represented by
a default knowledge base.

Fp = { spouse(X,Y) A htowun(Y) = Z : htown(X) = Z | htown!(X) ~ Z ,
employer(X,Y) A location(Y) ~ Z : htown(X) ~ Z \ htowun(X)~ Z }
Fw = { spouse(jane,john),
htown(john) ~ munich,
employer(jane, tud),
location(tud) = dresden,
(VX,Y, Z) (htown(X) =Y Ahtoun(X)~Z =Y =~ Z) }

The last formula occurring in Fy states that a person can have only one hometown.

If we now apply the substitution
01 = {X — jane, Y — john, Z — munich}
to the first default, then we find that
Fw E spouse(jane, john) A htown(john) = munich.

Because it is consistent to assume that jane’s hometown is munich the default rule is
applicable and we conclude that jane’s hometown is munich. Similarily, we may apply
the substitution

0y = {X > jane, Y + tud, Z > dresden}

to the second default to find that
Fw | employer(jane, tud) A htown(jane) ~ dresden.

However, having concluded that jane’s hometown is munich, this is no longer consistent
with respect to Fyr and the previously drawn default conclusions to assume that jane’s
hometown is dresden. Consequently, the second default rule is not enforced. One should
observe that if we would have considered the second default rule first, then we had con-
cluded that jane’s hometown is Dresden and consequently had rejected the first default
rule.

This seems to be a surprising behavior at first sight because it demonstrates that there
is not a unique and well-defined relation between a default knowledge base and the theory

51In the literature, default knowledge bases are often called default theories. In this book, theories
denote sets of logical consequences of sets of formulas. In many logics like propositional and first order
logic there is a unique and well-defined relation between a set of formulas and its logical consequences
and, hence, it is acceptable to call a set of formulas a theory. As we will see later such a unique and
well-defined relation does not exist for default knowledge bases.

default knowledge
base

extension

94 CHAPTER 5. NON-MONOTONIC REASONING

defined by this knowledge base. We may believe that jane lives in munich or that jane
lives in dresden but not both. For this reason, I will not be talking about theories with
respect to a default knowledge base but about extensions in the following section.’

5.5.3 Extensions of Default Knowledge Bases

Any formalism for non-monotonic reasoning is based on the observation that a knowledge
base is usually incomplete. Nevertheless, in many situations we would like or even need to
draw conclusions despite of the fact that our knowledge base is incomplete. The default
rules sanction additional pieces of information which are added to the knowledge base as
long as this addition does not lead to inconsistencies. We have to keep this in mind when
we formally define the extensions of a default knowledge base.

Let F be a set of closed first-order formulas. Intuitively, an extension Fg of F should

have the following properties:

o F C Fg,ie., F should be contained in its extension.
e T(Fg)= Fg, i.e., the extension should be deductively closed.

e For each default rule, if the prerequisite is contained in Fr and the negation of each
justification is not in Fg, then the conclusion should occur in Fg. In other words,
FE should be closed under the application of default rules.
This motivates the following definition.
Let (Fp,Fw) be a default knowledge base. For any set F of closed first order formulas
let I'(F) be the smallest set satisfying the following three properties:
1. Fw CI(F).
2. T(F)) =T(F).
3. If F:Gy,...,Gy / HE Fp, FeT'(F) and for all 1 <j <n we find that -G; ¢ F
then H € I'(F).
F is said to be an extension of (Fp, Fw) iff T'(F) = F.

From this definition we conclude immediately that the set of extensions of a default
knowledge base (Fp,Fw) is a subset of the set of models for Fy,. A more intuitive
characterizaton of extensions is given in the following theorem, whose proof can be found
in [Rei80].

Theorem 5.7 Let (Fp,Fw) be a default knowledge base and F be a set of sentences.
Define
Fo=Fw

and for 1 >1:
Fipir=T(F)U{H|F:G1,....,Gy | He Fp, FeF; and for all1 <j<n-G; & F}.
Then, F is an extension of (Fp,Fw) iff F=UsqFi-

6 The extensions of a default knowledge base should not be confused with the notion of an extension of
a predicate symbol under an interpretation defined in Section ?7.

5.5. DEFAULT LOGIC 95

One should observe the occurrence of F in the definition of F;i;. This forces us to
guess an extension; thereafter, Theorem 5.7 can be applied to verify that our guess is
correct. To illustrate the notion of an extension we consider the default knowledge base
(Fp,Fw), where

Fp = { bird(X): fly(X) / fiy(X) },
Fw { bird(tweedy) }

and let
F =T ({bird(tweedy), fly(tweedy)}).

Theorem 5.7 can now be applied to verify that F is an extension. Let
Fo = Fw = {bird(tweedy)}.

