
DEDUCTION SYSTEMS

Tableau Procedures II

Markus Krötzsch

Chair for Knowledge-Based Systems

Slides by Sebastian Rudolph

TU Dresden, 14 May 2018

https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

Agenda

• Recap Tableau Calculus
• Tableau with ALC TBoxes
• Tableau for ALC Knowledge Bases
• Extension by Inverse Roles
• Extension by Functional Roles
• Model Construction with Unravelling
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 2 of 80

Agenda

• Recap Tableau Calculus
• Tableau with ALC TBoxes
• Tableau for ALC Knowledge Bases
• Extension by Inverse Roles
• Extension by Functional Roles
• Model Construction with Unravelling
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 3 of 80

Tableau Algorithm for ALC Concepts and TBoxes

• check of satisfiability of C by construction of an abstraction of a model I such that CI 6= ∅

• concepts in negation normal form (NNF) easier rules
• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉
• initialize G with a node v such that L(v) = {C}
• extend G by applying tableau rules

– t rule is non-deterministic (we guess)
• tableau branch closed if G contains an atomic contradiction (aka clash)
• tableau construction successful if no rules applicable and no contradiction
• C is satisfiable iff there is a successful tableau construction

TU Dresden, 14 May 2018 Deduction Systems slide 4 of 80

Tableau Algorithm for ALC Concepts and TBoxes

• check of satisfiability of C by construction of an abstraction of a model I such that CI 6= ∅
• concepts in negation normal form (NNF) easier rules

• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉
• initialize G with a node v such that L(v) = {C}
• extend G by applying tableau rules

– t rule is non-deterministic (we guess)
• tableau branch closed if G contains an atomic contradiction (aka clash)
• tableau construction successful if no rules applicable and no contradiction
• C is satisfiable iff there is a successful tableau construction

TU Dresden, 14 May 2018 Deduction Systems slide 5 of 80

Tableau Algorithm for ALC Concepts and TBoxes

• check of satisfiability of C by construction of an abstraction of a model I such that CI 6= ∅
• concepts in negation normal form (NNF) easier rules
• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉

• initialize G with a node v such that L(v) = {C}
• extend G by applying tableau rules

– t rule is non-deterministic (we guess)
• tableau branch closed if G contains an atomic contradiction (aka clash)
• tableau construction successful if no rules applicable and no contradiction
• C is satisfiable iff there is a successful tableau construction

TU Dresden, 14 May 2018 Deduction Systems slide 6 of 80

Tableau Algorithm for ALC Concepts and TBoxes

• check of satisfiability of C by construction of an abstraction of a model I such that CI 6= ∅
• concepts in negation normal form (NNF) easier rules
• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉
• initialize G with a node v such that L(v) = {C}

• extend G by applying tableau rules
– t rule is non-deterministic (we guess)

• tableau branch closed if G contains an atomic contradiction (aka clash)
• tableau construction successful if no rules applicable and no contradiction
• C is satisfiable iff there is a successful tableau construction

TU Dresden, 14 May 2018 Deduction Systems slide 7 of 80

Tableau Algorithm for ALC Concepts and TBoxes

• check of satisfiability of C by construction of an abstraction of a model I such that CI 6= ∅
• concepts in negation normal form (NNF) easier rules
• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉
• initialize G with a node v such that L(v) = {C}
• extend G by applying tableau rules

– t rule is non-deterministic (we guess)
• tableau branch closed if G contains an atomic contradiction (aka clash)
• tableau construction successful if no rules applicable and no contradiction
• C is satisfiable iff there is a successful tableau construction

TU Dresden, 14 May 2018 Deduction Systems slide 8 of 80

Tableau Algorithm for ALC Concepts and TBoxes

• check of satisfiability of C by construction of an abstraction of a model I such that CI 6= ∅
• concepts in negation normal form (NNF) easier rules
• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉
• initialize G with a node v such that L(v) = {C}
• extend G by applying tableau rules

– t rule is non-deterministic (we guess)
• tableau branch closed if G contains an atomic contradiction (aka clash)

• tableau construction successful if no rules applicable and no contradiction
• C is satisfiable iff there is a successful tableau construction

TU Dresden, 14 May 2018 Deduction Systems slide 9 of 80

Tableau Algorithm for ALC Concepts and TBoxes

• check of satisfiability of C by construction of an abstraction of a model I such that CI 6= ∅
• concepts in negation normal form (NNF) easier rules
• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉
• initialize G with a node v such that L(v) = {C}
• extend G by applying tableau rules

– t rule is non-deterministic (we guess)
• tableau branch closed if G contains an atomic contradiction (aka clash)
• tableau construction successful if no rules applicable and no contradiction

• C is satisfiable iff there is a successful tableau construction

TU Dresden, 14 May 2018 Deduction Systems slide 10 of 80

Tableau Algorithm for ALC Concepts and TBoxes

• check of satisfiability of C by construction of an abstraction of a model I such that CI 6= ∅
• concepts in negation normal form (NNF) easier rules
• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉
• initialize G with a node v such that L(v) = {C}
• extend G by applying tableau rules

– t rule is non-deterministic (we guess)
• tableau branch closed if G contains an atomic contradiction (aka clash)
• tableau construction successful if no rules applicable and no contradiction
• C is satisfiable iff there is a successful tableau construction

TU Dresden, 14 May 2018 Deduction Systems slide 11 of 80

Tableau Rules for ALC Concepts
u-rule: For an v ∈ V with C u D ∈ L(v) and

{C, D} 6⊆ L(v), let L(v) := L(v) ∪ {C, D}.
t-rule: For an v ∈ V with C t D ∈ L(v) and

{C, D} ∩ L(v) = ∅, choose X ∈ {C, D} and let
L(v) := L(v) ∪ {X}.

∃-rule: For an v ∈ V with ∃r.C ∈ L(v) such that
there is no r-successor v′ of v with C ∈ L(v′),
let V = V ∪ {v′}, E = E ∪ {〈v, v′〉}, L(v′) := {C} and
L(v, v′) := {r} for v′ a new node.

