DEDUCTION SYSTEMS

Tableau Procedures II

Markus Krötzsch
Chair for Knowledge-Based Systems
Slides by Sebastian Rudolph

TU Dresden, 14 May 2018

Agenda

- Recap Tableau Calculus
- Tableau with $\mathcal{A L C}$ TBoxes
- Tableau for $\mathcal{A} \mathcal{L C}$ Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary

Agenda

- Recap Tableau Calculus
- Tableau with $\mathcal{A L C}$ TBoxes
- Tableau for $\mathcal{A} \mathcal{L C}$ Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary

Tableau Algorithm for $\mathcal{A L C}$ Concepts and TBoxes

- check of satisfiability of C by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$

Tableau Algorithm for $\mathcal{A L C}$ Concepts and TBoxes

- check of satisfiability of C by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow easier rules

Tableau Algorithm for $\mathcal{A L C}$ Concepts and TBoxes

- check of satisfiability of C by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow easier rules
- tableau (model abstraction) corresponds to a graph/tree $G=\langle V, E, L\rangle$

Tableau Algorithm for $\mathcal{A} \mathcal{L C}$ Concepts and TBoxes

- check of satisfiability of C by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow easier rules
- tableau (model abstraction) corresponds to a graph/tree $G=\langle V, E, L\rangle$
- initialize G with a node v such that $L(v)=\{C\}$

Tableau Algorithm for $\mathcal{A L C}$ Concepts and TBoxes

- check of satisfiability of C by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow easier rules
- tableau (model abstraction) corresponds to a graph/tree $G=\langle V, E, L\rangle$
- initialize G with a node v such that $L(v)=\{C\}$
- extend G by applying tableau rules

Tableau Algorithm for $\mathcal{A L C}$ Concepts and TBoxes

- check of satisfiability of C by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow easier rules
- tableau (model abstraction) corresponds to a graph/tree $G=\langle V, E, L\rangle$
- initialize G with a node v such that $L(v)=\{C\}$
- extend G by applying tableau rules
$-\sqcup$ rule is non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (aka clash)

Tableau Algorithm for $\mathcal{A L C}$ Concepts and TBoxes

- check of satisfiability of C by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow easier rules
- tableau (model abstraction) corresponds to a graph/tree $G=\langle V, E, L\rangle$
- initialize G with a node v such that $L(v)=\{C\}$
- extend G by applying tableau rules
$-\quad$ rule is non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (aka clash)
- tableau construction successful if no rules applicable and no contradiction

Tableau Algorithm for $\mathcal{A} \mathcal{L C}$ Concepts and TBoxes

- check of satisfiability of C by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow easier rules
- tableau (model abstraction) corresponds to a graph/tree $G=\langle V, E, L\rangle$
- initialize G with a node v such that $L(v)=\{C\}$
- extend G by applying tableau rules
- \sqcup rule is non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (aka clash)
- tableau construction successful if no rules applicable and no contradiction
- C is satisfiable iff there is a successful tableau construction

Tableau Rules for $\mathcal{A L C}$ Concepts

\square-rule: For an $v \in V$ with $C \sqcap D \in L(v)$ and
$\{C, D\} \nsubseteq L(v)$, let $L(v):=L(v) \cup\{C, D\}$.
ப-rule: For an $v \in V$ with $C \sqcup D \in L(v)$ and
$\{C, D\} \cap L(v)=\emptyset$, choose $X \in\{C, D\}$ and let
$L(v):=L(v) \cup\{X\}$.
\exists-rule: For an $v \in V$ with $\exists r . C \in L(v)$ such that
there is no r-successor v^{\prime} of v with $C \in L\left(v^{\prime}\right)$,
let $V=V \cup\left\{v^{\prime}\right\}, E=E \cup\left\{\left\langle v, v^{\prime}\right\rangle\right\}, L\left(v^{\prime}\right):=\{C\}$ and $L\left(v, v^{\prime}\right):=\{r\}$ for v^{\prime} a new node.
\forall-rule: For $v, v^{\prime} \in V, v^{\prime} r$-successor of v,
$\forall r . C \in L(v)$ and $C \notin L\left(v^{\prime}\right)$, let $L\left(v^{\prime}\right):=L\left(v^{\prime}\right) \cup\{C\}$.

Agenda

- Recap Tableau Calculus
- Tableau with $\mathcal{A L C}$ TBoxes
- Tableau for $\mathcal{A} \mathcal{L C}$ Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary

Tableau Algorithm for TBoxes

We extend the tableau algorithm to capture $\mathcal{A L C}$ TBoxes

- a TBox contains axioms (GCls) of the form $C \sqsubseteq D$
- assumption: occurrences of $C \equiv D$ have been replaced by $C \sqsubseteq D$ and $D \sqsubseteq C$
- every GCl is equivalent to $T \sqsubseteq \neg C \sqcup D$

We can compress the whole TBox into one axiom (we say we "internalize" it):

$$
\mathcal{T}=\left\{C_{i} \sqsubseteq D_{i} \mid 1 \leq i \leq n\right\}
$$

is equivalent to:

$$
\mathcal{T}^{\prime}=\left\{\top \sqsubseteq \prod_{1 \leq i \leq n} \neg C_{i} \sqcup D_{i}\right\}
$$

Let $C_{\mathcal{T}}$ be the concept on the rhs of the GCI in NNF.

Tableau Algorithm for TBoxes

We extend the rules of the $\mathcal{A L C}$ tableau algorithm with the rule:
\mathcal{T} rule: For an arbitrary $v \in V$ with $C_{\mathcal{T}} \notin L(v)$, let $L(v):=L(v) \cup\left\{C_{\mathcal{T}}\right\}$.

Example: Let $\mathcal{T}=A \sqsubseteq \exists r . A$. Is A satisfiable given \mathcal{T} ?

Tableau Algorithm for TBoxes

We extend the rules of the $\mathcal{A L C}$ tableau algorithm with the rule:
\mathcal{T} rule: For an arbitrary $v \in V$ with $C_{\mathcal{T}} \notin L(v)$, let $L(v):=L(v) \cup\left\{C_{\mathcal{T}}\right\}$.