Then,
F1 =T ({bird(tweedy)}) U { fly(tweedy) }

and
Fi = T ({bird(tweedy), fly(tweedy)}),

for all ¢ > 2. Consequently,
U 7 = T({bird(tweedy), fly(tweedy)}) = F.
i=0

Extensions are not unique. The interested reader may verify that the example scenario
about the couple John and Mary discussed in Subsection 5.5.2 admits the two extensions

T ({ spouse(jane, john), htown(john) ~ munich, employer(jane, tud),
location(tud) =~ dresden, htown(jane) ~ munich})
and
T ({ spouse(jane, john), htown(john) =~ munich, employer(jane, tud),

location(tud) ~ dresden, htown(jane) =~ tud}).

Reasoning in a default logic is reasoning with respect to the extensions of the default
knowledge bases. We distinguish two kinds of reasoning. Let (Fp,Fw) be a default
knowledge base.

o G follows credolously from (Fp,Fw) (in symbols (Fp, Fw) = G) iff there exists
an extension F of (Fp,Fw) such that G € F.

o G follows sceptically from (Fp,Fw) (in symbols (Fp,Fw) =s G) iff for all ex-
tensions F of (Fp,Fw) we find G € F.

In the scenario involving John and Jane we find that

(Fp,Fw) [Es spouse(jane,john) A htown(john) =~ munich
A employer(jane, tud) A location(tud) ~ dresden

but concerning Jane’s hometown only credolous conclusions are possible:

(Fp, Fw) b htown(jane) ~ munich

credolous
conclusion

sceptical
conclusion

96 CHAPTER 5. NON-MONOTONIC REASONING

and
(Fp, Fw) Eb htown(jane) ~ dresden.

One should observe that

(Fp, Fw) s htown(jane) ~ munich V htown(jane) ~ dresden.

We conclude this section by adding some remarks:

e [t is again easy to see that default logic is non-monotonic and we leave it to the
interested reader to design an example demonstrating this property.

e Extensions of default knowledge bases are always satisfiable.

e There are examples where an extension of a default knowledge base contains counter-
intuitive facts. For example, let

Fw = {broken(left — arm) \V broken(right — arm)}

and
Fp = { : usable(X) N —broken(X) / usable(X)}.

The only extension of this default knowledge base contains
usable(left — arm) A usable(right — arm)

which is clearly counter-intuitive given Fyy.

e There are a variety or extensions of default logics most notably default logics where
priorities between otherwise competing default rules are defined.

5.6 Answer Set Programming

The driving idea behind most of the research in non-monotonic reasoning was to “jump to
a conclusion” in scenarios, where it is intrinsically impossible to formalize every aspect.
Reviewing the techniques presented in this chapter so far, however, reveals that they
are extremely complex. One does not “jump to a conclusion” but rather finds itself in
rather lengthy, often intractable computations which in most cases are not even guaranteed
to succeed because the problem is undecidable or the calculus is incomplete. Can we
efficiently implement non-monotonic reasoning techniques capable of modelling common
sense scenarios?

On the other hand, the techniques presented are often not powerful enough to handle in-
teresting scenarios. For example, completion has considerable problems with disjunctions.
The use of negation as failure in logic programming forces the programmer to replace
the usual negation in logic by negation as failure. But as already shown at the end of
Subsection 5.3.5 there are cases, where negation of failure leads to undesirable results. In
fact, there are cases, where we would like to have both forms of negation in one program.
Consider the following example taken from [GL90]: A certain college in the USA uses the
following rules for awarding scholarships to students:

5.6. ANSWER SET PROGRAMMING 97

1. Every student with a GPA of at least 3.8 is eligible.
2. Every minority student with a GPA of at least 3.6 is eligible.
3. No student with a GPA under 3.6 is eligible.

4. The students whose eligibility is not determined by these rules are interviewed by
the scholarship committee.

The rules can be encoded as follows:

Fi = { eligible(X) — highGPA(X),
eligible(X) — manority(X) A fairGPA(X),
—eligible(X) < —fairGPA(X),
interview(X) < ~eligible(X) A ~ —eligible(X) }

The last implication specifies that interview(X) holds if there is no evidence that eligible(X)

holds and there is also no evidence that —eligible holds.

F1 is to be used in conjunction with a set of literals specifying the values of the
predicates minority, highGPA and fairGPA. Assume that this set is given by

Foy = { fairGPA(john) <,
—highGPA(john) <« }.

It does not contain any information about whether john belongs to a minority. He may
not be a minority student, but he may as well be a minority student who, for whatever
reasons, did not state this fact on his application. Now, the interesting question is, what
happens with john ?

In this section I will present a technique that can handle this problem and has attracted
much attention recently: answer set programming. It is a generalization of the so-called
stable model semantics developed for logic programming by Michael Gelfond and Vladimir
Lifschitz [GL88] and can handle disjunction as well as both kinds of negation. Moreover,
efficient implementions are known. An excellent overview can be found in [Lif99].

