

DEDUCTION SYSTEMS

Tableau Procedures II

Markus Krötzsch Chair for Knowledge-Based Systems

Slides by Sebastian Rudolph

TU Dresden, 14 May 2018

Agenda

- Recap Tableau Calculus
- Tableau with ALC TBoxes
- Tableau for *ALC* Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary

Agenda

- Recap Tableau Calculus
- Tableau with ALC TBoxes
- Tableau for *ALC* Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary

• check of satisfiability of *C* by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$

- check of satisfiability of *C* by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) ~> easier rules

- check of satisfiability of *C* by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) ~> easier rules
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$

- check of satisfiability of *C* by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) ~> easier rules
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize *G* with a node *v* such that $L(v) = \{C\}$

- check of satisfiability of *C* by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) ~> easier rules
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize *G* with a node *v* such that $L(v) = \{C\}$
- extend *G* by applying tableau rules

- check of satisfiability of *C* by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) ~> easier rules
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize *G* with a node *v* such that $L(v) = \{C\}$
- extend *G* by applying tableau rules
 - ⊔ rule is non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (aka clash)

- check of satisfiability of *C* by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) ~> easier rules
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize *G* with a node *v* such that $L(v) = \{C\}$
- extend *G* by applying tableau rules
 - ⊔ rule is non-deterministic (we guess)
- tableau branch closed if *G* contains an atomic contradiction (aka clash)
- tableau construction successful if no rules applicable and no contradiction

- check of satisfiability of *C* by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) ~> easier rules
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize *G* with a node *v* such that $L(v) = \{C\}$
- extend *G* by applying tableau rules
 - ⊔ rule is non-deterministic (we guess)
- tableau branch closed if *G* contains an atomic contradiction (aka clash)
- tableau construction successful if no rules applicable and no contradiction
- *C* is satisfiable iff there is a successful tableau construction

Tableau Rules for ALC Concepts

```
 \begin{array}{ll} \forall \text{-rule:} & \text{For } v, v' \in V, v' \text{ } r\text{-successor of } v, \\ & \forall r.C \in L(v) \text{ and } C \notin L(v'), \text{ let } L(v') := L(v') \cup \{C\}. \end{array}
```


Agenda

- Recap Tableau Calculus
- Tableau with ALC TBoxes
- Tableau for *ALC* Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary

We extend the tableau algorithm to capture \mathcal{ALC} TBoxes

- a TBox contains axioms (GCIs) of the form $C \sqsubseteq D$
- assumption: occurrences of $C \equiv D$ have been replaced by $C \sqsubseteq D$ and $D \sqsubseteq C$
- every GCI is equivalent to $\top \sqsubseteq \neg C \sqcup D$

We can compress the whole TBox into one axiom (we say we "internalize" it):

 $\mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \le i \le n\}$

is equivalent to:

$$\mathcal{T}' = \{\top \sqsubseteq \bigcap_{1 \le i \le n} \neg C_i \sqcup D_i\}$$

Let $C_{\mathcal{T}}$ be the concept on the rhs of the GCI in NNF.

TU Dresden, 14 May 2018

We extend the rules of the \mathcal{ALC} tableau algorithm with the rule:

 \mathcal{T} rule: For an arbitrary $v \in V$ with $C_{\mathcal{T}} \notin L(v)$, let $L(v) := L(v) \cup \{C_{\mathcal{T}}\}$.

Example: Let $\mathcal{T} = A \sqsubseteq \exists r.A$. Is A satisfiable given \mathcal{T} ?

We extend the rules of the \mathcal{ALC} tableau algorithm with the rule:

 \mathcal{T} rule: For an arbitrary $v \in V$ with $C_{\mathcal{T}} \notin L(v)$, let $L(v) := L(v) \cup \{C_{\mathcal{T}}\}$.

Example: Let $\mathcal{T} = A \sqsubseteq \exists r.A$. Is A satisfiable given \mathcal{T} ?

the tableau algorithm doesn't terminate any more!