∀-rule: For v, v′ ∈ V, v′ r-successor of v,
∀r.C ∈ L(v) and C /∈ L(v′), let L(v′) := L(v′) ∪ {C}.

TU Dresden, 14 May 2018 Deduction Systems slide 12 of 80

Agenda

• Recap Tableau Calculus
• Tableau with ALC TBoxes
• Tableau for ALC Knowledge Bases
• Extension by Inverse Roles
• Extension by Functional Roles
• Model Construction with Unravelling
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 13 of 80

Tableau Algorithm for TBoxes

We extend the tableau algorithm to capture ALC TBoxes

• a TBox contains axioms (GCIs) of the form C v D
• assumption: occurrences of C ≡ D have been replaced by C v D and D v C
• every GCI is equivalent to > v ¬C t D

We can compress the whole TBox into one axiom (we say we “internalize” it):

T = {Ci v Di | 1 ≤ i ≤ n}

is equivalent to:

T ′ = {> v
l

1≤i≤n

¬Ci t Di}

Let CT be the concept on the rhs of the GCI in NNF.
TU Dresden, 14 May 2018 Deduction Systems slide 14 of 80

Tableau Algorithm for TBoxes

We extend the rules of the ALC tableau algorithm with the rule:

T rule: For an arbitrary v ∈ V with CT /∈ L(v),
let L(v) := L(v) ∪ {CT }.

Example: Let T = A v ∃r.A. Is A satisfiable given T ?

the tableau algorithm doesn’t terminate any more!

the quantifier depth does not necessarily decrease for newly introduced child nodes

solution: we will recognize cycles (that is, repeating node labellings)

TU Dresden, 14 May 2018 Deduction Systems slide 15 of 80

Tableau Algorithm for TBoxes

We extend the rules of the ALC tableau algorithm with the rule:

T rule: For an arbitrary v ∈ V with CT /∈ L(v),
let L(v) := L(v) ∪ {CT }.

Example: Let T = A v ∃r.A. Is A satisfiable given T ?

the tableau algorithm doesn’t terminate any more!

the quantifier depth does not necessarily decrease for newly introduced child nodes

solution: we will recognize cycles (that is, repeating node labellings)

TU Dresden, 14 May 2018 Deduction Systems slide 16 of 80

Tableau Algorithm for TBoxes

We extend the rules of the ALC tableau algorithm with the rule:

T rule: For an arbitrary v ∈ V with CT /∈ L(v),
let L(v) := L(v) ∪ {CT }.

Example: Let T = A v ∃r.A. Is A satisfiable given T ?

the tableau algorithm doesn’t terminate any more!

the quantifier depth does not necessarily decrease for newly introduced child nodes

solution: we will recognize cycles (that is, repeating node labellings)

TU Dresden, 14 May 2018 Deduction Systems slide 17 of 80

Tableau Algorithm for TBoxes

We extend the rules of the ALC tableau algorithm with the rule:

T rule: For an arbitrary v ∈ V with CT /∈ L(v),
let L(v) := L(v) ∪ {CT }.

Example: Let T = A v ∃r.A. Is A satisfiable given T ?

the tableau algorithm doesn’t terminate any more!

the quantifier depth does not necessarily decrease for newly introduced child nodes

solution: we will recognize cycles (that is, repeating node labellings)

TU Dresden, 14 May 2018 Deduction Systems slide 18 of 80

Tableau Algorithm for TBoxes

Definition (Blocking)
A node v ∈ V blocks a node v′ ∈ V directly, if:

1 v′ is reachable from v,
2 L(v′) ⊆ L(v); and
3 there is no directly blocking node v′′ such that v′ is reachable from v′′.

A node v′ ∈ V is blocked if either
1 v′ is blocked directly or
2 there is a directly blocked node v, such that v′ is reachable from v.

The application of the ∃ rule is restricted to nodes that are not blocked.

TU Dresden, 14 May 2018 Deduction Systems slide 19 of 80

Tableau Algorithm for TBoxes

Definition (Blocking)
A node v ∈ V blocks a node v′ ∈ V directly, if:

1 v′ is reachable from v,
2 L(v′) ⊆ L(v); and
3 there is no directly blocking node v′′ such that v′ is reachable from v′′.

A node v′ ∈ V is blocked if either
1 v′ is blocked directly or
2 there is a directly blocked node v, such that v′ is reachable from v.

The application of the ∃ rule is restricted to nodes that are not blocked.

TU Dresden, 14 May 2018 Deduction Systems slide 20 of 80

Tableau Algorithm with Blocking

Example: Let T = A v ∃r.A. Is A satisfiable w.r.t. T ?

we obtain the following contradiction-free tableau:

v0

v1

r

L(v0) = {A, CT , ∃r.A}
L(v1) = {A, CT , ∃r.A}

wherein v1 is directly blocked by v0

again, the algorithm constructs finite trees
• from a contradiction-free tableau, we can construct a model
• if there is no contradiction-free tableau, there is no model

TU Dresden, 14 May 2018 Deduction Systems slide 21 of 80

Tableau Algorithm with Blocking

Example: Let T = A v ∃r.A. Is A satisfiable w.r.t. T ?

we obtain the following contradiction-free tableau:

v0

v1

r

L(v0) = {A, CT , ∃r.A}
L(v1) = {A, CT , ∃r.A}

wherein v1 is directly blocked by v0

again, the algorithm constructs finite trees
• from a contradiction-free tableau, we can construct a model
• if there is no contradiction-free tableau, there is no model

TU Dresden, 14 May 2018 Deduction Systems slide 22 of 80

From the Tableau to the Model
again, we can construct a finite model from a contradiction-free tableau:

∆I = {v0}

AI = ∆I

rI = {〈v0, v0〉}

• blocked nodes do not represent elements of the model
• when constructing the model, an edge from a node v to a directly blocked node v′ will be

“translated” into an “edge” from v to the node, that directly blocks v′

 we have the finite model property

 constructed model is not necessarily tree-shaped

TU Dresden, 14 May 2018 Deduction Systems slide 23 of 80

From the Tableau to the Model
again, we can construct a finite model from a contradiction-free tableau:

∆I = {v0}

AI = ∆I

rI = {〈v0, v0〉}

• blocked nodes do not represent elements of the model
• when constructing the model, an edge from a node v to a directly blocked node v′ will be

“translated” into an “edge” from v to the node, that directly blocks v′

 we have the finite model property

 constructed model is not necessarily tree-shaped

TU Dresden, 14 May 2018 Deduction Systems slide 24 of 80

Tableau Algorithm with Blocking II

Example: Let T = A v ∃r.A u ∃s.B. Is A satisfiable w.r.t. T ?