5.6.1 Answer Sets

I start by defining the alphabet and the language of the programs underlying answer set
programming. The alphabet is just the usual alphabet for propositional logic extended
by the connective ~/1, which intuitively represents negation as failure. A rule is an
expression of the form

LyV..VLgV~Lg g Voo N~Lp— Ligg N o .OANLp A~Lypig Ao A~ Ly, (5.30)

where all L;, 1 < i < n, are literals and 0 < kK <[< m < n. A rule of the form
shown in (5.30) is called constraint if k=1 = 0. It will later become clear why the name
constraint has been chosen. A program is a set of rules.

Thus F1 U F> is a program, and so is

Fs = { sVvr «
b+~ r }

stable models

rule

constraint

program

closed

answer set

reduct

answer set

98 CHAPTER 5. NON-MONOTONIC REASONING

The latter program describes a little scenario where an agent knows that either the sprin-
kler is on (s) or it is raining (7), and if it is raining then the sky is not blue (b).

The notion of an answer set is first defined for programs which do not contain negation
as failure, i.e., for which k£ =1 and m = n for every rule (5.30) in the program. Let
F be such a program and let M be a satisfiable set of literals. M is said to be closed
under F if for every rule (5.30) of F we find that {Li,...,Lx} N M # () whenever
{Lit1,..., L} CM. M issaid to be an answer set for F if M is minimal among the
sets closed under F (relative to set inclusion).

For the simple example program F3 we find two answer sets, viz. {s} and {r,-b}. If
we extend F3 by the constraint
— s (5.31)

then we obtain a new program JF; whose only answer set is {r,—b}. Fy illustrates a
general property of constraints, which in facts sanctions the name “constraint”: adding a
constraint to a program affects its collection of answer sets by eliminating the answer sets
that “violate” this constraint.

We now extend the notion of answer sets to programs with negation as failure. Let F
be a program and M a satisfiable set of literals. The reduct F|rq of F relative to M
is the set of rules

LiV...VLy <+ LigygAN...NLp,

for all rules (5.30) in F such that {Lx41,...,L} € M and {Lpt1,...,Lp} OM = 0.
One should observe that F|a is a program without negation by failure. M is said to
be an answer set for F iff M is an answer set for F|.

As a simple example consider the program

Fs={p <+ ~q}

The reduct of F5 relative to {p} is
{p <}

Because {p} is an answer set for this reduct, it is an answer set for F5. The reduct of
F5 relative to {p,q} is the empty set. Because {p,q} is not an answer set for the empty
set, it is not an answer set for Fj.

As another example consider the program

It expresses the closed world assumption for the predicate p. Its only answer set is {—p}.
The opposite assumption can also be expressed:

{p < ~-p}.

Its only answer set is {p}.

So far, programs and answer sets were only defined for propositional literals. It is, how-
ever, possible to extend the approach to literals built up from n-ary predicate symbols,
finitely many constants and variables. In this case, rules are viewed as schemas repre-
senting all possible ground instantiations. For example, consider an alphabet with two

5.6. ANSWER SET PROGRAMMING 99

constants 1 and 2, predicate symbol in/2 and variables X and Y. In this case, the
rule
in(X,Y)V-in(X,Y) «

represent the set consisting of the ground rules

in(1,1) vV —in(1,1)
in(1,2) V —in(1,2) +
in(2,1) V—in(2,1)
in(2,2) V —in(2,2)

Fach ground literal can be equivalently replaced by a propositional literal and, hence, the
approach presented in this section can be applied.

With the help of this little trick we can now reconsider the introductory example F;UFs.
This program has only one answers set, viz.

{fairGPA(john), —highGPA(john), interview(john)} (5.32)

This answer set tells us that john is to be invited for the interview.

Answer sets are non-monotonic in the sense that the addition of rules may lead to new
answer sets. In other words, if M is an answer set for F U F’, then it may not be an
answer set for F. To exemplify this behavior reconsider the scholarship example once
again and add

minority(john) <

to Fa. In this case, (5.32) is no longer an answer set, but
{fairGPA(john), —highGPA(john), minority(john), eligible(john)}

is.

Whereas the program

has the unique answer set {p, ¢}, it has no answer sets at all if the last rule is deleted.

5.6.2 Programming with Answer Sets

To illustrate the use of answer sets I will show how answer set programming can be used
to find all Hamiltonian cycles of a given finite directed graph G. A Hamiltonian cycle is
a cyclic tour through the graph visiting each vertex exactly once. The problem of finding
a Hamiltonian cycle is known to be NP-complete. Figure 5.2 shows a graph with two
different Hamiltonian cycles.