Example: Let $\mathcal{T}=A \sqsubseteq \exists r . A$. Is A satisfiable given \mathcal{T} ?
the tableau algorithm doesn't terminate any more!

Tableau Algorithm for TBoxes

We extend the rules of the $\mathcal{A L C}$ tableau algorithm with the rule:
\mathcal{T} rule: For an arbitrary $v \in V$ with $C_{\mathcal{T}} \notin L(v)$,
let $L(v):=L(v) \cup\left\{C_{\mathcal{T}}\right\}$.
Example: Let $\mathcal{T}=A \sqsubseteq \exists r . A$. Is A satisfiable given \mathcal{T} ?
the tableau algorithm doesn't terminate any more!
the quantifier depth does not necessarily decrease for newly introduced child nodes

Tableau Algorithm for TBoxes

We extend the rules of the $\mathcal{A L C}$ tableau algorithm with the rule:
\mathcal{T} rule: For an arbitrary $v \in V$ with $C_{\mathcal{T}} \notin L(v)$, let $L(v):=L(v) \cup\left\{C_{\mathcal{T}}\right\}$.

Example: Let $\mathcal{T}=A \sqsubseteq \exists r . A$. Is A satisfiable given \mathcal{T} ?
the tableau algorithm doesn't terminate any more!
the quantifier depth does not necessarily decrease for newly introduced child nodes solution: we will recognize cycles (that is, repeating node labellings)

Tableau Algorithm for TBoxes

Definition (Blocking)

A node $v \in V$ blocks a node $v^{\prime} \in V$ directly, if:
(1) v^{\prime} is reachable from v,
(2) $L\left(v^{\prime}\right) \subseteq L(v)$; and
(3) there is no directly blocking node $v^{\prime \prime}$ such that v^{\prime} is reachable from $v^{\prime \prime}$.

A node $v^{\prime} \in V$ is blocked if either
(1) v^{\prime} is blocked directly or
(2) there is a directly blocked node v, such that v^{\prime} is reachable from v.

Tableau Algorithm for TBoxes

Definition (Blocking)

A node $v \in V$ blocks a node $v^{\prime} \in V$ directly, if:
(1) v^{\prime} is reachable from v,
(2) $L\left(v^{\prime}\right) \subseteq L(v)$; and
(3) there is no directly blocking node $v^{\prime \prime}$ such that v^{\prime} is reachable from $v^{\prime \prime}$.

A node $v^{\prime} \in V$ is blocked if either
(1) v^{\prime} is blocked directly or
(2) there is a directly blocked node v, such that v^{\prime} is reachable from v.

The application of the \exists rule is restricted to nodes that are not blocked.

Tableau Algorithm with Blocking

Example: Let $\mathcal{T}=A \sqsubseteq \exists r$. A. Is A satisfiable w.r.t. \mathcal{T} ?
we obtain the following contradiction-free tableau:

$$
\begin{aligned}
& L\left(v_{0}\right)=\left\{A, C_{\mathcal{T}}, \exists r . A\right\} \\
& L\left(v_{1}\right)=\left\{A, C_{\mathcal{T}}, \exists r . A\right\}
\end{aligned}
$$

wherein v_{1} is directly blocked by v_{0}

Tableau Algorithm with Blocking

Example: Let $\mathcal{T}=A \sqsubseteq \exists r . A$. Is A satisfiable w.r.t. \mathcal{T} ?
we obtain the following contradiction-free tableau:

$$
\begin{aligned}
& L\left(v_{0}\right)=\left\{A, C_{\mathcal{T}}, \exists r . A\right\} \\
& L\left(v_{1}\right)=\left\{A, C_{\mathcal{T}}, \exists r . A\right\}
\end{aligned}
$$

wherein v_{1} is directly blocked by v_{0}
again, the algorithm constructs finite trees

- from a contradiction-free tableau, we can construct a model
- if there is no contradiction-free tableau, there is no model

From the Tableau to the Model

again, we can construct a finite model from a contradiction-free tableau:

$$
\begin{aligned}
\Delta^{\mathcal{I}} & =\left\{v_{0}\right\} \\
A^{\mathcal{I}} & =\Delta^{\mathcal{I}} \\
r^{\mathcal{I}} & =\left\{\left\langle v_{0}, v_{0}\right\rangle\right\}
\end{aligned}
$$

- blocked nodes do not represent elements of the model
- when constructing the model, an edge from a node v to a directly blocked node v^{\prime} will be "translated" into an "edge" from v to the node, that directly blocks v^{\prime}

From the Tableau to the Model

again, we can construct a finite model from a contradiction-free tableau:

$$
\begin{aligned}
\Delta^{\mathcal{I}} & =\left\{v_{0}\right\} \\
A^{\mathcal{I}} & =\Delta^{\mathcal{I}} \\
r^{\mathcal{I}} & =\left\{\left\langle v_{0}, v_{0}\right\rangle\right\}
\end{aligned}
$$

- blocked nodes do not represent elements of the model
- when constructing the model, an edge from a node v to a directly blocked node v^{\prime} will be "translated" into an "edge" from v to the node, that directly blocks v^{\prime}
\rightsquigarrow we have the finite model property
\rightsquigarrow constructed model is not necessarily tree-shaped

Tableau Algorithm with Blocking II

Example: Let $\mathcal{T}=A \sqsubseteq \exists r . A \sqcap \exists s . B$. Is A satisfiable w.r.t. \mathcal{T} ?
We obtain the following contradiction-free tableau:

$$
\begin{aligned}
& L\left(v_{0}\right)=\left\{A, C_{\mathcal{T}}, \exists r . A \sqcap \exists s . B, \exists r . A, \exists s . B\right\} \\
& L\left(v_{1}\right)=\left\{A, C_{\mathcal{T}}, \exists r \cdot A \sqcap \exists s . B, \exists r . A, \exists s . B\right\} \\
& L\left(v_{2}\right)=\left\{B, C_{\mathcal{T}}, \neg A\right\}
\end{aligned}
$$

in which v_{1} is again directly blocked by v_{0}

From the Tableau to a Model II

again, we can construct a finite model from a contradiction-free tableau:

$$
\begin{aligned}
\Delta^{\mathcal{I}} & =\left\{v_{0}, v_{2}\right\} \\
A^{\mathcal{I}} & =\left\{v_{0}\right\} \\
B^{\mathcal{I}} & =\left\{v_{2}\right\} \\
r^{\mathcal{I}} & =\left\{\left\langle v_{0}, v_{0}\right\rangle\right\} \\
s^{\mathcal{I}} & =\left\{\left\langle v_{0}, v_{2}\right\rangle\right\}
\end{aligned}
$$