We obtain the following contradiction-free tableau:

v0

v1 v2

r s

L(v0) = {A, CT , ∃r.A u ∃s.B, ∃r.A, ∃s.B}
L(v1) = {A, CT , ∃r.A u ∃s.B, ∃r.A, ∃s.B}
L(v2) = {B, CT ,¬A}

in which v1 is again directly blocked by v0

TU Dresden, 14 May 2018 Deduction Systems slide 25 of 80

From the Tableau to a Model II
again, we can construct a finite model from a contradiction-free tableau:

∆I = {v0, v2}

AI = {v0}

BI = {v2}

rI = {〈v0, v0〉}

sI = {〈v0, v2〉}

TU Dresden, 14 May 2018 Deduction Systems slide 26 of 80

Agenda

• Recap Tableau Calculus
• Tableau with ALC TBoxes
• Tableau for ALC Knowledge Bases
• Extension by Inverse Roles
• Extension by Functional Roles
• Model Construction with Unravelling
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 27 of 80

Treatment of ABoxes
to take an ABox A into account, initialize G such that
• V contains a node va for each individual a occurring in A

• L(va) = {C | C(a) ∈ A}
• 〈va, vb〉 ∈ E and r ∈ L(〈va, vb〉) iff r(a, b) ∈ A

the tableau rules can then be applied to this initialized graph

TU Dresden, 14 May 2018 Deduction Systems slide 28 of 80

Treatment of ABoxes
to take an ABox A into account, initialize G such that
• V contains a node va for each individual a occurring in A
• L(va) = {C | C(a) ∈ A}

• 〈va, vb〉 ∈ E and r ∈ L(〈va, vb〉) iff r(a, b) ∈ A

the tableau rules can then be applied to this initialized graph

TU Dresden, 14 May 2018 Deduction Systems slide 29 of 80

Treatment of ABoxes
to take an ABox A into account, initialize G such that
• V contains a node va for each individual a occurring in A
• L(va) = {C | C(a) ∈ A}
• 〈va, vb〉 ∈ E and r ∈ L(〈va, vb〉) iff r(a, b) ∈ A

the tableau rules can then be applied to this initialized graph

TU Dresden, 14 May 2018 Deduction Systems slide 30 of 80

Treatment of ABoxes
to take an ABox A into account, initialize G such that
• V contains a node va for each individual a occurring in A
• L(va) = {C | C(a) ∈ A}
• 〈va, vb〉 ∈ E and r ∈ L(〈va, vb〉) iff r(a, b) ∈ A

the tableau rules can then be applied to this initialized graph

TU Dresden, 14 May 2018 Deduction Systems slide 31 of 80

Agenda

• Recap Tableau Calculus
• Tableau with ALC TBoxes
• Tableau for ALC Knowledge Bases
• Extension by Inverse Roles
• Extension by Functional Roles
• Model Construction with Unravelling
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 32 of 80

Tableau for ALC with Inverse Roles
in order to take into account inverse roles, we have to make the following changes

1 edge labels may contain inverse roles (r−),

2 a node v′ is an r-neighbor of a node v if either
– v′ is an r-successor of v or
– v is an r−-successor of v′

3 replace the term “r-successor” in the ∀- and the ∃-rule with “r-neighbor”

the ∃-rule still generates
• an r-successor for a concept ∃r.C (if no fitting neighbor exists yet)
• an r−-successor for a concept ∃r−.C (if no fitting neighbor exists yet)

TU Dresden, 14 May 2018 Deduction Systems slide 33 of 80

Tableau for ALC with Inverse Roles
in order to take into account inverse roles, we have to make the following changes

1 edge labels may contain inverse roles (r−),
2 a node v′ is an r-neighbor of a node v if either

– v′ is an r-successor of v or
– v is an r−-successor of v′

3 replace the term “r-successor” in the ∀- and the ∃-rule with “r-neighbor”

the ∃-rule still generates
• an r-successor for a concept ∃r.C (if no fitting neighbor exists yet)
• an r−-successor for a concept ∃r−.C (if no fitting neighbor exists yet)

TU Dresden, 14 May 2018 Deduction Systems slide 34 of 80

Tableau for ALC with Inverse Roles
in order to take into account inverse roles, we have to make the following changes

1 edge labels may contain inverse roles (r−),
2 a node v′ is an r-neighbor of a node v if either

– v′ is an r-successor of v or
– v is an r−-successor of v′

3 replace the term “r-successor” in the ∀- and the ∃-rule with “r-neighbor”

the ∃-rule still generates
• an r-successor for a concept ∃r.C (if no fitting neighbor exists yet)
• an r−-successor for a concept ∃r−.C (if no fitting neighbor exists yet)

TU Dresden, 14 May 2018 Deduction Systems slide 35 of 80

Tableau Example with Inverses

Example: is A satisfiable w.r.t. T ?

T = {A ≡ ∃r−.A u (∀r.(¬A t ∃s.B))}

CT = (¬A t ∃r−.A) u (¬A t ∀r.(¬A t ∃s.B)) u

(∀r−.(¬A) t ∃r.(A u ∀s.(¬B)) t A)

v0

v1 v2

r− s

L(v0) = {A, CT , ∃r−.A, ∀r.(¬A t ∃s.B),

¬A t ∃s.B, ∃s.B}

L(v1) = {A, CT , ∃r−.A, ∀r.(¬A t ∃s.B)}

L(v2) = {B, CT ,¬A, ∀r−.(¬A)}
v0 blocks v1

Is the algorithm thus correct? No!

TU Dresden, 14 May 2018 Deduction Systems slide 36 of 80

Tableau Example with Inverses

Example: is A satisfiable w.r.t. T ?