Let G be a graph with vertices 0,...,n. The alphabet contains the constants 0, ..., n,
the predicate symbol reachable/1 and the predicate symbol in/2. Informally, reachable(i)
represents the fact that vertex i is reachable from vertex 0, and in(i,j) represents the
fact that the edge from vertex i to vertex j is in the Hamiltonian cycle. We are going

non-momnotonicity

Hamiltonian
cycle

100 CHAPTER 5. NON-MONOTONIC REASONING

VAWAN
NV

Figure 5.2: A graph with two different Hamiltonian cycles: (0, 1, 4, 2, 3, 0) and (0, 1, 2, 3, 4, 0).

to specify a program such that each answer set M of the program corresponds to a
Hamiltonian cycle in the sense that

{(u,v) | in(u,v) € M}
is the set of edges in the Hamiltonian cycle.

The first group of rules in the program is
{in(u,v) V —in(u,v) < | (u,v) € G} (5.33)

stating that each edge in G either is in the Hamiltonian cycle or is not in the Hamiltonian
cycle. We will now add constraints that eliminate all subsets of the edges in G which are
not Hamiltonian cycles. This is done in two steps. Firstly, we eliminate subsets in which
a vertex has more than one outgoing edge:

{+ in(u,v) A in(u,w) | {(u,v), (u,w) € G and v % w} (5.34)
Secondly, we eliminate subsets in which a vertex has more than one ingoing edge:
{+ in(v,u) A in(w,u) | (v,u), (w,u) € G and v % w} (5.35)

It remains to ensure that by starting from the vertex 0 following the in-edges one can
visit all vertices in G and return to 0. To this end, we specify

{reachable(u) < in(0,u) | (0,u) € G}
U {reachable(v) <— reachable(u) A in(u,v) | (u,v) € G} (5.36)
U {« ~reachable(u) | 0 < u < n}

We leave it to the interested reader to check that the answer sets for the program

F =(5.33) U (5.34) U (5.35) U (5.36)

correspond to the Hamiltonian cycles of the example graph.

5.6.3 Computing Answer Sets

Various systems have been developed which compute answer sets for restricted classes
of programs. These systems have taken a remarkable development over the last couple
of years in terms increasing their expressiveness as well as their efficiency considerably.
Notably, these are the systems like Smodels [NS97, Nie0O], Dlv [ELM * 98] or DeReS
[CMMT96].

5.7. REMARKS 101

5.7 Remarks

This chapter contains just some of the major approaches to model non-monotonic rea-
soning. There is a variety of other techniques like inheritance networks (e.g. [HTT90]),
modal non-monotonic logics, auto-epistemic logics (e.g. [MT91]), conditional logics or rel-
evance logics [Del91], for which we must refer the reader to the literature. There are also
many papers on relating the various approaches to non-monotonic reasoning, although no
general theory about non-monotonic reasoning has been developed so far.

We haven’t mentioned complexity results for the various non-monotonic reasoning sys-
tems, althouth many such results have been established in the literature.

BELIEF REVISION, TRUTH MAINTENANCE SYSTEMS, ELABORATION TOLERANCE

102 CHAPTER 5. NON-MONOTONIC REASONING

Bibliography

[AB94]

[AmaTl]

[Ave95]

[Baall]

[BCM * 03]

[Bib92]

[BMSS]

[BN9S]

[Bra75)

[Bra78]

[Bro87]

[BS85]

[BS94]

K.R. Apt and R. Bol. Logic programming and negation: A survey. Technical
Report CS-R9402, CWI Centrum voor Wiskunde en Informatica, 1994.

S. Amarel. On representation of problems of reasoning about actions. In
D. Michie, editor, Machine Intelligence, volume 3, pages 131-171. Edinburgh
University Press, 1971.

J. Avenhaus. Reduktionssysteme. Springer, Berlin, Heidelberg, New York,
1995.

F. Baader. What’s new in description logics. Informatik Spektrum, 34(5):434—
442, 2011.

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider.
The Description Logic Handbook. Cambridge University Press, 2003.

W. Bibel. Intellectics. In S. C. Shapiro, editor, Encyclopedia of Artificial
Intelligence, pages 705-706. John Wiley, New York, 1992.

R. S. Boyer and J. S. Moore. A Computational Logic Handbook, volume 23 of
Perspectives in Computing. Academic Press, 1988.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univer-
sity Press, 1998.

D. Brand. Proving theorems with the modification method. STAM Journal of
Computing, 4:412-430, 1975.

R. J. Brachman. Structured inheritance networks. In W. A. Woods and R. J.
Brachman, editors, Research in Natural Language Understanding, Annual Re-
port, Quarterly Research Reports No. 1, BBN Report No. 4274. Bolt, Beranek
and Newman Inc., 1978.

F. M. Brown. The Frame Problem in Artificial Intelligence: Proceedings of
the 1987 Workshop. Morgan Kaufmann Publishers, Inc., 1987.

R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9(2):171-216, 1985.

F. Baader and J. Siekmann. Unification theory. In J.A. Robinson D.M. Gab-
bay, C.J. Hogger, editor, Handbook of Logic in Artificial Intelligence and Logic
Programming, Volume 2, pages 41-125. Oxford University Press, 1994.