Agenda

- Recap Tableau Calculus
- Tableau with $\mathcal{A L C}$ TBoxes
- Tableau for $\mathcal{A L C}$ Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary

Treatment of ABoxes

to take an ABox \mathcal{A} into account, initialize G such that

- V contains a node v_{a} for each individual a occurring in \mathcal{A}

Treatment of ABoxes

to take an $\mathrm{ABox} \mathcal{A}$ into account, initialize G such that

- V contains a node v_{a} for each individual a occurring in \mathcal{A}
- $L\left(v_{a}\right)=\{C \mid C(a) \in \mathcal{A}\}$

Treatment of ABoxes

to take an $\mathrm{ABox} \mathcal{A}$ into account, initialize G such that

- V contains a node v_{a} for each individual a occurring in \mathcal{A}
- $L\left(v_{a}\right)=\{C \mid C(a) \in \mathcal{A}\}$
- $\left\langle v_{a}, v_{b}\right\rangle \in E$ and $r \in L\left(\left\langle v_{a}, v_{b}\right\rangle\right)$ iff $r(a, b) \in \mathcal{A}$

Treatment of ABoxes

to take an $\mathrm{ABox} \mathcal{A}$ into account, initialize G such that

- V contains a node v_{a} for each individual a occurring in \mathcal{A}
- $L\left(v_{a}\right)=\{C \mid C(a) \in \mathcal{A}\}$
- $\left\langle v_{a}, v_{b}\right\rangle \in E$ and $r \in L\left(\left\langle v_{a}, v_{b}\right\rangle\right)$ iff $r(a, b) \in \mathcal{A}$
the tableau rules can then be applied to this initialized graph

Agenda

- Recap Tableau Calculus
- Tableau with $\mathcal{A L C}$ TBoxes
- Tableau for $\mathcal{A} \mathcal{L C}$ Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary

Tableau for $\mathcal{A L C}$ with Inverse Roles

in order to take into account inverse roles, we have to make the following changes
(1) edge labels may contain inverse roles (r^{-}),

Tableau for $\mathcal{A L C}$ with Inverse Roles

in order to take into account inverse roles, we have to make the following changes
(1) edge labels may contain inverse roles (r^{-}),
(2) a node v^{\prime} is an r-neighbor of a node v if either

- v^{\prime} is an r-successor of v or
$-v$ is an r^{-}-successor of v^{\prime}

Tableau for $\mathcal{A L C}$ with Inverse Roles

in order to take into account inverse roles, we have to make the following changes
(1) edge labels may contain inverse roles (r^{-}),
(2) a node v^{\prime} is an r-neighbor of a node v if either

- v^{\prime} is an r-successor of v or
- v is an r^{-}-successor of v^{\prime}
(3) replace the term " r-successor" in the \forall - and the \exists-rule with " r-neighbor"
the \exists-rule still generates
- an r-successor for a concept $\exists r$. C (if no fitting neighbor exists yet)
- an r^{-}-successor for a concept $\exists r^{-} . C$ (if no fitting neighbor exists yet)

Tableau Example with Inverses

Example: is A satisfiable w.r.t. \mathcal{T} ?

$$
\mathcal{T}=\left\{A \equiv \exists r^{-} . A \sqcap(\forall r \cdot(\neg A \sqcup \exists s . B))\right\}
$$

Tableau Example with Inverses

Example: is A satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T}= & \left\{A \equiv \exists r^{-} . A \sqcap(\forall r .(\neg A \sqcup \exists s . B))\right\} \\
C_{\mathcal{T}}= & \left(\neg A \sqcup \exists r^{-} . A\right) \sqcap(\neg A \sqcup \forall r .(\neg A \sqcup \exists s . B)) \sqcap \\
& \left(\forall r^{-} .(\neg A) \sqcup \exists r .(A \sqcap \forall s .(\neg B)) \sqcup A\right)
\end{aligned}
$$

Tableau Example with Inverses

Example: is A satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T}= & \left\{A \equiv \exists r^{-} . A \sqcap(\forall r .(\neg A \sqcup \exists s . B))\right\} \\
C_{\mathcal{T}}= & \left(\neg A \sqcup \exists r^{-} . A\right) \sqcap(\neg A \sqcup \forall r \cdot(\neg A \sqcup \exists s . B)) \sqcap \\
& \left(\forall r^{-} .(\neg A) \sqcup \exists r .(A \sqcap \forall s .(\neg B)) \sqcup A\right)
\end{aligned}
$$

$$
\begin{aligned}
L\left(v_{0}\right)= & \left\{A, C_{\mathcal{T}}, \exists r^{-} . A, \forall r .(\neg A \sqcup \exists s . B),\right. \\
& \neg A \sqcup \exists s . B, \exists s . B\} \\
L\left(v_{1}\right)= & \left\{A, C_{\mathcal{T}}, \exists r^{-} . A, \forall r .(\neg A \sqcup \exists s . B)\right\} \\
L\left(v_{2}\right)= & \left\{B, C_{\mathcal{T}}, \neg A, \forall r^{-} .(\neg A)\right\} \\
& v_{0} \text { blocks } v_{1}
\end{aligned}
$$

Tableau Example with Inverses

Example: is A satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T}= & \left\{A \equiv \exists r^{-} . A \sqcap(\forall r .(\neg A \sqcup \exists s . B))\right\} \\
C_{\mathcal{T}}= & \left(\neg A \sqcup \exists r^{-} . A\right) \sqcap(\neg A \sqcup \forall r .(\neg A \sqcup \exists s . B)) \sqcap \\
& \left(\forall r^{-} .(\neg A) \sqcup \exists r .(A \sqcap \forall s .(\neg B)) \sqcup A\right)
\end{aligned}
$$

$$
\begin{aligned}
L\left(v_{0}\right)= & \left\{A, C_{\mathcal{T}}, \exists r^{-} . A, \forall r .(\neg A \sqcup \exists s . B),\right. \\
& \neg A \sqcup \exists s . B, \exists s . B\} \\
L\left(v_{1}\right)= & \left\{A, C_{\mathcal{T}}, \exists r^{-} . A, \forall r .(\neg A \sqcup \exists s . B)\right\} \\
L\left(v_{2}\right)= & \left\{B, C_{\mathcal{T}}, \neg A, \forall r^{-} .(\neg A)\right\} \\
& v_{0} \text { blocks } v_{1}
\end{aligned}
$$

Is the algorithm thus correct?