T = {A ≡ ∃r−.A u (∀r.(¬A t ∃s.B))}

CT = (¬A t ∃r−.A) u (¬A t ∀r.(¬A t ∃s.B)) u

(∀r−.(¬A) t ∃r.(A u ∀s.(¬B)) t A)

v0

v1 v2

r− s

L(v0) = {A, CT , ∃r−.A, ∀r.(¬A t ∃s.B),

¬A t ∃s.B, ∃s.B}

L(v1) = {A, CT , ∃r−.A, ∀r.(¬A t ∃s.B)}

L(v2) = {B, CT ,¬A, ∀r−.(¬A)}
v0 blocks v1

Is the algorithm thus correct? No!

TU Dresden, 14 May 2018 Deduction Systems slide 37 of 80

Tableau Example with Inverses

Example: is A satisfiable w.r.t. T ?

T = {A ≡ ∃r−.A u (∀r.(¬A t ∃s.B))}

CT = (¬A t ∃r−.A) u (¬A t ∀r.(¬A t ∃s.B)) u

(∀r−.(¬A) t ∃r.(A u ∀s.(¬B)) t A)

v0

v1 v2

r− s

L(v0) = {A, CT , ∃r−.A, ∀r.(¬A t ∃s.B),

¬A t ∃s.B, ∃s.B}

L(v1) = {A, CT , ∃r−.A, ∀r.(¬A t ∃s.B)}

L(v2) = {B, CT ,¬A, ∀r−.(¬A)}
v0 blocks v1

Is the algorithm thus correct? No!

TU Dresden, 14 May 2018 Deduction Systems slide 38 of 80

Tableau Example with Inverses

Example: is A satisfiable w.r.t. T ?

T = {A ≡ ∃r−.A u (∀r.(¬A t ∃s.B))}

CT = (¬A t ∃r−.A) u (¬A t ∀r.(¬A t ∃s.B)) u

(∀r−.(¬A) t ∃r.(A u ∀s.(¬B)) t A)

v0

v1 v2

r− s

L(v0) = {A, CT , ∃r−.A, ∀r.(¬A t ∃s.B),

¬A t ∃s.B, ∃s.B}

L(v1) = {A, CT , ∃r−.A, ∀r.(¬A t ∃s.B)}

L(v2) = {B, CT ,¬A, ∀r−.(¬A)}
v0 blocks v1

Is the algorithm thus correct?

No!

TU Dresden, 14 May 2018 Deduction Systems slide 39 of 80

Tableau Example with Inverses

Example: is A satisfiable w.r.t. T ?

T = {A ≡ ∃r−.A u (∀r.(¬A t ∃s.B))}

CT = (¬A t ∃r−.A) u (¬A t ∀r.(¬A t ∃s.B)) u

(∀r−.(¬A) t ∃r.(A u ∀s.(¬B)) t A)

v0

v1 v2

r− s

L(v0) = {A, CT , ∃r−.A, ∀r.(¬A t ∃s.B),

¬A t ∃s.B, ∃s.B}

L(v1) = {A, CT , ∃r−.A, ∀r.(¬A t ∃s.B)}

L(v2) = {B, CT ,¬A, ∀r−.(¬A)}
v0 blocks v1

Is the algorithm thus correct? No!

TU Dresden, 14 May 2018 Deduction Systems slide 40 of 80

Tableau Example with Inverses II

Example: Is C u ∃s.C satisfiable w.r.t. T ?

v0

v1 v2

v3

s r

T = {> v ∀r−.(∀s−.(¬C)) u ∃r.C}

CT = ∀r−.(∀s−.(¬C)) u ∃r.C

L(v0) = {C, ∃s.C, CT , ∀r−.(∀s−.(¬C)), ∃r.C, ∀s−.(¬C)}

∪ {¬C}

L(v1) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

∪ {∀s−.(¬C)}

L(v2) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}
v0 blocks v1 and v2 tableau complete

but

L(v3) = {C, CT ,∀r−.(∀s−.(¬C)),∃r.C}

We have blocked too early! Correctness can be retained by replacing subset blocking with equality
blocking i.e., replace L(v′) ⊆ L(v) by L(v′) = L(v) in the blocking condition.

TU Dresden, 14 May 2018 Deduction Systems slide 41 of 80

Tableau Example with Inverses II

Example: Is C u ∃s.C satisfiable w.r.t. T ?

v0

v1 v2

v3

s r

T = {> v ∀r−.(∀s−.(¬C)) u ∃r.C}

CT = ∀r−.(∀s−.(¬C)) u ∃r.C

L(v0) = {C, ∃s.C, CT , ∀r−.(∀s−.(¬C)), ∃r.C, ∀s−.(¬C)}

∪ {¬C}

L(v1) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

∪ {∀s−.(¬C)}

L(v2) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}
v0 blocks v1 and v2 tableau complete

but

L(v3) = {C, CT ,∀r−.(∀s−.(¬C)),∃r.C}

We have blocked too early! Correctness can be retained by replacing subset blocking with equality
blocking i.e., replace L(v′) ⊆ L(v) by L(v′) = L(v) in the blocking condition.

TU Dresden, 14 May 2018 Deduction Systems slide 42 of 80

Tableau Example with Inverses II

Example: Is C u ∃s.C satisfiable w.r.t. T ?
v0

v1 v2

v3

s r T = {> v ∀r−.(∀s−.(¬C)) u ∃r.C}

CT = ∀r−.(∀s−.(¬C)) u ∃r.C

L(v0) = {C, ∃s.C, CT , ∀r−.(∀s−.(¬C)), ∃r.C, ∀s−.(¬C)}

∪ {¬C}

L(v1) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

∪ {∀s−.(¬C)}

L(v2) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}
v0 blocks v1 and v2 tableau complete

but

L(v3) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

We have blocked too early! Correctness can be retained by replacing subset blocking with equality
blocking i.e., replace L(v′) ⊆ L(v) by L(v′) = L(v) in the blocking condition.