103

104

(BS99

[Buc87]

[Bun83|

[Biin98]

[Bur69]

[Biirs6]

[BvHHS90]

[CDT91]

[Cla78]

[CMMTI6]

[Del91]

[ELM * 98]

[FGM * 07

[FH83]

BIBLIOGRAPHY

F. Baader and W. Snyder. Unification theory. In J. A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning. Elsevier Science
Publishers B.V., 1999.

B. Buchberger. History and basic features of the critical pair / completion
procedure. Journal of Symbolic Computation, 3(1,2):3-38, 1987.

A. Bundy. The Computer Modelling of Mathematical Reasoning. Academic
Press, 1983.

R. Biindgen. Termersetzungssysteme. Vieweg, 1998.

R. M. Burstall. Proving properties of programs by structural induction. Com-
put. J., 12(1), 1969.

H.-J. Biirckert. Lazy theory unification in Prolog: An extension of the War-
ren abstract machine. In Proceedings of the German Workshop on Artificial
Intelligence, pages 277288, 1986.

A. Bundy, F. van Hermelen, C. Horn, and A. Smaill. The oyster-clam system.
In Proceedings of the Tenth International Conference on Automated Deduc-
tion, volume 449 of LNAI Springer, 1990.

L. Console, D. Dupré, and P. Torasso. On the relationship between abduction
and deduction. Journal of Logic and Computation, 2(5):661-690, 1991.

K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic
and Databases, pages 293-322. Plenum, New York, 1978.

P. Cholewinski, V.W. Marek, A. Mikitiuk, and M. Truszczynski. Default
reasoning system DeReS. In Proceedings of the 5th International Conference
on Principles of Knowledge Representation anr Reasoning, pages 518-528.
Morgan Kaufmann Publishers, 1996.

J. P. Delgrande. Incorporating nonmonotonic reasoning in horn clause the-
ories. In Proceedings of the AAAI National Conference on Artificial Intelli-
gence, 1991.

T. Eiter, N. Leone, C. Mateis, G. Pfeier, and F. Scarnello. The KR system
DLV: Progress report, comparisons and benchmarks. In Proceedings of the
6th International Conference on Principles of Knowledge Representation and
Reasoning, pages 406-417. Morgan Kaufmann Publishers, 1998.

C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and
H. Zankl. SAT solving for termination analysis with polynomial interpreta-
tions. In J. Marques-Silva and K.A. Sakallah, editors, Proc. SAT 2007, volume
4501 of Lecture Notes in Computer Science, pages 340-354, Berlin Heidelberg,
2007. Springer.

F. Fages and G Huet. Complete sets of unifiers and matchers in equational
theories. In Proceedings of the Colloguium on Trees in Algebra and Program-
ming, 1983.

BIBLIOGRAPHY 105

[FH86]

[GHS96]

[GLSS]

[GLY0]

[God31]

[GPP8Y)

[GRS6]

[Hay73|

[Hay79]

[HL78]

[HMS6]

[H&189a]

[H&189b]

[HE192]

[HS90]

F. Fages and G Huet. Complete sets of unifiers and matchers in equational
theories. Journal of Theoretical Computer Science, 43:189-200, 1986.

G. Grofle, S. Holldobler, and J. Schneeberger. Linear deductive planning.
Journal of Logic and Computation, 6(2):233-262, 1996.

M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In R. Kowalski and K. Bowen, editors, Proceedings of the International
Joint Conference and Symposium on Logic Programming, pages 1070-1080.
MIT Press, 1988.

M. Gelfond and V. Lifschitz. Logic programs with classical negation. In
D. Warren and P. Szeredi, editors, Proceedings of the International Conference
on Logic Programming, pages 579-597. MIT Press, 1990.

K. Godel. Uber formal unentscheidbare sétze der principia mathematica und
verwandter systeme i. Monatshefte fiir Mathematik und Physik, 38:173-198,
1931. english translation in [?].

M. Gelfond, H. Przymusinska, and T. Przymusinski. On the relationship be-
tween circumscription and negation as failure. Artificial Intelligence, 38(1):75—
94, 1989.

J. H. Gallier and S. Raatz. SLD-resolution methods for Horn clauses with
equality based on E-unification. In Proceedings of the Symposium on Logic
Programming, pages 168-179, 1986.

P. J. Hayes. The frame problem and related problems in artificial intelligence.
In A. Elithorn and D. Jones, editors, Artificial and Human Thinking, pages
45-49. Jossey-Bass, San Francisco, 1973.

P. J. Hayes. The logic of frames. In Metzing, editor, Frame Conceptions and
Text Understanding. de Gruyter, Berlin, 1979.

