
KNOWLEDGE GRAPHS

Lecture 3: Modelling in RDF / SPARQL Basics

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 29th Oct 2019

https://iccl.inf.tu-dresden.de/web/Knowledge_Graphs_(WS2019/20)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en

Review: RDF Graphs

The W3C Resource Description Framework considers three types of RDF terms:

• IRIs, representing a resource using a global identifier

• Blank nodes, representing an unspecified resource without giving any identifier
• Literals that represent values of some datatype

– either typed literals, such as
"2019-10-29"^^<http://www.w3.org/2001/XMLSchema#date>

– or language-tagged strings, such as "Knowledge Graphs"@en

RDF graphs are sets of triples consisting of

• a subject, which can be an IRI or bnode,

• a predicate, which can be an IRI,

• an object, which might be an IRI, bnode, or literal

{ naturally viewed as hypergraphs with ternary edges

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 2 of 23

Review: Turtle
https://example

.org/Melitta-Bentz

https://www.

dresden.de/#uri

"547172"^^xsd:int

"Melitta Bentz"@en

"1873-01-31"^^xsd:date

https://example

.org/born-in

http://www.w3.org/2000/

01/rdf-schema#label

https://example.

org/birthdatehttps://example

.org/invention https://example

.org/inventor

https://example.

org/population

could be encoded as:

BASE <https://example.org/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

<Melitta-Bentz> rdfs:label "Melitta Bentz"@en ;

<birthdate> "1873-01-31"^^xsd:date ;

<invention> [<inventor> <Melitta-Bentz>] ;

<born-in> <https://www.dresden.de/#uri> .

<https://www.dresden.de/#uri> <population> 547172 .

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 3 of 23

Representing data in RDF
Goal: Let’s manage more of our data in RDF (for interoperability, data integration,
uniform tooling, use RDF software, . . .) – Is this possible?

Any information can be encoded in RDF, in particular:

• Relational data, including CSV files

• XML documents

• Other kinds of graphs

• Other kinds of database formats

• (Abstractions of) program code

• . . .

But not all data should be RDF (e.g., media files or executable binaries)

Main steps that are needed:

• Define IRIs for relevant resources

• Define RDF graph structure from given data structure

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 4 of 23

Representing data in RDF
Goal: Let’s manage more of our data in RDF (for interoperability, data integration,
uniform tooling, use RDF software, . . .) – Is this possible?

Any information can be encoded in RDF, in particular:

• Relational data, including CSV files

• XML documents

• Other kinds of graphs

• Other kinds of database formats

• (Abstractions of) program code

• . . .

But not all data should be RDF (e.g., media files or executable binaries)

Main steps that are needed:

• Define IRIs for relevant resources

• Define RDF graph structure from given data structure

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 4 of 23

Representing data in RDF
Goal: Let’s manage more of our data in RDF (for interoperability, data integration,
uniform tooling, use RDF software, . . .) – Is this possible?

Any information can be encoded in RDF, in particular:

• Relational data, including CSV files

• XML documents

• Other kinds of graphs

• Other kinds of database formats

• (Abstractions of) program code

• . . .

But not all data should be RDF (e.g., media files or executable binaries)

Main steps that are needed:

• Define IRIs for relevant resources

• Define RDF graph structure from given data structure

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 4 of 23

Encoding data as graphs

Challenges when translating data to RDF:

• RDF has only triples – what to do with relations of higher arity (e.g., from a
relational database)?
{ covered, e.g., by RDB2RDF standard; fairly common

• RDF graphs are (unordered) sets of triples – how to represent ordered lists
(including, e.g., the ordered children of a node in XML)?
{ several possible ways around; no standard solution

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 5 of 23

Encoding data as graphs

Challenges when translating data to RDF:

• RDF has only triples – what to do with relations of higher arity (e.g., from a
relational database)?
{ covered, e.g., by RDB2RDF standard; fairly common

• RDF graphs are (unordered) sets of triples – how to represent ordered lists
(including, e.g., the ordered children of a node in XML)?
{ several possible ways around; no standard solution

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 5 of 23

Encoding data as graphs

Challenges when translating data to RDF:

• RDF has only triples – what to do with relations of higher arity (e.g., from a
relational database)?
{ covered, e.g., by RDB2RDF standard; fairly common

• RDF graphs are (unordered) sets of triples – how to represent ordered lists
(including, e.g., the ordered children of a node in XML)?
{ several possible ways around; no standard solution