TU Dresden, 14 May 2018 Deduction Systems slide 43 of 80

Tableau Example with Inverses II

Example: Is C u ∃s.C satisfiable w.r.t. T ?
v0

v1 v2

v3

s r

r

T = {> v ∀r−.(∀s−.(¬C)) u ∃r.C}

CT = ∀r−.(∀s−.(¬C)) u ∃r.C

L(v0) = {C, ∃s.C, CT , ∀r−.(∀s−.(¬C)), ∃r.C, ∀s−.(¬C)}

∪ {¬C}

L(v1) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

∪ {∀s−.(¬C)}

L(v2) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}
v0 blocks v1 and v2 tableau complete but

L(v3) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

We have blocked too early! Correctness can be retained by replacing subset blocking with equality
blocking i.e., replace L(v′) ⊆ L(v) by L(v′) = L(v) in the blocking condition.

TU Dresden, 14 May 2018 Deduction Systems slide 44 of 80

Tableau Example with Inverses II

Example: Is C u ∃s.C satisfiable w.r.t. T ?
v0

v1 v2

v3

s r

r

T = {> v ∀r−.(∀s−.(¬C)) u ∃r.C}

CT = ∀r−.(∀s−.(¬C)) u ∃r.C

L(v0) = {C, ∃s.C, CT , ∀r−.(∀s−.(¬C)), ∃r.C, ∀s−.(¬C)}

∪ {¬C}

L(v1) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C} ∪ {∀s−.(¬C)}

L(v2) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}
v0 blocks v1 and v2 tableau complete but

L(v3) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

We have blocked too early! Correctness can be retained by replacing subset blocking with equality
blocking i.e., replace L(v′) ⊆ L(v) by L(v′) = L(v) in the blocking condition.

TU Dresden, 14 May 2018 Deduction Systems slide 45 of 80

Tableau Example with Inverses II

Example: Is C u ∃s.C satisfiable w.r.t. T ?
v0

v1 v2

v3

s r

r

T = {> v ∀r−.(∀s−.(¬C)) u ∃r.C}

CT = ∀r−.(∀s−.(¬C)) u ∃r.C

L(v0) = {C, ∃s.C, CT , ∀r−.(∀s−.(¬C)), ∃r.C, ∀s−.(¬C)} ∪ {¬C}

L(v1) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C} ∪ {∀s−.(¬C)}

L(v2) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}
v0 blocks v1 and v2 tableau complete but

L(v3) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

We have blocked too early! Correctness can be retained by replacing subset blocking with equality
blocking i.e., replace L(v′) ⊆ L(v) by L(v′) = L(v) in the blocking condition.

TU Dresden, 14 May 2018 Deduction Systems slide 46 of 80

Tableau Example with Inverses II

Example: Is C u ∃s.C satisfiable w.r.t. T ?
v0

v1 v2

v3

s r

r

T = {> v ∀r−.(∀s−.(¬C)) u ∃r.C}

CT = ∀r−.(∀s−.(¬C)) u ∃r.C

L(v0) = {C, ∃s.C, CT , ∀r−.(∀s−.(¬C)), ∃r.C, ∀s−.(¬C)} ∪ {¬C}

L(v1) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C} ∪ {∀s−.(¬C)}

L(v2) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}
v0 blocks v1 and v2 tableau complete but

L(v3) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

We have blocked too early!

Correctness can be retained by replacing subset blocking with equality
blocking i.e., replace L(v′) ⊆ L(v) by L(v′) = L(v) in the blocking condition.

TU Dresden, 14 May 2018 Deduction Systems slide 47 of 80

Tableau Example with Inverses II

Example: Is C u ∃s.C satisfiable w.r.t. T ?
v0

v1 v2

v3

s r

r

T = {> v ∀r−.(∀s−.(¬C)) u ∃r.C}

CT = ∀r−.(∀s−.(¬C)) u ∃r.C

L(v0) = {C, ∃s.C, CT , ∀r−.(∀s−.(¬C)), ∃r.C, ∀s−.(¬C)} ∪ {¬C}

L(v1) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C} ∪ {∀s−.(¬C)}

L(v2) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}
v0 blocks v1 and v2 tableau complete but

L(v3) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

We have blocked too early! Correctness can be retained by replacing subset blocking with equality
blocking i.e., replace L(v′) ⊆ L(v) by L(v′) = L(v) in the blocking condition.

TU Dresden, 14 May 2018 Deduction Systems slide 48 of 80

Model Construction for Tableau Example with Inverses II

Why does subset blocking not work anymore?
We cannot build a cyclic model as we could up to now!

Example: early blocked tableau from previous example would yield:

v0 C

r, s

However, this is not a model of > v ∀r−.(∀s−.(¬C)) u ∃r.C.

TU Dresden, 14 May 2018 Deduction Systems slide 49 of 80

Example with Inverses & Equality Blocking

Example: Is C u ∃s.C satisfiable w.r.t. T ?

v0

v1 v2

v3

s r

T = {> v ∀r−.(∀s−.(¬C)) u ∃r.C}

CT = ∀r−.(∀s−.(¬C)) u ∃r.C

L(v0) = {C, ∃s.C, CT , ∀r−.(∀s−.(¬C)), ∃r.C, ∀s−.(¬C)}

∪ {¬C}

L(v1) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

∪ {∀s−.(¬C)}

L(v2) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

L(v3) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}
v1 blocks v3 but ∀-rule applicable

Now unsatisfiability is recognized!

TU Dresden, 14 May 2018 Deduction Systems slide 50 of 80

Example with Inverses & Equality Blocking

Example: Is C u ∃s.C satisfiable w.r.t. T ?

v0

v1 v2

v3

s r

r

T = {> v ∀r−.(∀s−.(¬C)) u ∃r.C}

CT = ∀r−.(∀s−.(¬C)) u ∃r.C

L(v0) = {C, ∃s.C, CT , ∀r−.(∀s−.(¬C)), ∃r.C, ∀s−.(¬C)}

∪ {¬C}

L(v1) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

∪ {∀s−.(¬C)}

L(v2) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

L(v3) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}
v1 blocks v3 but ∀-rule applicable

Now unsatisfiability is recognized!