G. Huet and D. Lankford. On the uniform halting problem for term rewriting
systems. Technical Report 283, IRIA, 1978.

S. Hanks and D. McDermott. Default reasoning, nonmonotonic logics, and the
frame problem. In Proceedings of the AAAI National Conference on Artificial
Intelligence, pages 328-333, 1986.

S. Holldobler. Combining logic programming and equation solving. Technical
report, FG Intellektik, FB Informatik, TH Darmstadt, 1989.

S. Holldobler. Foundations of Equational Logic Programming, volume 353 of
Lecture Notes in Artificial Intelligence. Springer, Berlin, 1989.

S. Holldobler. On deductive planning and the frame problem. In A. Voronkov,
editor, Proceedings of the Conference on Logic Programming and Automated
Reasoning, pages 13-29. Springer, LNCS, 1992.

S. Holldobler and J. Schneeberger. A new deductive approach to planning.
New Generation Computing, 8:225-244, 1990.

106

[HS96]

[HST93]

[HTT90]

[HW32]

[KB70]

[KKT93]

[KMS7]

[Kow91]

[LB87]

[Lif85]

[LifS6]

[Lif87]

[Lif90]

[Lif99]

[L1093]

[McC63]

[McC90]

BIBLIOGRAPHY

D. Hutter and C. Sengler. INKA: Tth next generation. In Proceedings of the
Conference on Automated Deduction, 1996.

S. Holldobler, J. Schneeberger, and M. Thielscher. ACl—unification/matching
in linear logic programming. In F. Baader, J. Siekmann, and W. Snyder, ed-
itors, Proceedings of the Sixth International Workshop on Unification. BUCS
Tech Report 93-004, Boston University, Computer Science Department, 1993.

J. F. Horty, R. H. Thomason, and D. S. Touretzky. A skeptical theory of inher-
itance in nonmonotonic semantic networks. Artificial Intelligence, 42:311-348,
1990.

C. Hartshorn and P. Weiss, editors. Collected Papers of Charles Sanders
Peirce, volume 2. Harvard University Press, 1932.

D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras.
In Leech, editor, Computational Problems in Abstract Algebra, pages 263-297.
Pergamon Press, 1970.

A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive Logic Programming.
Journal of Logic and Computation, 2(6):719-770, 1993.

D. Kapur and D. R. Musser. Proof by consistency. Artificial Intelligence,
31(2):125-157, 1987.

R.A. Kowalski. Logic programming in artificial intelligence. In Proceedings of
the International Joint Conference on Artificial Intelligence, 1991.

H. J. Levesque and R. J. Brachman. Expressiveness and tractability in knowl-
edge representation and reasoning. Computational Intelligence, 3:78-93, 1987.

V. Lifschitz. Computing circumscription. In Proceedings of the International
Joint Conference on Artificial Intelligence, pages 121-127, 1985.

V. Lifschitz. On the satisfiability of circumscription. Artificial Intelligence,
28(1):17-27, 1986.

V. Lifschitz. Pointwise circumscription. In M. Ginsberg, editor, Nonmonotonic
Reasoning, pages 179-193. Morgan Kaufmann, 1987.

V. Lifschitz. Frames in the space of situations. Artificial Intelligence, 46:365—
376, 1990.

V. Lifschitz. Answer set planning. In Proceedings of the International Con-
ference on Logic Programming, pages 23-37. MIT Press, 1999.

J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1993.

J. McCarthy. Situations and actions and causal laws. Stanford Artificial
Intelligence Project: Memo 2, 1963.

J. McCarthy. Circumscription - a form of non-monotonic reasoning. Artificial
Intelligence, 13:27-39, 1990.

BIBLIOGRAPHY 107

[MH69]

[Min75]

[Min82)

[MMS2]

[MT91]

[Neb90]

[New42]

[NieO0]

[NS90]

[NS97]

[P1a93]

[Poo88]

[PW78]

[Qui68]

[Rei77]

J. McCarthy and P. J. Hayes. Some philosophical problems from the stand-
point of Artificial Intelligence. In B. Meltzer and D. Michie, editors, Machine
Intelligence 4, pages 463 — 502. Edinburgh University Press, 1969.

M. L. Minsky. A framework for representing knowledge. In Winston, editor,
The Psychology of Computer Vision, pages 211-277. McGraw-Hill, 1975.

J. Minker. On indefinite data bases and the closed world assumption. In
Proceedings of the Conference on Automated Deduction, volume 138 of LNCS,
pages 292-308. Springer, 1982.

A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans-
actions on Programming Languages and Systems, 4:258-282, 1982.

W. Marek and M. Truszczynski. Autoepistemic logic. J. of the ACM, 38:588—
619, 1991.

B. Nebel. Terminological reasoning is inherently intractable. Artificial Intel-
ligence, 43:235-249, 1990.

M. H. A. Newman. On theories with a combinatorical definition of ‘equiva-
lence’. Annuals of Mathematics, 43:223-243, 1942.