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 5 of 23

Representing n-ary relations
Consider the following relational table:

Film Actor Character

Arrival Amy Adams Louise Banks

Arrival Jeremy Renner Ian Donnelly

Gravity Sandra Bullock Ryan Stone

Possible encoding:

Gravity

Sandra Bullock Ryan Stone

actor character

Possible encoding:

Arrival

Amy Adams

Louise Banks

Jeremy Renner

Ian Donnelly

Gravity

Sandra Bullock Ryan Stone

actor-role

actor-role

actor

character

actor

character

actor-role

actor character

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 6 of 23

Representing n-ary relations
Consider the following relational table:

Film Actor Character

Arrival Amy Adams Louise Banks

Arrival Jeremy Renner Ian Donnelly

Gravity Sandra Bullock Ryan Stone

Possible encoding:

Gravity

Sandra Bullock Ryan Stone

actor character

Possible encoding:

Arrival

Amy Adams

Louise Banks

Jeremy Renner

Ian Donnelly

Gravity

Sandra Bullock Ryan Stone

actor-role

actor-role

actor

character

actor

character

actor-role

actor character

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 6 of 23

Representing n-ary relations
Consider the following relational table:

Film Actor Character

Arrival Amy Adams Louise Banks

Arrival Jeremy Renner Ian Donnelly

Gravity Sandra Bullock Ryan Stone

Insufficient encoding:

Gravity

Sandra Bullock Ryan Stone

actor character

Possible encoding:

Arrival

Amy Adams

Louise Banks

Jeremy Renner

Ian Donnelly

Gravity

Sandra Bullock Ryan Stone

actor-role

actor-role

actor

character

actor

character

actor-role

actor character

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 6 of 23

Reification

Film Actor Character

Arrival Amy Adams Louise Banks

Arrival Jeremy Renner Ian Donnelly

Gravity Sandra Bullock Ryan Stone

Arrival

Amy Adams

Louise Banks

Jeremy Renner

Ian Donnelly

Gravity

Sandra Bullock Ryan Stone

actor-role

actor-role

actor

character

actor

character

actor-role

actor character

This type of encoding is known as reification:
• Introduce auxiliary nodes to represent relationships
• Connect related objects and values with the auxiliary node

{ Can be realised in many specific ways (bnodes or not, direction of relations)

RDF Reification: RDF even has a dedicated vocabulary to reify RDF triples:

• Reified triples x marked as x rdf:type rdf:Statement .

• Triple-pieces connected by properties rdf:subject, rdf:predicate, and
rdf:object

However, this is not frequently used (reasons: specific to triples, inflexible, incom-
patible with OWL DL).

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 7 of 23

Reification

Film Actor Character

Arrival Amy Adams Louise Banks

Arrival Jeremy Renner Ian Donnelly

Gravity Sandra Bullock Ryan Stone

Arrival

Amy Adams

Louise Banks

Jeremy Renner

Ian Donnelly

Gravity

Sandra Bullock Ryan Stone

actor-role

actor-role

actor

character

actor

character

actor-role

actor character

This type of encoding is known as reification:
• Introduce auxiliary nodes to represent relationships
• Connect related objects and values with the auxiliary node

{ Can be realised in many specific ways (bnodes or not, direction of relations)

RDF Reification: RDF even has a dedicated vocabulary to reify RDF triples:

• Reified triples x marked as x rdf:type rdf:Statement .

• Triple-pieces connected by properties rdf:subject, rdf:predicate, and
rdf:object

However, this is not frequently used (reasons: specific to triples, inflexible, incom-
patible with OWL DL).

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 7 of 23

RDB2RDF

The W3C’s “RDB2RDF” working group has published a direct mapping from relational
databases to RDF graphs (https://www.w3.org/TR/rdb-direct-mapping/):

• Basic approach is to reify triples as shown

• Special guidelines for creating IRIs for auxiliary nodes (no bnodes!), taking table
names into account

• Mapping from SQL table entries to RDF literals

• Additional properties and triples to capture foreign-key relations

More specific mappings can be defined using the R2RML RDB to RDF Mapping
Language (https://www.w3.org/TR/r2rml/).