TU Dresden, 14 May 2018 Deduction Systems slide 51 of 80

Example with Inverses & Equality Blocking

Example: Is C u ∃s.C satisfiable w.r.t. T ?

v0

v1 v2

v3

s r

r

T = {> v ∀r−.(∀s−.(¬C)) u ∃r.C}

CT = ∀r−.(∀s−.(¬C)) u ∃r.C

L(v0) = {C, ∃s.C, CT , ∀r−.(∀s−.(¬C)), ∃r.C, ∀s−.(¬C)}

∪ {¬C}

L(v1) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C} ∪ {∀s−.(¬C)}

L(v2) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

L(v3) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}
v1 blocks v3 but ∀-rule applicable

Now unsatisfiability is recognized!

TU Dresden, 14 May 2018 Deduction Systems slide 52 of 80

Example with Inverses & Equality Blocking

Example: Is C u ∃s.C satisfiable w.r.t. T ?

v0

v1 v2

v3

s r

r

T = {> v ∀r−.(∀s−.(¬C)) u ∃r.C}

CT = ∀r−.(∀s−.(¬C)) u ∃r.C

L(v0) = {C, ∃s.C, CT , ∀r−.(∀s−.(¬C)), ∃r.C, ∀s−.(¬C)} ∪ {¬C}

L(v1) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C} ∪ {∀s−.(¬C)}

L(v2) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

L(v3) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}
v1 blocks v3 but ∀-rule applicable

Now unsatisfiability is recognized!

TU Dresden, 14 May 2018 Deduction Systems slide 53 of 80

Agenda

• Recap Tableau Calculus
• Tableau with ALC TBoxes
• Tableau for ALC Knowledge Bases
• Extension by Inverse Roles
• Extension by Functional Roles
• Model Construction with Unravelling
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 54 of 80

Tableau with Functional Roles
Example: is A satisfiable w.r.t. T ?
Note: > v 61 f expresses funtionality of the role f

v0

v1 v2

f f

T = {A v ∃f .B u ∃f .(¬B),> v 61 f}

CT = (¬A t (∃f .B u ∃f .(¬B))) u 61 f

L(v0) = {A, CT , . . . , ∃f .B, ∃f .(¬B),61 f}
L(v1) = {B, CT , . . . ,¬A,61 f}
L(v2) = {¬B, CT , . . . ,¬A,61 f}

functionality requires v1 = v2!

 we need a new tableau rule for treating functional roles

TU Dresden, 14 May 2018 Deduction Systems slide 55 of 80

Tableau with Functional Roles
Example: is A satisfiable w.r.t. T ?
Note: > v 61 f expresses funtionality of the role f

v0

v1 v2

f f

T = {A v ∃f .B u ∃f .(¬B),> v 61 f}
CT = (¬A t (∃f .B u ∃f .(¬B))) u 61 f

L(v0) = {A, CT , . . . , ∃f .B, ∃f .(¬B),61 f}
L(v1) = {B, CT , . . . ,¬A,61 f}
L(v2) = {¬B, CT , . . . ,¬A,61 f}

functionality requires v1 = v2!

 we need a new tableau rule for treating functional roles

TU Dresden, 14 May 2018 Deduction Systems slide 56 of 80

Tableau with Functional Roles
Example: is A satisfiable w.r.t. T ?
Note: > v 61 f expresses funtionality of the role f

v0

v1 v2

f f

T = {A v ∃f .B u ∃f .(¬B),> v 61 f}
CT = (¬A t (∃f .B u ∃f .(¬B))) u 61 f

L(v0) = {A, CT , . . . , ∃f .B, ∃f .(¬B),61 f}
L(v1) = {B, CT , . . . ,¬A,61 f}
L(v2) = {¬B, CT , . . . ,¬A,61 f}

functionality requires v1 = v2!

 we need a new tableau rule for treating functional roles

TU Dresden, 14 May 2018 Deduction Systems slide 57 of 80

Tableau with Functional Roles
Example: is A satisfiable w.r.t. T ?
Note: > v 61 f expresses funtionality of the role f

v0

v1 v2

f f

T = {A v ∃f .B u ∃f .(¬B),> v 61 f}
CT = (¬A t (∃f .B u ∃f .(¬B))) u 61 f

L(v0) = {A, CT , . . . , ∃f .B, ∃f .(¬B),61 f}
L(v1) = {B, CT , . . . ,¬A,61 f}
L(v2) = {¬B, CT , . . . ,¬A,61 f}

functionality requires v1 = v2!

 we need a new tableau rule for treating functional roles

TU Dresden, 14 May 2018 Deduction Systems slide 58 of 80

Tableau Rules for ALCIF Concepts and TBoxes
u-rule: For an v ∈ V with C u D ∈ L(v) and

{C, D} 6⊆ L(v), let L(v) := L(v) ∪ {C, D}.
t-rule: For an v ∈ V with C t D ∈ L(v) and

{C, D} ∩ L(v) = ∅, choose X ∈ {C, D} and let
L(v) := L(v) ∪ {X}.

∃-rule: For a non-blocked v ∈ V with ∃r.C ∈ L(v) such that
there is no r-neighbor v′ of v with C ∈ L(v′),
let V = V ∪ {v′}, E = E ∪ {〈v, v′〉}, L(v′) := {C} and
L(v, v′) := {r} for v′ a new node.

∀-rule: For v, v′ ∈ V, v′ r-neighbor of v,
∀r.C ∈ L(v) and C /∈ L(v′), let L(v′) := L(v′) ∪ {C}.

6 1-rule: For a functional role f and a v ∈ V with two
f -neighbors v1 and v2, execute merge(v1, v2).

T -rule: For a v ∈ V with CT /∈ L(v),
let L(v) := L(v) ∪ {CT }.

TU Dresden, 14 May 2018 Deduction Systems slide 59 of 80

Merging Nodes

we define merge(v1, v2) as follows:
• if v1 is an ancestor of v2,

let vi = v1 and vo = v2;
• otherwise let vi = v2 and vo = v1.

let L(vi) = L(vi) ∪ L(vo) and execute prune(vo).

where prune(vo) is defined as:
• Vo = {v | v belongs to the subtree with root vo},
• let V = V \ Vo and E = E \ {〈v, vo〉 | vo ∈ Vo, 〈v, vo〉 ∈ E}.