I. Niemela. Logic programs with stable model semantics as a constraint pro-
gramming paradigm. Annals of Mathematics and Artificial Intelligence, 2000.
(to appear).

B. Nebel and G. Smolka. Representation and reasoning with attributive de-
scriptions. In K. H. Bléasius, U. Hedtstiick, and C.-R. Rollinger, editors, Sorts
and Types in Artificial Intelligence, pages 112—139. Springer, LNCS 418, 1990.

I. Niemeléd and P. Simons. Smodels — an implementation of the well-founded
and stable model semantics. In Proceedings of the jth International Conder-
ence on Logic Programming and Non—monotonic Reasoning, pages 420-429,

1997.

David A. Plaisted. Equational creasoning and term rewriting system. In
D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic
in Artificial Intelligence and Logic Programming, volume 1, chapter 5. Oxford
University Press, Oxford, 1993.

D. Poole. A logical framework for default reasoning. Artificial Intelligence,
36:27-47, 1988.

M. S. Paterson and M. N. Wegman. Linear unification. Journal of Computer
and System Sciences, 16:158-167, 1978.

R. M. Quillian. Semantic memory. In Minsky, editor, Semantic Information
Processing, pages 216-270. MIT Press, 1968.

R. Reiter. On closed world data bases. In H. Gallaire and J. M. Nicolas,
editors, Workshop Logic and Databases, CERT, Toulouse, France, 1977.

108

[Rei80]

[Rei9l]

[RNO5]
[Rob65]

[Rob67]

[Sch76]

[Sus75]

[Wal94]

[Wei96]

[WooT5]

BIBLIOGRAPHY

R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81 — 132,
1980.

R. Reiter. The frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression. In V. Lifschitz,
editor, Artificial Intelligence and Mathematical Theory of Computation —
Papers in Honor of John McCarthy, pages 359-380. Academic Press, 1991.

S. Russell and P. Norvig. Artificial Intelligence. Prentice Hall, 1995.

J. A. Robinson. A machine—oriented logic based on the resolution principle.
J. of the ACM, 12:23-41, 1965.

J. A. Robinson. A review on automatic theorem proving. In Annual Sym-
posia in Aplied Mathematics XIX, pages 1-18. American Mathematical Soci-
ety, 1967.

L. K. Schubert. Extending the expressive power of semantic networks. Arti-
ficial Intelligence, 7(2):163-198, 1976.

G. J. Sussman. A Computer Model of Skill Aquisition. Elsevier Publishing
Company, 1975.

C. Walther. Mathematical induction. In D. M. Gabbay, C. J. Hogger, and
J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 2, pages 127-228. Oxford Science Publications, 1994.

C. Weidenbach. Computational Aspects of a First—Order Logic with Sorts.
PhD thesis, Universitiat des Saarlandes, Saarbriicken, 1996.

W. A. Woods. What’s in a link: Foundations for semantic networks. In
D. G. Bobrow and A. M. Collins, editors, Representation and Understanding:
Studies in Cognitive Science, pages 35-82. Academic Press, 1975.

Index

Ug(s,t), 29
Ap, 76
£ -instance, 29
strict, 29
£ -unification
procedure, 32
minimal, 32
universal, 32
& -unification problem, 28
£ -unification problem, 32
elementary, 32
with constants), 32

£ -unifier, 28

Fo, 74

To(F), 76

To(F,p), 75

Tewa(F), 68, 68

~, 78

<~Av[’a):CWA> , 68

<]:Da]:W>) 85

By, 87

Es, 87

':CWA /2, 68

Fipy > 82

<, 70

=<, 70

=p, 70

& -unification
procedure

complete, 32
& -unification problem
general, 32

abduced, 56
abducible, 52, 56, 57
abduction, 52, 55
in logic, 56
action, 42
applicable, 42
application, 43

pickup, 43
putdown, 43
stack, 43
unstack, 43
alphabet, 11
answer set, 90
answer set programming, 89
assertion, 6
associativity, 33

blocked, 79
box

calculus

fluent

simple, 44

canonical, 19
case

base, 62

step, 63
Church-Rosser property, 19
circumscription, 80, 81
closed, 90

default knowledge base, 85

default rule, 84
closed world assumption, 67

extended, 71

generalized, 71
combination problem, 34
commutativity, 33
completion, 25, 72, 76

failure, 25

loop, 25

parallel, 76
completion algorithm, 73
completion formula, 72
concept

atomic, 3

axiom, 5

109

110

generalized, 5
complex, 3
formula, 4
atomic, 4
condition, 42
confluent, 19
ground, 19
locally, 22
conjunctive planning problem, 42
consequent, 84
constraint, 89
convergent, 19
credolous conclusion, 87

deduction, 51, 52
default, 59, 83
knowledge base, 85
rule, 84, 84
default knowledge base
extension of, 86
default logic, 83
default reasoning, 59
defined in, 56
derivation, 13
disjointness
wrt Kr, 8
distributivity, 33
and associativity, 34
both-sided, 33
left, 33
right, 33