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 8 of 23

https://www.w3.org/TR/rdb-direct-mapping/
https://www.w3.org/TR/r2rml/

Representing order
Problem: RDF can easily represent sets, but not lists

Possible solutions:
• Represent lists as linked lists

Supported by “RDF Collections” (rdf:first, rdf:rest, rdf:nil)
Pro: Faithful, elegant graph representation; easy insert/delete
Con: Inefficient access (many joins)

• Use order-indicating properties (one property per position)
Supported by “RDF Containers” (rdf:_1, rdf:_2, . . . , rdfs:ContainerMembershipProperty)
Pro: direct access; length only detectable by absence of triples
Con: list structure requires external knowledge; harder insert/delete

• Give up order and represent lists as sets
Easy to do in RDF
Pro: simple; may suffice for many use cases
Con: no order

• Other encodings are conceivable . . .

Possible compromise: Combine several encodings within one graph
(increased data volume – easier to read – harder to write)

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 9 of 23

Representing order
Problem: RDF can easily represent sets, but not lists

Possible solutions:
• Represent lists as linked lists

Supported by “RDF Collections” (rdf:first, rdf:rest, rdf:nil)
Pro: Faithful, elegant graph representation; easy insert/delete
Con: Inefficient access (many joins)

• Use order-indicating properties (one property per position)
Supported by “RDF Containers” (rdf:_1, rdf:_2, . . . , rdfs:ContainerMembershipProperty)
Pro: direct access; length only detectable by absence of triples
Con: list structure requires external knowledge; harder insert/delete

• Give up order and represent lists as sets
Easy to do in RDF
Pro: simple; may suffice for many use cases
Con: no order

• Other encodings are conceivable . . .

Possible compromise: Combine several encodings within one graph
(increased data volume – easier to read – harder to write)

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 9 of 23

Representing order
Problem: RDF can easily represent sets, but not lists

Possible solutions:
• Represent lists as linked lists

Supported by “RDF Collections” (rdf:first, rdf:rest, rdf:nil)
Pro: Faithful, elegant graph representation; easy insert/delete
Con: Inefficient access (many joins)

• Use order-indicating properties (one property per position)
Supported by “RDF Containers” (rdf:_1, rdf:_2, . . . , rdfs:ContainerMembershipProperty)
Pro: direct access; length only detectable by absence of triples
Con: list structure requires external knowledge; harder insert/delete

• Give up order and represent lists as sets
Easy to do in RDF
Pro: simple; may suffice for many use cases
Con: no order

• Other encodings are conceivable . . .

Possible compromise: Combine several encodings within one graph
(increased data volume – easier to read – harder to write)

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 9 of 23

Representing order
Problem: RDF can easily represent sets, but not lists

Possible solutions:
• Represent lists as linked lists

Supported by “RDF Collections” (rdf:first, rdf:rest, rdf:nil)
Pro: Faithful, elegant graph representation; easy insert/delete
Con: Inefficient access (many joins)

• Use order-indicating properties (one property per position)
Supported by “RDF Containers” (rdf:_1, rdf:_2, . . . , rdfs:ContainerMembershipProperty)
Pro: direct access; length only detectable by absence of triples
Con: list structure requires external knowledge; harder insert/delete

• Give up order and represent lists as sets
Easy to do in RDF
Pro: simple; may suffice for many use cases
Con: no order

• Other encodings are conceivable . . .

Possible compromise: Combine several encodings within one graph
(increased data volume – easier to read – harder to write)

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 9 of 23

Representing order
Problem: RDF can easily represent sets, but not lists

Possible solutions:
• Represent lists as linked lists

Supported by “RDF Collections” (rdf:first, rdf:rest, rdf:nil)
Pro: Faithful, elegant graph representation; easy insert/delete
Con: Inefficient access (many joins)

• Use order-indicating properties (one property per position)
Supported by “RDF Containers” (rdf:_1, rdf:_2, . . . , rdfs:ContainerMembershipProperty)
Pro: direct access; length only detectable by absence of triples
Con: list structure requires external knowledge; harder insert/delete

• Give up order and represent lists as sets
Easy to do in RDF
Pro: simple; may suffice for many use cases
Con: no order

• Other encodings are conceivable . . .