TU Dresden, 14 May 2018 Deduction Systems slide 60 of 80

Tableau with Functional Roles
Example: Is ∃f .A satisfiable w.r.t. T ?

v0

v1

v2

f

f

T = {A v ∃f .A,> v6 1 f−}

CT = (¬A t ∃f .A)u 6 1 f−

L(v0) = {∃f .A, CT ,¬A,6 1 f−}

L(v1) = {A, CT , ∃f .A,6 1 f−}

L(v2) = {A, CT , ∃f .A,6 1 f−}

v1 blocks v2, but cyclic model construction does not work (functionality violated)!
v0

v1

f

f

TU Dresden, 14 May 2018 Deduction Systems slide 61 of 80

Tableau with Functional Roles
Example: Is ∃f .A satisfiable w.r.t. T ?

v0

v1

v2

f

f

T = {A v ∃f .A,> v6 1 f−}

CT = (¬A t ∃f .A)u 6 1 f−

L(v0) = {∃f .A, CT ,¬A,6 1 f−}

L(v1) = {A, CT , ∃f .A,6 1 f−}

L(v2) = {A, CT , ∃f .A,6 1 f−}

v1 blocks v2, but cyclic model construction does not work (functionality violated)!
v0

v1

f

f

TU Dresden, 14 May 2018 Deduction Systems slide 62 of 80

Tableau with Functional Roles
Example: Is ∃f .A satisfiable w.r.t. T ?

v0

v1

v2

f

f

T = {A v ∃f .A,> v6 1 f−}

CT = (¬A t ∃f .A)u 6 1 f−

L(v0) = {∃f .A, CT ,¬A,6 1 f−}

L(v1) = {A, CT , ∃f .A,6 1 f−}

L(v2) = {A, CT , ∃f .A,6 1 f−}

v1 blocks v2, but cyclic model construction does not work (functionality violated)!
v0

v1

f

f

TU Dresden, 14 May 2018 Deduction Systems slide 63 of 80

Tableau with Functional Roles
Example: Is ∃f .A satisfiable w.r.t. T ?

v0

v1

v2

f

f

T = {A v ∃f .A,> v6 1 f−}

CT = (¬A t ∃f .A)u 6 1 f−

L(v0) = {∃f .A, CT ,¬A,6 1 f−}

L(v1) = {A, CT , ∃f .A,6 1 f−}

L(v2) = {A, CT , ∃f .A,6 1 f−}

v1 blocks v2, but cyclic model construction does not work (functionality violated)!
v0

v1

f

f

TU Dresden, 14 May 2018 Deduction Systems slide 64 of 80

Agenda

• Recap Tableau Calculus
• Tableau with ALC TBoxes
• Tableau for ALC Knowledge Bases
• Extension by Inverse Roles
• Extension by Functional Roles
• Model Construction with Unravelling
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 65 of 80

Unravelling

goal: we build an infinite model
How? Every blocked node is replaced by a subtree whose root is the corresponding blocking node.

v0

v1

v2

f

f

L(v0) = {∃f .A, CT ,¬A,6 1 f−}

L(v1) = {A, CT , ∃f .A,6 1 f−}

L(v2) = {A, CT , ∃f .A,6 1 f−}
v1 blocks v2

TU Dresden, 14 May 2018 Deduction Systems slide 66 of 80

Unravelling

goal: we build an infinite model
How? Every blocked node is replaced by a subtree whose root is the corresponding blocking node.

v0

v1

v′1

f

f

f

L(v0) = {∃f .A, CT ,¬A,6 1 f−}

L(v1) = {A, CT , ∃f .A,6 1 f−}

L(v2) = {A, CT , ∃f .A,6 1 f−}
v1 blocks v2

TU Dresden, 14 May 2018 Deduction Systems slide 67 of 80

Unravelling

goal: we build an infinite model
How? Every blocked node is replaced by a subtree whose root is the corresponding blocking node.

v0

v1

v′1

v′′1

f

f

f

f

L(v0) = {∃f .A, CT ,¬A,6 1 f−}

L(v1) = {A, CT , ∃f .A,6 1 f−}

L(v2) = {A, CT , ∃f .A,6 1 f−}
v1 blocks v2

TU Dresden, 14 May 2018 Deduction Systems slide 68 of 80

Unravelling

goal: we build an infinite model
How? Every blocked node is replaced by a subtree whose root is the corresponding blocking node.

v0

v1

v′1

v′′1

v′′′1

f

f

f

f

f

L(v0) = {∃f .A, CT ,¬A,6 1 f−}

L(v1) = {A, CT , ∃f .A,6 1 f−}

L(v2) = {A, CT , ∃f .A,6 1 f−}
v1 blocks v2

TU Dresden, 14 May 2018 Deduction Systems slide 69 of 80

Blocking: Inverse and Functional Roles

Example: Is ¬C u ∃f−.D satisfiable w.r.t. T ?

T = {D v C u ∃f .(¬C) u ∃f−.D,> v6 1 f}

CT = (¬D t (C u ∃f .(¬C) u ∃f−.D)) u 6 1 f

v0

v1

v2

v′′1

f−

f−

f−

L(v0) = {¬C, ∃f−.D, CT , . . . ,¬D,6 1 f}

L(v1) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}

L(v2) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}
v1 blocks v2(same label)

but

L(v′′1) = {D, CT , . . . , C, ∃f .(¬C),∃f−.D,6 1 f}

but we cannot build a model any more (neither cyclic nor infinite)!

TU Dresden, 14 May 2018 Deduction Systems slide 70 of 80

Blocking: Inverse and Functional Roles

Example: Is ¬C u ∃f−.D satisfiable w.r.t. T ?

T = {D v C u ∃f .(¬C) u ∃f−.D,> v6 1 f}

CT = (¬D t (C u ∃f .(¬C) u ∃f−.D)) u 6 1 f

v0

v1

v2

v′′1

f−

f−

f−

L(v0) = {¬C, ∃f−.D, CT , . . . ,¬D,6 1 f}

L(v1) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}

L(v2) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}
v1 blocks v2(same label)

but

L(v′′1) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}

but we cannot build a model any more (neither cyclic nor infinite)!