Tableau Example with Inverses

Example: is A satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T}= & \left\{A \equiv \exists r^{-} . A \sqcap(\forall r .(\neg A \sqcup \exists s . B))\right\} \\
C_{\mathcal{T}}= & \left(\neg A \sqcup \exists r^{-} . A\right) \sqcap(\neg A \sqcup \forall r .(\neg A \sqcup \exists s . B)) \sqcap \\
& \left(\forall r^{-} .(\neg A) \sqcup \exists r .(A \sqcap \forall s .(\neg B)) \sqcup A\right)
\end{aligned}
$$

$$
\begin{aligned}
L\left(v_{0}\right)= & \left\{A, C_{\mathcal{T}}, \exists r^{-} . A, \forall r .(\neg A \sqcup \exists s . B),\right. \\
& \neg A \sqcup \exists s . B, \exists s . B\} \\
L\left(v_{1}\right)= & \left\{A, C_{\mathcal{T}}, \exists r^{-} . A, \forall r .(\neg A \sqcup \exists s . B)\right\} \\
L\left(v_{2}\right)= & \left\{B, C_{\mathcal{T}}, \neg A, \forall r^{-} .(\neg A)\right\} \\
& v_{0} \text { blocks } v_{1}
\end{aligned}
$$

Is the algorithm thus correct? No!

Tableau Example with Inverses II

Example: Is $C \sqcap \exists s . C$ satisfiable w.r.t. \mathcal{T} ?

$$
\mathcal{T}=\left\{\top \sqsubseteq \forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C\right\}
$$

Tableau Example with Inverses II

Example: Is $C \sqcap \exists s . C$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T} & =\left\{\top \sqsubseteq \forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C\right\} \\
C_{\mathcal{T}} & =\forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C
\end{aligned}
$$

Tableau Example with Inverses II

Example: Is $C \sqcap \exists s . C$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T} & =\left\{\top \sqsubseteq \forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C\right\} \\
C_{\mathcal{T}} & =\forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C
\end{aligned}
$$

$$
\begin{aligned}
L\left(v_{0}\right)= & \left\{C, \exists s \cdot C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C, \forall s^{-} \cdot(\neg C)\right\} \\
L\left(v_{1}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\} \\
L\left(v_{2}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\} \\
& v_{0} \text { blocks } v_{1} \text { and } v_{2} \rightsquigarrow \text { tableau complete }
\end{aligned}
$$

Tableau Example with Inverses II

Example: Is $C \sqcap \exists s . C$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T} & =\left\{\top \sqsubseteq \forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C\right\} \\
C_{\mathcal{T}} & =\forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C
\end{aligned}
$$

$$
\begin{aligned}
L\left(v_{0}\right)= & \left\{C, \exists s \cdot C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C, \forall s^{-} \cdot(\neg C)\right\} \\
L\left(v_{1}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\} \\
L\left(v_{2}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r . C\right\} \\
& v_{0} \text { blocks } v_{1} \text { and } v_{2} \rightsquigarrow \text { tableau complete but } \\
L\left(v_{3}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} .\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\}
\end{aligned}
$$

Tableau Example with Inverses II

Example: Is $C \sqcap \exists s . C$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T} & =\left\{\top \sqsubseteq \forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C\right\} \\
C_{\mathcal{T}} & =\forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C
\end{aligned}
$$

$$
\begin{aligned}
L\left(v_{0}\right)= & \left\{C, \exists s \cdot C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C, \forall s^{-} \cdot(\neg C)\right\} \\
L\left(v_{1}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\} \cup\left\{\forall s^{-} \cdot(\neg C)\right\} \\
L\left(v_{2}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r . C\right\} \\
& v_{0} \text { blocks } v_{1} \text { and } v_{2} \rightsquigarrow \text { tableau complete but } \\
L\left(v_{3}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} .\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\}
\end{aligned}
$$

Tableau Example with Inverses II

Example: Is $C \sqcap \exists s . C$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T} & =\left\{\top \sqsubseteq \forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C\right\} \\
C_{\mathcal{T}} & =\forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C
\end{aligned}
$$

$$
\begin{aligned}
L\left(v_{0}\right)= & \left\{C, \exists s \cdot C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C, \forall s^{-} \cdot(\neg C)\right\} \cup\{\neg C\} \\
L\left(v_{1}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\} \cup\left\{\forall s^{-} \cdot(\neg C)\right\} \\
L\left(v_{2}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\} \\
& v_{0} \text { blocks } v_{1} \text { and } v_{2} \rightsquigarrow \text { tableau complete but } \\
L\left(v_{3}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\}
\end{aligned}
$$

Tableau Example with Inverses II

Example: Is $C \sqcap \exists s . C$ satisfiable w.r.t. \mathcal{T} ?

We have blocked too early!

Tableau Example with Inverses II

Example: Is $C \sqcap \exists s . C$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T} & =\left\{\top \sqsubseteq \forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C\right\} \\
C_{\mathcal{T}} & =\forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C
\end{aligned}
$$

$$
\begin{aligned}
L\left(v_{0}\right)= & \left\{C, \exists s . C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C, \forall s^{-} \cdot(\neg C)\right\} \cup\{\neg C\} \\
L\left(v_{1}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\} \cup\left\{\forall s^{-} \cdot(\neg C)\right\} \\
L\left(v_{2}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r . C\right\} \\
& v_{0} \text { blocks } v_{1} \text { and } v_{2} \rightsquigarrow \text { tableau complete but } \\
L\left(v_{3}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r . C\right\}
\end{aligned}
$$

We have blocked too early! Correctness can be retained by replacing subset blocking with equality blocking i.e., replace $L\left(v^{\prime}\right) \subseteq L(v)$ by $L\left(v^{\prime}\right)=L(v)$ in the blocking condition.