effect, 42
equality
axioms of, 11
equation, 11
equivalence, 25
wrt Kr, 8
explained, 57
explanation, 56
basic, 56
explantion
minimal, 56
extended closed world assumption, 71
extension
of default knowledge base, 86

finitely failed, 78
flounder, 79

INDEX

fluent matching problem
algorithm, 39
fluents, 36
follows minimally, 82
form
normal, 18
frame problem, 41
solving, 46
framework
abductive, 57
function
var , 17
relativization, 54

generalized closed world assumption, 71
goal
satisfied, 43
group
Abelian, 33
semi
Abelian, 33
idempotent, 33

Hamiltonian cycle, 91

idempotent, 49
incrementality, 21
induction, 52, 62

principle

Peano, 62

variable, 63
integrity constraint, 57
interpretation

non-standard, 63
irreducible, 18

justification, 84
knowledge assimilation, 58

least model, 70
level, 77
level mapping, 77
list, 16
empty, 16
logic
description, 3
eqational, 11
logic program
normal, 76

INDEX

mapping
137
-~ 37
matcher, 17
matching, 17
£-,34
fluent, 38
submultiset, 38
minimal
model, 70
missionaries and cannibals, 65
model, 6
least, 70
minimal, 70
sub, 70
monotonic logics, 65
monotonicity, 9
multiset, 35
operations
difference, 35
equality, 35
Intersection, 36
membership, 35
submultiset, 36
union, 35

negation as failure, 78
negative, 73
non-monotonic, 67

answer sets, 91
normal, 84
normalization, 18
notation

L[s/t], 13

L[s], 13

open
default knowledge base, 85
default rule, 84

open world assumption, 67

order
lexicographic path, 21
more powerful than, 21
partial, 8, 20
polynomial, 21
recursive path, 21
termination, 20
well-founded, 20

overlap

textbf, 22

pair

critical, 24

trivial, 24

parallel completion, 75
paramodulant, 13
paramodulation, 13
plan, 43
positive, 73
predicate

completion, 72, 75

equational system F¢ for, 75

predicate symbol
defined, 76
prediction problem, 41
prerequisite, 84
problem
decision, 27
program, 89
property
full invariance, 20
replacement, 20

qualification problem, 41

query
normal, 76

ramification problem, 41
realisation problem, 9
redex, 22
reducible, 18
reduct, 90
reflexivity, 12, 58
refutation, 13
relation

<g, 29

~, 11, 58

~g, 12

Ir, 19

=T, 8

=¢, 30

R, 1T

<g,29

=, 51

>r, 8

—r, 16

Cr,8

Sr, 17

111

112

5,16

=, 19

congruence

least, 12

equality, 11

equivalence, 8
resolution, 12

SLDE, 45
resolvent

SLDE, 45
revision belief, 58
rewriting, 16, 16
ring

Boolean, 34

commutative

with identity, 33

role formula, 4
roles, 3
rule, 89

rewrite, 16

satisfiability, 69
satisfiable, 69
sceptical conclusion, 87
search tree, 78
selection
non-deterministic
don’t-care, 38
don’t-know, 38
semi-normal, 84
Skolemization, 13
SLDE-resolution, 45
SLDNF-derivation, 78
SLDNF-resolution, 78
SLDNF-resolvent, 78
solitary, 73
solution, 43
sort
base, 53
declaration
textbf, 55
textbf, 52
top, 53
specificity, 9
state
goal, 42
initial, 42
stratified, 77

submodel, 70
substitutions
£ -equal, 29
substitutivity, 12
subsumption, 7
superposition, 24
Sussman’s anomaly, 43, 46, 47
solving, 48
symbol
1,36
:, 16
[],16
E4,33
Ec, 33
ép, 33
Eacn , 49
Eac, 33
Eaa, 33
Ear, 33
EBRr, 34
Ecr1, 33
Epa, 34
Epr, 33
Epr, 33
Rs, 53
o, 36
pUs(s,t), 30
cUg(s,t), 30
relation
action , 44
causes , 44
symmetry, 12
system
equational, 11
rewriting
term, 16

taxonomy, 8
term

fluent, 36

size, 20
terminating, 19
terminology, 5
theory

revision, 59
transitivity, 12

unification
& -general, 34

INDEX

INDEX

algorithm, 27
fluent, 38
submultiset, 38
theory, 27
type, 31
under equality, 28
unification type
infinitary, 31
unification type
finitary, 31
unitary, 31
zero, 31
unifier
E-, 27
complete set, 29
minimal, 30
incomparable, 29
unsatisfiability
wrt Kp, 7

valley form, 18, 27
variable
assignment
sorted, 53
view
satisfiability, 57
theoremhood, 57

world
blocks, 36, 43
open, 9

113