TU Dresden, 14 May 2018 Deduction Systems slide 71 of 80

Blocking: Inverse and Functional Roles

Example: Is ¬C u ∃f−.D satisfiable w.r.t. T ?

T = {D v C u ∃f .(¬C) u ∃f−.D,> v6 1 f}

CT = (¬D t (C u ∃f .(¬C) u ∃f−.D)) u 6 1 f

v0

v1

v2

v′′1

f−

f−

f−

L(v0) = {¬C, ∃f−.D, CT , . . . ,¬D,6 1 f}

L(v1) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}

L(v2) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}
v1 blocks v2(same label)

but

L(v′′1) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}

but we cannot build a model any more (neither cyclic nor infinite)!

TU Dresden, 14 May 2018 Deduction Systems slide 72 of 80

Blocking: Inverse and Functional Roles

Example: Is ¬C u ∃f−.D satisfiable w.r.t. T ?

T = {D v C u ∃f .(¬C) u ∃f−.D,> v6 1 f}

CT = (¬D t (C u ∃f .(¬C) u ∃f−.D)) u 6 1 f

v0

v1

v′1

v′′1

f−

f−

f−

L(v0) = {¬C, ∃f−.D, CT , . . . ,¬D,6 1 f}

L(v1) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}

L(v′1) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}
v1 blocks v2(same label) but

L(v′′1) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}

but we cannot build a model any more (neither cyclic nor infinite)!

TU Dresden, 14 May 2018 Deduction Systems slide 73 of 80

Pairwise Blocking

A node x with predecessor x′ blocks a node y with predecessor y′ directly, if:
1 y is reachable from x,
2 L(x) = L(y), L(x′) = L(y′) and L(x′, x) = L(y′, y); and
3 there is no directly blocked node z such that y is reachable from z.

A node y ∈ V is blocked if either
1 y is directly blocked or
2 there is a directly blocked node x, such that y can be reached from x.

TU Dresden, 14 May 2018 Deduction Systems slide 74 of 80

Pairwise Blocking: Inverses and Functional Roles

Example: Is ¬C u ∃f−.D satisfiable w.r.t. T ?

T = {D v C u ∃f .(¬C) u ∃f−.D,> v6 1 f}

CT = (¬D t (C u ∃f .(¬C) u ∃f−.D)) u 6 1 f

v0

v1

v2

v3

f−

f−

f

L(v0) = {¬C, ∃f−.D, CT , . . . ,¬D,6 1 f}

L(v1) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}

L(v2) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D, 6 1 f}
v1 cannot block v2 pairwise

L(v3) = {¬C}
v3 is merged into v1

L(v1) = L(v1) ∪ L(v3) ⊇ {¬C, C}

now the contradiction can be detected

TU Dresden, 14 May 2018 Deduction Systems slide 75 of 80

Pairwise Blocking: Inverses and Functional Roles

Example: Is ¬C u ∃f−.D satisfiable w.r.t. T ?

T = {D v C u ∃f .(¬C) u ∃f−.D,> v6 1 f}

CT = (¬D t (C u ∃f .(¬C) u ∃f−.D)) u 6 1 f

v0

v1

v2

v3

f−

f−

f

L(v0) = {¬C, ∃f−.D, CT , . . . ,¬D,6 1 f}

L(v1) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}

L(v2) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D, 6 1 f}
v1 cannot block v2 pairwise

L(v3) = {¬C}

v3 is merged into v1

L(v1) = L(v1) ∪ L(v3) ⊇ {¬C, C}

now the contradiction can be detected

TU Dresden, 14 May 2018 Deduction Systems slide 76 of 80

Pairwise Blocking: Inverses and Functional Roles

Example: Is ¬C u ∃f−.D satisfiable w.r.t. T ?

T = {D v C u ∃f .(¬C) u ∃f−.D,> v6 1 f}

CT = (¬D t (C u ∃f .(¬C) u ∃f−.D)) u 6 1 f

v0

v1

v2

v3

f−

f−

f

L(v0) = {¬C, ∃f−.D, CT , . . . ,¬D,6 1 f}

L(v1) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}

L(v2) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D, 6 1 f}
v1 cannot block v2 pairwise

L(v3) = {¬C}

v3 is merged into v1

L(v1) = L(v1) ∪ L(v3) ⊇ {¬C, C}

now the contradiction can be detected

TU Dresden, 14 May 2018 Deduction Systems slide 77 of 80

Pairwise Blocking: Inverses and Functional Roles

Example: Is ¬C u ∃f−.D satisfiable w.r.t. T ?

T = {D v C u ∃f .(¬C) u ∃f−.D,> v6 1 f}

CT = (¬D t (C u ∃f .(¬C) u ∃f−.D)) u 6 1 f

v0

v1

v2

v3

f−

f−

f

L(v0) = {¬C, ∃f−.D, CT , . . . ,¬D,6 1 f}

L(v1) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}

L(v2) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D, 6 1 f}
v1 cannot block v2 pairwise

L(v3) = {¬C}
v3 is merged into v1

L(v1) = L(v1) ∪ L(v3) ⊇ {¬C, C}

now the contradiction can be detected

TU Dresden, 14 May 2018 Deduction Systems slide 78 of 80

Agenda

• Recap Tableau Calculus
• Tableau with ALC TBoxes
• Tableau for ALC Knowledge Bases
• Extension by Inverse Roles
• Extension by Functional Roles
• Model Construction with Unravelling
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 79 of 80

Summary

• we now have a tableau algorithm for ALCIF knowledge bases
– treat the ABox like for ALC
– number restrictions can be handled similar to functional roles

• termination through cycle detection
– becomes harder the more expressive the logic gets

TU Dresden, 14 May 2018 Deduction Systems slide 80 of 80

	Recap Tableau Calculus
	Recap Tableau Calculus
	Tableau for ALC Knowledge Bases
	Extension by Inverse Roles
	Extension by Functional Roles
	Model Construction with Unravelling
	Summary