Model Construction for Tableau Example with Inverses II

Why does subset blocking not work anymore?
We cannot build a cyclic model as we could up to now!
Example: early blocked tableau from previous example would yield:

However, this is not a model of $\top \sqsubseteq \forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C$.

Example with Inverses \& Equality Blocking

Example: Is $C \sqcap \exists s . C$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T} & =\left\{\top \sqsubseteq \forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C\right\} \\
C_{\mathcal{T}} & =\forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C
\end{aligned}
$$

$$
\begin{aligned}
& L\left(v_{0}\right)=\left\{C, \exists s \cdot C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C, \forall s^{-} \cdot(\neg C)\right\} \\
& L\left(v_{1}\right)=\left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\} \\
& L\left(v_{2}\right)=\left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\}
\end{aligned}
$$

Example with Inverses \& Equality Blocking

Example: Is $C \sqcap \exists s . C$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T} & =\left\{\top \sqsubseteq \forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C\right\} \\
C_{\mathcal{T}} & =\forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C
\end{aligned}
$$

$$
\begin{aligned}
L\left(v_{0}\right)= & \left\{C, \exists s . C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C, \forall s^{-} \cdot(\neg C)\right\} \\
L\left(v_{1}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} .\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\} \\
L\left(v_{2}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} .\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\} \\
L\left(v_{3}\right)= & \left\{C, C_{\mathcal{T}}, \forall r^{-} .\left(\forall s^{-} .(\neg C)\right), \exists r . C\right\} \\
& v_{1} \text { blocks } v_{3} \text { but } \forall \text {-rule applicable }
\end{aligned}
$$

Example with Inverses \& Equality Blocking

Example: Is $C \sqcap \exists s . C$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
& L\left(v_{0}\right)=\left\{C, \exists s . C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C, \forall s^{-} \cdot(\neg C)\right\} \\
& L\left(v_{1}\right)=\left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\} \cup\left\{\forall s^{-} \cdot(\neg C)\right\} \\
& L\left(v_{2}\right)=\left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\} \\
& L\left(v_{3}\right)=\frac{\left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} .(\neg C)\right), \exists r . C\right\}}{v_{1} \text { blocks }}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{T} & =\left\{\top \sqsubseteq \forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C\right\} \\
C_{\mathcal{T}} & =\forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right) \sqcap \exists r . C
\end{aligned}
$$

Example with Inverses \& Equality Blocking

Example: Is $C \sqcap \exists s . C$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T} & =\left\{\top \sqsubseteq \forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C\right\} \\
C_{\mathcal{T}} & =\forall r^{-} .\left(\forall s^{-} .(\neg C)\right) \sqcap \exists r . C
\end{aligned}
$$

$$
\begin{aligned}
& L\left(v_{0}\right)=\left\{C, \exists s \cdot C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C, \forall s^{-} \cdot(\neg C)\right\} \cup\{\neg C\} \\
& L\left(v_{1}\right)=\left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\} \cup\left\{\forall s^{-} \cdot(\neg C)\right\} \\
& L\left(v_{2}\right)=\left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\} \\
& L\left(v_{3}\right)=\frac{\left\{C, C_{\mathcal{T}}, \forall r^{-} \cdot\left(\forall s^{-} \cdot(\neg C)\right), \exists r \cdot C\right\}}{v_{1} \text { blocks }{ }_{l}}
\end{aligned}
$$

Now unsatisfiability is recognized!

Agenda

- Recap Tableau Calculus
- Tableau with $\mathcal{A L C}$ TBoxes
- Tableau for $\mathcal{A} \mathcal{L C}$ Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary

Tableau with Functional Roles

Example: is A satisfiable w.r.t. \mathcal{T} ?
Note: $\top \sqsubseteq \leqslant 1 f$ expresses funtionality of the role f

$$
\mathcal{T}=\{A \sqsubseteq \exists f . B \sqcap \exists f .(\neg B), \top \sqsubseteq \leqslant 1 f\}
$$

Tableau with Functional Roles

Example: is A satisfiable w.r.t. \mathcal{T} ?
Note: $\top \sqsubseteq \leqslant 1 f$ expresses funtionality of the role f

$$
\begin{aligned}
\mathcal{T} & =\{A \sqsubseteq \exists f . B \sqcap \exists f .(\neg B), \top \sqsubseteq \leqslant 1 f\} \\
C_{\mathcal{T}} & =(\neg A \sqcup(\exists f . B \sqcap \exists f .(\neg B))) \sqcap \leqslant 1 f
\end{aligned}
$$

Tableau with Functional Roles

Example: is A satisfiable w.r.t. \mathcal{T} ?
Note: $\top \sqsubseteq \leqslant 1 f$ expresses funtionality of the role f

$$
\begin{aligned}
\mathcal{T} & =\{A \sqsubseteq \exists f . B \sqcap \exists f .(\neg B), \top \sqsubseteq \leqslant 1 f\} \\
C_{\mathcal{T}} & =(\neg A \sqcup(\exists f . B \sqcap \exists f .(\neg B))) \sqcap \leqslant 1 f \\
L\left(v_{0}\right) & =\left\{A, C_{\mathcal{T}}, \ldots, \exists f . B, \exists f .(\neg B), \leqslant 1 f\right\} \\
L\left(v_{1}\right) & =\left\{B, C_{\mathcal{T}}, \ldots, \neg A, \leqslant 1 f\right\} \\
L\left(v_{2}\right) & =\left\{\neg B, C_{\mathcal{T}}, \ldots, \neg A, \leqslant 1 f\right\}
\end{aligned}
$$