Possible compromise: Combine several encodings within one graph
(increased data volume – easier to read – harder to write)
Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 9 of 23

Introduction to SPARQL

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 10 of 23

An RDF query language and more

SPARQL is short for SPARQL Protocol and RDF Query Language

• W3C standard since 2008

• Updated in 2013 (SPARQL 1.1)

• Supported by many graph databases

The SPARQL specification consists of several major parts:

• A query language

• Result formats in XML, JSON, CSV, and TSV

• An update language

• Protocols for communicating with online SPARQL services

• A vocabulary for describing SPARQL services

Full specifications can be found online:
https://www.w3.org/TR/sparql11-overview/

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 11 of 23

https://www.w3.org/TR/sparql11-overview/

An RDF query language and more

SPARQL is short for SPARQL Protocol and RDF Query Language

• W3C standard since 2008

• Updated in 2013 (SPARQL 1.1)

• Supported by many graph databases

The SPARQL specification consists of several major parts:

• A query language

• Result formats in XML, JSON, CSV, and TSV

• An update language

• Protocols for communicating with online SPARQL services

• A vocabulary for describing SPARQL services

Full specifications can be found online:
https://www.w3.org/TR/sparql11-overview/

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 11 of 23

https://www.w3.org/TR/sparql11-overview/

SPARQL queries

The heart of SPARQL is its query language.

Example 3.1: The following simple SPARQL query asks for a list of all resource
IRIs together with their labels:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?resource ?label
WHERE {
?resource rdfs:label ?label .

}

Basic concepts:

• SPARQL uses variables, marked by their initial ?

• The core of a query is the query condition within WHERE { . . . }

• Conditions can be simple patterns based on triples, similar to Turtle syntax

• SELECT specifies how results are produced from query matches

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 12 of 23

Basic SPARQL by example

Example 3.2: Find up to ten people whose daughter is a professor:

PREFIX eg: <http://example.org/>
SELECT ?parent
WHERE {
?parent eg:hasDaughter ?child .

?child eg:occupation eg:Professor .

} LIMIT 10

Example 3.3: Count all triples in the database:

SELECT (COUNT(*) AS ?count)
WHERE { ?subject ?predicate ?object . }

Example 3.4: Count all predicates in the database:

SELECT (COUNT(DISTINCT ?predicate) AS ?count)
WHERE { ?subject ?predicate ?object . }

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 13 of 23

Basic SPARQL by example

Example 3.2: Find up to ten people whose daughter is a professor:

PREFIX eg: <http://example.org/>
SELECT ?parent
WHERE {
?parent eg:hasDaughter ?child .

?child eg:occupation eg:Professor .

} LIMIT 10

Example 3.3: Count all triples in the database:

SELECT (COUNT(*) AS ?count)
WHERE { ?subject ?predicate ?object . }

Example 3.4: Count all predicates in the database:

SELECT (COUNT(DISTINCT ?predicate) AS ?count)
WHERE { ?subject ?predicate ?object . }

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 13 of 23

Basic SPARQL by example

Example 3.2: Find up to ten people whose daughter is a professor:

PREFIX eg: <http://example.org/>
SELECT ?parent
WHERE {
?parent eg:hasDaughter ?child .

?child eg:occupation eg:Professor .

} LIMIT 10

Example 3.3: Count all triples in the database:

SELECT (COUNT(*) AS ?count)
WHERE { ?subject ?predicate ?object . }

Example 3.4: Count all predicates in the database:

SELECT (COUNT(DISTINCT ?predicate) AS ?count)
WHERE { ?subject ?predicate ?object . }

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 13 of 23

Basic SPARQL by example (2)

Example 3.5: Find the person with most friends:

SELECT ?person (COUNT(*) AS ?friendCount)
WHERE { ?person <http://example.org/hasFriend> ?friend . }
GROUP BY ?person
ORDER BY DESC(?friendCount) LIMIT 1

Example 3.6: Find pairs of siblings:

SELECT ?child1 ?child2
WHERE {
?parent <http://example.org/hasChild> ?child1, ?child2 .

}

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 14 of 23

Basic SPARQL by example (2)

Example 3.5: Find the person with most friends:

SELECT ?person (COUNT(*) AS ?friendCount)
WHERE { ?person <http://example.org/hasFriend> ?friend . }
GROUP BY ?person
ORDER BY DESC(?friendCount) LIMIT 1

Example 3.6: Find pairs of siblings:

SELECT ?child1 ?child2
WHERE {
?parent <http://example.org/hasChild> ?child1, ?child2 .