Tableau with Functional Roles

Example: is A satisfiable w.r.t. \mathcal{T} ?
Note: $\top \sqsubseteq \leqslant 1 f$ expresses funtionality of the role f

$$
\begin{aligned}
\mathcal{T} & =\{A \sqsubseteq \exists f . B \sqcap \exists f .(\neg B), \top \sqsubseteq \leqslant 1 f\} \\
C_{\mathcal{T}} & =(\neg A \sqcup(\exists f . B \sqcap \exists f .(\neg B))) \sqcap \leqslant 1 f \\
L\left(v_{0}\right) & =\left\{A, C_{\mathcal{T}}, \ldots, \exists f . B, \exists f .(\neg B), \leqslant 1 f\right\} \\
L\left(v_{1}\right) & =\left\{B, C_{\mathcal{T}}, \ldots, \neg A, \leqslant 1 f\right\} \\
L\left(v_{2}\right) & =\left\{\neg B, C_{\mathcal{T}}, \ldots, \neg A, \leqslant 1 f\right\}
\end{aligned}
$$

functionality requires $v_{1}=v_{2}$!
\rightsquigarrow we need a new tableau rule for treating functional roles

Tableau Rules for $\mathcal{A L C I F}$ Concepts and TBoxes

Π-rule: For an $v \in V$ with $C \sqcap D \in L(v)$ and
$\{C, D\} \nsubseteq L(v)$, let $L(v):=L(v) \cup\{C, D\}$.
\sqcup-rule: For an $v \in V$ with $C \sqcup D \in L(v)$ and
$\{C, D\} \cap L(v)=\emptyset$, choose $X \in\{C, D\}$ and let
$L(v):=L(v) \cup\{X\}$.
\exists-rule: For a non-blocked $v \in V$ with $\exists r . C \in L(v)$ such that
there is no r-neighbor v^{\prime} of v with $C \in L\left(v^{\prime}\right)$,
let $V=V \cup\left\{v^{\prime}\right\}, E=E \cup\left\{\left\langle v, v^{\prime}\right\rangle\right\}, L\left(v^{\prime}\right):=\{C\}$ and $L\left(v, v^{\prime}\right):=\{r\}$ for v^{\prime} a new node.
\forall-rule: For $v, v^{\prime} \in V, v^{\prime} r$-neighbor of v,
$\forall r . C \in L(v)$ and $C \notin L\left(v^{\prime}\right)$, let $L\left(v^{\prime}\right):=L\left(v^{\prime}\right) \cup\{C\}$.
$\leqslant 1$-rule: For a functional role f and a $v \in V$ with two
f-neighbors v_{1} and v_{2}, execute merge $\left(v_{1}, v_{2}\right)$.
\mathcal{T}-rule: For a $v \in V$ with $C_{\mathcal{T}} \notin L(v)$,
let $L(v):=L(v) \cup\left\{C_{\mathcal{T}}\right\}$.

Merging Nodes

we define merge (v_{1}, v_{2}) as follows:

- if v_{1} is an ancestor of v_{2}, let $v_{i}=v_{1}$ and $v_{o}=v_{2}$;
- otherwise let $v_{i}=v_{2}$ and $v_{o}=v_{1}$.
let $L\left(v_{i}\right)=L\left(v_{i}\right) \cup L\left(v_{o}\right)$ and execute prune $\left(v_{o}\right)$.
where prune $\left(v_{o}\right)$ is defined as:
- $V_{o}=\left\{v \mid v\right.$ belongs to the subtree with root $\left.v_{o}\right\}$,
- let $V=V \backslash V_{o}$ and $E=E \backslash\left\{\left\langle v, v_{o}\right\rangle \mid v_{o} \in V_{o},\left\langle v, v_{o}\right\rangle \in E\right\}$.

Tableau with Functional Roles

Example: Is $\exists f . A$ satisfiable w.r.t. \mathcal{T} ?

$$
\mathcal{T}=\left\{A \sqsubseteq \exists f . A, \top \sqsubseteq \leqslant 1 f^{-}\right\}
$$

Tableau with Functional Roles

Example: Is $\exists f . A$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T} & =\left\{A \sqsubseteq \exists f . A, \top \sqsubseteq \leqslant 1 f^{-}\right\} \\
C_{\mathcal{T}} & =(\neg A \sqcup \exists f . A) \sqcap \leqslant 1 f^{-}
\end{aligned}
$$

Tableau with Functional Roles

Example: Is $\exists f . A$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T} & =\left\{A \sqsubseteq \exists f . A, \top \sqsubseteq \leqslant 1 f^{-}\right\} \\
C_{\mathcal{T}} & =(\neg A \sqcup \exists f \cdot A) \sqcap \leqslant 1 f^{-} \\
L\left(v_{0}\right) & =\left\{\exists f \cdot A, C_{\mathcal{T}}, \neg A, \leqslant 1 f^{-}\right\} \\
L\left(v_{1}\right) & =\left\{A, C_{\mathcal{T}}, \exists f . A, \leqslant 1 f^{-}\right\} \\
L\left(v_{2}\right) & =\left\{A, C_{\mathcal{T}}, \exists f . A, \leqslant 1 f^{-}\right\}
\end{aligned}
$$

Tableau with Functional Roles

Example: Is $\exists f . A$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T} & =\left\{A \sqsubseteq \exists f . A, \top \sqsubseteq \leqslant 1 f^{-}\right\} \\
C_{\mathcal{T}} & =(\neg A \sqcup \exists f . A) \sqcap \leqslant 1 f^{-} \\
L\left(v_{0}\right) & =\left\{\exists f . A, C_{\mathcal{T}}, \neg A, \leqslant 1 f^{-}\right\} \\
L\left(v_{1}\right) & =\left\{A, C_{\mathcal{T}}, \exists f . A, \leqslant 1 f^{-}\right\} \\
L\left(v_{2}\right) & =\left\{A, C_{\mathcal{T}}, \exists f . A, \leqslant 1 f^{-}\right\}
\end{aligned}
$$

v_{1} blocks v_{2}, but cyclic model construction does not work (functionality violated)!

Agenda

- Recap Tableau Calculus
- Tableau with $\mathcal{A L C}$ TBoxes
- Tableau for $\mathcal{A} \mathcal{L C}$ Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary

Unravelling

goal: we build an infinite model
How? Every blocked node is replaced by a subtree whose root is the corresponding blocking node.

$$
\begin{aligned}
& L\left(v_{0}\right)=\left\{\exists f . A, C_{\mathcal{T}}, \neg A, \leqslant 1 f^{-}\right\} \\
& L\left(v_{1}\right)=\left\{A, C_{\mathcal{T}}, \exists f . A, \leqslant 1 f^{-}\right\} \\
& L\left(v_{2}\right)=\left\{A, C_{\mathcal{T}}, \exists f . A, \leqslant 1 f^{-}\right\}
\end{aligned}
$$

$$
v_{1} \text { blocks } v_{2}
$$

Unravelling

goal: we build an infinite model
How? Every blocked node is replaced by a subtree whose root is the corresponding blocking node.

$$
\begin{array}{rc}
v_{0} & \begin{array}{c}
L\left(v_{0}\right)=\left\{\exists f . A, C_{\mathcal{T}}, \neg A, \leqslant 1 f^{-}\right\} \\
f\left(v_{1}\right)=\left\{A, C_{\mathcal{T}}, \exists f . A, \leqslant 1 f^{-}\right\}
\end{array} \\
v_{1} & \begin{aligned}
& L\left(v_{2}\right)=\left\{A, C_{\mathcal{T}}, \exists f \cdot A, \leqslant 1 f^{-}\right\} \\
& f \downarrow \\
& v_{1} \text { blocks } v_{2}
\end{aligned} \\
v_{1}^{\prime} & \\
f \downarrow &
\end{array}
$$

Unravelling

goal: we build an infinite model
How? Every blocked node is replaced by a subtree whose root is the corresponding blocking node.

$L\left(v_{0}\right)=\left\{\exists f . A, C_{\mathcal{T}}, \neg A, \leqslant 1 f^{-}\right\}$
$L\left(v_{1}\right)=\left\{A, C_{\mathcal{T}}, \exists f . A, \leqslant 1 f^{-}\right\}$
$L\left(v_{2}\right)=\left\{A, C_{\mathcal{T}}, \exists f . A, \leqslant 1 f^{-}\right\}$
v_{1} blocks v_{2}

Unravelling

goal: we build an infinite model
How? Every blocked node is replaced by a subtree whose root is the corresponding blocking node.

$$
{ }_{f}^{v_{0}}
$$

$$
L\left(v_{0}\right)=\left\{\exists f . A, C_{\mathcal{T}}, \neg A, \leqslant 1 f^{-}\right\}
$$

$$
L\left(v_{1}\right)=\left\{A, C_{\mathcal{T}}, \exists f \cdot A, \leqslant 1 f^{-}\right\}
$$

$$
L\left(v_{2}\right)=\left\{A, C_{\mathcal{T}}, \exists f \cdot A, \leqslant 1 f^{-}\right\}
$$

$$
v_{1} \text { blocks } v_{2}
$$

Blocking: Inverse and Functional Roles

Example: Is $\neg C \sqcap \exists f^{-} . D$ satisfiable w.r.t. \mathcal{T} ?

$$
\mathcal{T}=\left\{D \sqsubseteq C \sqcap \exists f .(\neg C) \sqcap \exists f^{-} . D, \top \sqsubseteq \leqslant 1 f\right\}
$$

Blocking: Inverse and Functional Roles

Example: Is $\neg C \sqcap \exists f^{-} . D$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
\mathcal{T} & =\left\{D \sqsubseteq C \sqcap \exists f .(\neg C) \sqcap \exists f^{-} . D, \top \sqsubseteq \leqslant 1 f\right\} \\
C_{\mathcal{T}} & =\left(\neg D \sqcup\left(C \sqcap \exists f .(\neg C) \sqcap \exists f^{-} . D\right)\right) \sqcap \leqslant 1 f
\end{aligned}
$$

Blocking: Inverse and Functional Roles

Example: Is $\neg C \sqcap \exists f^{-} . D$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
& \mathcal{T}=\left\{D \sqsubseteq C \sqcap \exists f .(\neg C) \sqcap \exists f^{-} . D, \top \sqsubseteq \leqslant 1 f\right\} \\
& C_{\mathcal{T}}=\left(\neg D \sqcup\left(C \sqcap \exists f .(\neg C) \sqcap \exists f^{-} . D\right)\right) \sqcap \leqslant 1 f \\
& L\left(v_{0}\right)=\left\{\neg C, \exists f^{-} . D, C_{\mathcal{T}}, \ldots, \neg D, \leqslant 1 f\right\} \\
& L\left(v_{1}\right)=\left\{D, C_{\mathcal{T}}, \ldots, C, \exists f .(\neg C), \exists f^{-} . D, \leqslant 1 f\right\} \\
& L\left(v_{2}\right)=\left\{D, C_{\mathcal{T}}, \ldots, C, \exists f .(\neg C), \exists f^{-} . D, \leqslant 1 f\right\}
\end{aligned}
$$

v_{1} blocks v_{2} (same label)

Blocking: Inverse and Functional Roles

Example: Is $\neg C \sqcap \exists f^{-} . D$ satisfiable w.r.t. \mathcal{T} ?

$$
\left.\begin{array}{rl}
\mathcal{T}=\left\{D \sqsubseteq C \sqcap \exists f .(\neg C) \sqcap \exists f^{-} . D, \top \sqsubseteq \leqslant 1 f\right\} \\
C_{\mathcal{T}}=\left(\neg D \sqcup\left(C \sqcap \exists f .(\neg C) \sqcap \exists f^{-} . D\right)\right) \sqcap \leqslant 1 f
\end{array} \quad \begin{array}{l}
L\left(v_{0}\right)=\left\{\neg C, \exists f^{-} . D, C_{\mathcal{T}}, \ldots, \neg D, \leqslant 1 f\right\} \\
L\left(v_{1}\right)
\end{array}=\left\{D, C_{\mathcal{T}}, \ldots, C, \exists f .(\neg C), \exists f^{-} . D, \leqslant 1 f\right\}\right)
$$

v_{1} blocks v_{2} (same label) but

$$
L\left(v_{1}^{\prime \prime}\right)=\left\{D, C_{\mathcal{T}}, \ldots, C, \exists f .(\neg C), \exists f^{-} . D, \leqslant 1 f\right\}
$$

$$
f^{-} \underset{v_{1}^{\prime \prime}}{\downarrow}
$$

but we cannot build a model any more (neither cyclic nor infinite)!