}

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 14 of 23

Basic SPARQL by example (2)

Example 3.5: Find the person with most friends:

SELECT ?person (COUNT(*) AS ?friendCount)
WHERE { ?person <http://example.org/hasFriend> ?friend . }
GROUP BY ?person
ORDER BY DESC(?friendCount) LIMIT 1

Example 3.6: Find pairs of siblings:

SELECT ?child1 ?child2
WHERE {
?parent <http://example.org/hasChild> ?child1, ?child2 .

FILTER(?child1 != ?child2)
}

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 14 of 23

The shape of a SPARQL query

Select queries consist of the following major blocks:

• Prologue: for PREFIX and BASE declarations (work as in Turtle)

• Select clause: SELECT (and possibly other keywords) followed either by a list of
variables (e.g., ?person) and variable assignments (e.g., (COUNT(*) as
?count)), or by *

• Where clause: WHERE followed by a pattern (many possibilities)

• Solution set modifiers: such as LIMIT or ORDER BY

SPARQL supports further types of queries, which primarily exchange the Select clause
for something else:

• ASK query: to check whether there are results at all (but don’t return any)

• CONSTRUCT query: to build an RDF graph from query results

• DESCRIBE query: to get an RDF graph with additional information on each query
result (application dependent)

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 15 of 23

The shape of a SPARQL query

Select queries consist of the following major blocks:

• Prologue: for PREFIX and BASE declarations (work as in Turtle)

• Select clause: SELECT (and possibly other keywords) followed either by a list of
variables (e.g., ?person) and variable assignments (e.g., (COUNT(*) as
?count)), or by *

• Where clause: WHERE followed by a pattern (many possibilities)

• Solution set modifiers: such as LIMIT or ORDER BY

SPARQL supports further types of queries, which primarily exchange the Select clause
for something else:

• ASK query: to check whether there are results at all (but don’t return any)

• CONSTRUCT query: to build an RDF graph from query results

• DESCRIBE query: to get an RDF graph with additional information on each query
result (application dependent)

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 15 of 23

Basic SPARQL syntax

RDF terms are written like in Turtle:

• IRIs may be abbreviated using qualified:names (requires PREFIX declaration) or
<relativeIris> (requires BASE declaration)

• Literals are written as usual, possibly also with abbreviated datatype IRIs

• Blank nodes are written as usual

In addition, SPARQL supports variables:

Definition 3.7: A variable is a string that begins with ? or $, where the string can
consist of letters (including many non-Latin letters), numbers, and the symbol _.
The variable name is the string after ? or $, without this leading symbol.

Example 3.8: The variables ?var1 and $var1 have the same variable name (and
same meaning across SPARQL).

Convention: Using ? is widely preferred these days!

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 16 of 23

Basic SPARQL syntax

RDF terms are written like in Turtle:

• IRIs may be abbreviated using qualified:names (requires PREFIX declaration) or
<relativeIris> (requires BASE declaration)

• Literals are written as usual, possibly also with abbreviated datatype IRIs

• Blank nodes are written as usual

In addition, SPARQL supports variables:

Definition 3.7: A variable is a string that begins with ? or $, where the string can
consist of letters (including many non-Latin letters), numbers, and the symbol _.
The variable name is the string after ? or $, without this leading symbol.

Example 3.8: The variables ?var1 and $var1 have the same variable name (and
same meaning across SPARQL).

Convention: Using ? is widely preferred these days!

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 16 of 23

Basic SPARQL syntax

RDF terms are written like in Turtle:

• IRIs may be abbreviated using qualified:names (requires PREFIX declaration) or
<relativeIris> (requires BASE declaration)

• Literals are written as usual, possibly also with abbreviated datatype IRIs

• Blank nodes are written as usual

In addition, SPARQL supports variables:

Definition 3.7: A variable is a string that begins with ? or $, where the string can
consist of letters (including many non-Latin letters), numbers, and the symbol _.
The variable name is the string after ? or $, without this leading symbol.

Example 3.8: The variables ?var1 and $var1 have the same variable name (and
same meaning across SPARQL).

Convention: Using ? is widely preferred these days!

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 16 of 23

Basic Graph Patterns
We can now define the simplest kinds of patterns:

Definition 3.9: A triple pattern is a triple 〈s, p, o〉, where s and o are arbitrary
RDF termsa or variables, and p is an IRI or variable. A basic graph pattern (BGP)
is a set of triple patterns.

aCuriously, SPARQL allows literals as subjects, although RDF does not.∗

Note: These are semantic notions, that are not directly defining query syntax. Triple
patterns describe query conditions where we are looking for matching triples. BGPs are
interpreted conjunctively, i.e., we are looking for a match that fits all triples at once.

Syntactically, SPARQL supports an extension of Turtle (that allows variables everywhere
and literals in subject positions). All Turtle shortcuts are supported.

Convention: We will also use the word triple pattern and basic graph pattern to
refer to any (syntactic) Turtle snippet that specifies such (semantic) patterns.

∗ This was done for forwards compatibility with future RDF versions, but RDF 1.1 did not add any such extension. Hence such patterns can never
match in RDF.
Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 17 of 23

Basic Graph Patterns
We can now define the simplest kinds of patterns:

Definition 3.9: A triple pattern is a triple 〈s, p, o〉, where s and o are arbitrary
RDF termsa or variables, and p is an IRI or variable. A basic graph pattern (BGP)
is a set of triple patterns.

aCuriously, SPARQL allows literals as subjects, although RDF does not.∗

Note: These are semantic notions, that are not directly defining query syntax. Triple
patterns describe query conditions where we are looking for matching triples. BGPs are
interpreted conjunctively, i.e., we are looking for a match that fits all triples at once.

Syntactically, SPARQL supports an extension of Turtle (that allows variables everywhere
and literals in subject positions). All Turtle shortcuts are supported.

Convention: We will also use the word triple pattern and basic graph pattern to
refer to any (syntactic) Turtle snippet that specifies such (semantic) patterns.

∗ This was done for forwards compatibility with future RDF versions, but RDF 1.1 did not add any such extension. Hence such patterns can never
match in RDF.
Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 17 of 23

Blank nodes
Remember: Bnode ids are syntactic aids to allow us serialising graphs with such
nodes. They are not part of the RDF graph.

What is the meaning of blank nodes in query patterns?

• They denote an unspecified resource (in particular: they do not ask for a bnode of
a specific node id in the queried graph!)

• In other words: they are like variables, but cannot be used in SELECT
• Turtle bnode syntax can be used ([] or _:nodeId), but any node id can only

appear in one part of the query (we will see complex queries with many parts later)

What is the meaning of blank nodes in query results?

• Such bnodes indicate that a variable was matched to a bnode in the data
• The same node id may occur in multiple rows of the result table, meaning that the

same bnode was matched
• However, the node id used in the result is an auxiliary id that might be different

from what was used in the data (if an id was used there at all!)

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 18 of 23

Blank nodes
Remember: Bnode ids are syntactic aids to allow us serialising graphs with such
nodes. They are not part of the RDF graph.

What is the meaning of blank nodes in query patterns?

• They denote an unspecified resource (in particular: they do not ask for a bnode of
a specific node id in the queried graph!)

• In other words: they are like variables, but cannot be used in SELECT
• Turtle bnode syntax can be used ([] or _:nodeId), but any node id can only

appear in one part of the query (we will see complex queries with many parts later)

What is the meaning of blank nodes in query results?

• Such bnodes indicate that a variable was matched to a bnode in the data
• The same node id may occur in multiple rows of the result table, meaning that the

same bnode was matched
• However, the node id used in the result is an auxiliary id that might be different

from what was used in the data (if an id was used there at all!)

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 18 of 23

Blank nodes
Remember: Bnode ids are syntactic aids to allow us serialising graphs with such
nodes. They are not part of the RDF graph.

What is the meaning of blank nodes in query patterns?

• They denote an unspecified resource (in particular: they do not ask for a bnode of
a specific node id in the queried graph!)

• In other words: they are like variables, but cannot be used in SELECT
• Turtle bnode syntax can be used ([] or _:nodeId), but any node id can only

appear in one part of the query (we will see complex queries with many parts later)

What is the meaning of blank nodes in query results?

• Such bnodes indicate that a variable was matched to a bnode in the data
• The same node id may occur in multiple rows of the result table, meaning that the

same bnode was matched
• However, the node id used in the result is an auxiliary id that might be different

from what was used in the data (if an id was used there at all!)

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 18 of 23

Blank nodes
Remember: Bnode ids are syntactic aids to allow us serialising graphs with such
nodes. They are not part of the RDF graph.

What is the meaning of blank nodes in query patterns?

• They denote an unspecified resource (in particular: they do not ask for a bnode of
a specific node id in the queried graph!)