Pairwise Blocking

A node x with predecessor x^{\prime} blocks a node y with predecessor y^{\prime} directly, if:
(1) y is reachable from x,
(2) $L(x)=L(y), L\left(x^{\prime}\right)=L\left(y^{\prime}\right)$ and $L\left(x^{\prime}, x\right)=L\left(y^{\prime}, y\right)$; and
(3) there is no directly blocked node z such that y is reachable from z.

A node $y \in V$ is blocked if either
(1) y is directly blocked or
(2) there is a directly blocked node x, such that y can be reached from x.

Pairwise Blocking: Inverses and Functional Roles

Example: Is $\neg C \sqcap \exists f^{-} . D$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
& \mathcal{T}=\left\{D \sqsubseteq C \sqcap \exists f .(\neg C) \sqcap \exists f^{-} . D, \top \sqsubseteq \leqslant 1 f\right\} \\
& C_{\mathcal{T}}=\left(\neg D \sqcup\left(C \sqcap \exists f .(\neg C) \sqcap \exists f^{-} . D\right)\right) \sqcap \leqslant 1 f \\
& L\left(v_{0}\right)=\left\{\neg C, \exists f^{-} . D, C_{\mathcal{T}}, \ldots, \neg D, \leqslant 1 f\right\} \\
& L\left(v_{1}\right)=\left\{D, C_{\mathcal{T}}, \ldots, C, \exists f .(\neg C), \exists f^{-} . D, \leqslant 1 f\right\} \\
& L\left(v_{2}\right)=\left\{D, C_{\mathcal{T}}, \ldots, C, \exists f .(\neg C), \exists f^{-} . D, \leqslant 1 f\right\}
\end{aligned}
$$

v_{1} cannot block v_{2} pairwise

Pairwise Blocking: Inverses and Functional Roles

Example: Is $\neg C \sqcap \exists f^{-} . D$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
& \mathcal{T}=\left\{D \sqsubseteq C \sqcap \exists f .(\neg C) \sqcap \exists f^{-} . D, \top \sqsubseteq \leqslant 1 f\right\} \\
& C_{\mathcal{T}}=\left(\neg D \sqcup\left(C \sqcap \exists f .(\neg C) \sqcap \exists f^{-} . D\right)\right) \sqcap \leqslant 1 f \\
& L\left(v_{0}\right)=\left\{\neg C, \exists f^{-} . D, C_{\mathcal{T}}, \ldots, \neg D, \leqslant 1 f\right\} \\
& L\left(v_{1}\right)=\left\{D, C_{\mathcal{T}}, \ldots, C, \exists f .(\neg C), \exists f^{-} . D, \leqslant 1 f\right\} \\
& L\left(v_{2}\right)=\left\{D, C_{\mathcal{T}}, \ldots, C, \exists f .(\neg C), \exists f^{-} . D, \leqslant 1 f\right\}
\end{aligned}
$$

v_{1} cannot block v_{2} pairwise
$L\left(v_{3}\right)=\{\neg C\}$

Pairwise Blocking: Inverses and Functional Roles

Example: Is $\neg C \sqcap \exists f^{-} . D$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
& \mathcal{T}=\left\{D \sqsubseteq C \sqcap \exists f .(\neg C) \sqcap \exists f^{-} . D, \top \sqsubseteq \leqslant 1 f\right\} \\
& C_{\mathcal{T}}=\left(\neg D \sqcup\left(C \sqcap \exists f .(\neg C) \sqcap \exists f^{-} . D\right)\right) \sqcap \leqslant 1 f \\
& L\left(v_{0}\right)=\left\{\neg C, \exists f^{-} . D, C_{\mathcal{T}}, \ldots, \neg D, \leqslant 1 f\right\} \\
& L\left(v_{1}\right)=\left\{D, C_{\mathcal{T}}, \ldots, C, \exists f .(\neg C), \exists f^{-} . D, \leqslant 1 f\right\} \\
& L\left(v_{2}\right)=\left\{D, C_{\mathcal{T}}, \ldots, C, \exists f .(\neg C), \exists f^{-} . D, \leqslant 1 f\right\}
\end{aligned}
$$

v_{1} cannot block v_{2} pairwise

$$
L\left(v_{3}\right)=\{\neg C\}
$$

Pairwise Blocking: Inverses and Functional Roles

Example: Is $\neg C \sqcap \exists f^{-} . D$ satisfiable w.r.t. \mathcal{T} ?

$$
\begin{aligned}
& \mathcal{T}=\left\{D \sqsubseteq C \sqcap \exists f .(\neg C) \sqcap \exists f^{-} . D, \top \sqsubseteq \leqslant 1 f\right\} \\
& C_{\mathcal{T}}=\left(\neg D \sqcup\left(C \sqcap \exists f .(\neg C) \sqcap \exists f^{-} . D\right)\right) \sqcap \leqslant 1 f \\
& L\left(v_{0}\right)=\left\{\neg C, \exists f^{-} . D, C_{\mathcal{T}}, \ldots, \neg D, \leqslant 1 f\right\} \\
& L\left(v_{1}\right)=\left\{D, C_{\mathcal{T}}, \ldots, C, \exists f .(\neg C), \exists f^{-} . D, \leqslant 1 f\right\} \\
& L\left(v_{2}\right)=\left\{D, C_{\mathcal{T}}, \ldots, C, \exists f .(\neg C), \exists f^{-} . D, \leqslant 1 f\right\} \\
& v_{1} \text { cannot block } v_{2} \text { pairwise } \\
& L\left(v_{3}\right)=\{\neg C\} \\
& v_{3} \text { is merged into } v_{1} \\
& L\left(v_{1}\right)= L\left(v_{1}\right) \cup L\left(v_{3}\right) \supseteq\{\neg C, C\}
\end{aligned}
$$

now the contradiction can be detected

Agenda

- Recap Tableau Calculus
- Tableau with $\mathcal{A L C}$ TBoxes
- Tableau for $\mathcal{A} \mathcal{L C}$ Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary

Summary

- we now have a tableau algorithm for $\mathcal{A L C I F}$ knowledge bases
- treat the ABox like for $\mathcal{A L C}$
- number restrictions can be handled similar to functional roles
- termination through cycle detection
- becomes harder the more expressive the logic gets