• In other words: they are like variables, but cannot be used in SELECT
• Turtle bnode syntax can be used ([] or _:nodeId), but any node id can only

appear in one part of the query (we will see complex queries with many parts later)

What is the meaning of blank nodes in query results?

• Such bnodes indicate that a variable was matched to a bnode in the data
• The same node id may occur in multiple rows of the result table, meaning that the

same bnode was matched
• However, the node id used in the result is an auxiliary id that might be different

from what was used in the data (if an id was used there at all!)
Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 18 of 23

Answers to BGPs
What is the result of a SPARQL query?

Definition 3.10: A solution mapping is a partial function µ from variable names to
RDF terms. A solution sequence is a list of solution mappings.

Note: When no specific order is required, the solutions computed for a SPARQL query
can be represented by a multiset (= “a set with repeated elements” = “an unordered list”).

Definition 3.11: Given an RDF graph G and a BGP P, a solution mapping µ is a
solution to P over G if it is defined exactly on the variable names in P and there is
a mapping σ from blank nodes to RDF terms, such that µ(σ(P)) ⊆ G.

The cardinality of µ in the multiset of solutions is the number of distinct such map-
pings σ. The multiset of these solutions is denoted evalG(P), where we omit G if
clear from the context.

Note: Here, we write µ(σ(P)) to denote the graph given by the triples in P after first
replacing bnodes according to σ, and then replacing variables according to µ.

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 19 of 23

Answers to BGPs
What is the result of a SPARQL query?

Definition 3.10: A solution mapping is a partial function µ from variable names to
RDF terms. A solution sequence is a list of solution mappings.

Note: When no specific order is required, the solutions computed for a SPARQL query
can be represented by a multiset (= “a set with repeated elements” = “an unordered list”).

Definition 3.11: Given an RDF graph G and a BGP P, a solution mapping µ is a
solution to P over G if it is defined exactly on the variable names in P and there is
a mapping σ from blank nodes to RDF terms, such that µ(σ(P)) ⊆ G.

The cardinality of µ in the multiset of solutions is the number of distinct such map-
pings σ. The multiset of these solutions is denoted evalG(P), where we omit G if
clear from the context.

Note: Here, we write µ(σ(P)) to denote the graph given by the triples in P after first
replacing bnodes according to σ, and then replacing variables according to µ.
Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 19 of 23

Example

We consider a graph based on the earlier film-actor example (but with fewer bnodes!):

eg:Arrival eg:actorRole eg:aux1, eg:aux2 .

eg:aux1 eg:actor eg:Adams ; eg:character "Louise Banks" .

eg:aux2 eg:actor eg:Renner ; eg:character "Ian Donnelly" .

eg:Gravity eg:actorRole [eg:actor eg:Bullock;

eg:character "Ryan Stone"] .

The BGP (and triple pattern) ?film eg:actorRole [] has the solution multiset:

film cardinality

eg:Arrival 2

eg:Gravity 1

The cardinality of the first solution mapping is 2 since the bnode can be mapped to two
resources, eg:aux1 and eg:aux2, to find a subgraph.

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 20 of 23

Example (2)

We consider a graph based on the earlier film-actor example (but with fewer bnodes!):

eg:Arrival eg:actorRole eg:aux1, eg:aux2 .

eg:aux1 eg:actor eg:Adams ; eg:character "Louise Banks" .

eg:aux2 eg:actor eg:Renner ; eg:character "Ian Donnelly" .

eg:Gravity eg:actorRole [eg:actor eg:Bullock;

eg:character "Ryan Stone"] .

The BGP ?film eg:actorRole [eg:actor ?person] has the solution multiset:

film person cardinality

eg:Arrival eg:Adams 1

eg:Arrival eg:Renner 1

eg:Gravity eg:Bullock 1

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 21 of 23

Boolean queries

Definition 3.11: Given an RDF graph G and a BGP P, a solution mapping µ is a
solution to P over G if it is defined exactly on the variable names in P and there is
a mapping σ from blank nodes to RDF terms, such that µ(σ(P)) ⊆ G.

The cardinality of µ in the multiset of solutions is the number of distinct such map-
pings σ. The multiset of these solutions is denoted evalG(P), where we omit G if
clear from the context.

Q: What is evalG(eg:s eg:p eg:o) over the empty graph G = ∅?

A: The empty multiset ∅ of solutions!

Q: What is evalG(eg:s eg:p eg:o) over the graph G = {eg:s eg:p eg:o}?

A: The multiset {µ0} that contains the unique solution mapping with domain ∅ (the
maximally partial function).

Terminology: Queries that cannot yield bindings for any variable are called
Boolean queries, since they admit only two solutions: {} (“false”) and {µ0} (“true”).

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 22 of 23

Boolean queries

Definition 3.11: Given an RDF graph G and a BGP P, a solution mapping µ is a
solution to P over G if it is defined exactly on the variable names in P and there is
a mapping σ from blank nodes to RDF terms, such that µ(σ(P)) ⊆ G.

The cardinality of µ in the multiset of solutions is the number of distinct such map-
pings σ. The multiset of these solutions is denoted evalG(P), where we omit G if
clear from the context.

Q: What is evalG(eg:s eg:p eg:o) over the empty graph G = ∅?

A: The empty multiset ∅ of solutions!

Q: What is evalG(eg:s eg:p eg:o) over the graph G = {eg:s eg:p eg:o}?

A: The multiset {µ0} that contains the unique solution mapping with domain ∅ (the
maximally partial function).

Terminology: Queries that cannot yield bindings for any variable are called
Boolean queries, since they admit only two solutions: {} (“false”) and {µ0} (“true”).

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 22 of 23

Boolean queries

Definition 3.11: Given an RDF graph G and a BGP P, a solution mapping µ is a
solution to P over G if it is defined exactly on the variable names in P and there is
a mapping σ from blank nodes to RDF terms, such that µ(σ(P)) ⊆ G.

The cardinality of µ in the multiset of solutions is the number of distinct such map-
pings σ. The multiset of these solutions is denoted evalG(P), where we omit G if
clear from the context.

Q: What is evalG(eg:s eg:p eg:o) over the empty graph G = ∅?

A: The empty multiset ∅ of solutions!

Q: What is evalG(eg:s eg:p eg:o) over the graph G = {eg:s eg:p eg:o}?

A: The multiset {µ0} that contains the unique solution mapping with domain ∅ (the
maximally partial function).

Terminology: Queries that cannot yield bindings for any variable are called
Boolean queries, since they admit only two solutions: {} (“false”) and {µ0} (“true”).

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 22 of 23

Boolean queries

Definition 3.11: Given an RDF graph G and a BGP P, a solution mapping µ is a
solution to P over G if it is defined exactly on the variable names in P and there is
a mapping σ from blank nodes to RDF terms, such that µ(σ(P)) ⊆ G.

The cardinality of µ in the multiset of solutions is the number of distinct such map-
pings σ. The multiset of these solutions is denoted evalG(P), where we omit G if
clear from the context.

Q: What is evalG(eg:s eg:p eg:o) over the empty graph G = ∅?

A: The empty multiset ∅ of solutions!

Q: What is evalG(eg:s eg:p eg:o) over the graph G = {eg:s eg:p eg:o}?

A: The multiset {µ0} that contains the unique solution mapping with domain ∅ (the
maximally partial function).

Terminology: Queries that cannot yield bindings for any variable are called
Boolean queries, since they admit only two solutions: {} (“false”) and {µ0} (“true”).

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 22 of 23

Boolean queries

Definition 3.11: Given an RDF graph G and a BGP P, a solution mapping µ is a
solution to P over G if it is defined exactly on the variable names in P and there is
a mapping σ from blank nodes to RDF terms, such that µ(σ(P)) ⊆ G.

The cardinality of µ in the multiset of solutions is the number of distinct such map-
pings σ. The multiset of these solutions is denoted evalG(P), where we omit G if
clear from the context.

Q: What is evalG(eg:s eg:p eg:o) over the empty graph G = ∅?

A: The empty multiset ∅ of solutions!

Q: What is evalG(eg:s eg:p eg:o) over the graph G = {eg:s eg:p eg:o}?

A: The multiset {µ0} that contains the unique solution mapping with domain ∅ (the
maximally partial function).

Terminology: Queries that cannot yield bindings for any variable are called
Boolean queries, since they admit only two solutions: {} (“false”) and {µ0} (“true”).

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 22 of 23

Summary

RDF can express n-ary relations and (with some effort) lists

SPARQL, the main query language for RDF, is based on matching graph patterns

What’s next?

• Wikidata as a working example to try out our knowledge

• More SPARQL query features

• Further background on SPARQL complexity and semantics

Markus Krötzsch, 29th Oct 2019 Knowledge Graphs slide 23 of 23