We extend the rules of the \mathcal{ALC} tableau algorithm with the rule:

 \mathcal{T} rule: For an arbitrary $v \in V$ with $C_{\mathcal{T}} \notin L(v)$, let $L(v) := L(v) \cup \{C_{\mathcal{T}}\}$.

Example: Let $\mathcal{T} = A \sqsubseteq \exists r.A$. Is A satisfiable given \mathcal{T} ?

the tableau algorithm doesn't terminate any more!

the quantifier depth does not necessarily decrease for newly introduced child nodes

We extend the rules of the \mathcal{ALC} tableau algorithm with the rule:

 \mathcal{T} rule: For an arbitrary $v \in V$ with $C_{\mathcal{T}} \notin L(v)$, let $L(v) := L(v) \cup \{C_{\mathcal{T}}\}$.

Example: Let $\mathcal{T} = A \sqsubseteq \exists r.A$. Is A satisfiable given \mathcal{T} ?

the tableau algorithm doesn't terminate any more!

the quantifier depth does not necessarily decrease for newly introduced child nodes solution: we will recognize cycles (that is, repeating node labellings)

Definition (Blocking)

A node v ∈ V blocks a node v' ∈ V directly, if:
v' is reachable from v,
L(v') ⊆ L(v); and
there is no directly blocking node v'' such that v' is reachable from v''.
A node v' ∈ V is blocked if either
v' is blocked directly or

2 there is a directly blocked node v, such that v' is reachable from v.

Definition (Blocking)

A node v ∈ V blocks a node v' ∈ V directly, if:
v' is reachable from v,
L(v') ⊆ L(v); and
there is no directly blocking node v'' such that v' is reachable from v''.
A node v' ∈ V is blocked if either
v' is blocked directly or
there is a directly blocked node v, such that v' is reachable from v.

The application of the \exists rule is restricted to nodes that are not blocked.

Tableau Algorithm with Blocking

Example: Let $\mathcal{T} = A \sqsubseteq \exists r.A.$ Is A satisfiable w.r.t. \mathcal{T} ?

we obtain the following contradiction-free tableau:

$$L(v_0) = \{A, C_{\mathcal{T}}, \exists r.A\}$$
$$L(v_1) = \{A, C_{\mathcal{T}}, \exists r.A\}$$

wherein v_1 is directly blocked by v_0

Tableau Algorithm with Blocking

Example: Let $\mathcal{T} = A \sqsubseteq \exists r.A.$ Is A satisfiable w.r.t. \mathcal{T} ?

we obtain the following contradiction-free tableau:

 $\begin{array}{c} v_0 \\ r \\ v_1 \end{array}$ $\begin{array}{c} L(v_0) = \{A, C_T, \exists r.A\} \\ L(v_1) = \{A, C_T, \exists r.A\} \end{array}$

wherein v_1 is directly blocked by v_0

again, the algorithm constructs finite trees

- from a contradiction-free tableau, we can construct a model
- if there is no contradiction-free tableau, there is no model

From the Tableau to the Model

again, we can construct a finite model from a contradiction-free tableau:

 $\Delta^{\mathcal{I}} = \{v_0\}$ $A^{\mathcal{I}} = \Delta^{\mathcal{I}}$ $r^{\mathcal{I}} = \{\langle v_0, v_0 \rangle\}$

- blocked nodes do not represent elements of the model
- when constructing the model, an edge from a node v to a directly blocked node v' will be "translated" into an "edge" from v to the node, that directly blocks v'

From the Tableau to the Model

again, we can construct a finite model from a contradiction-free tableau:

 $\Delta^{\mathcal{I}} = \{v_0\}$ $A^{\mathcal{I}} = \Delta^{\mathcal{I}}$ $r^{\mathcal{I}} = \{\langle v_0, v_0 \rangle\}$

- blocked nodes do not represent elements of the model
- when constructing the model, an edge from a node v to a directly blocked node v' will be "translated" into an "edge" from v to the node, that directly blocks v'
- → we have the finite model property
- → constructed model is not necessarily tree-shaped

Tableau Algorithm with Blocking II

Example: Let $\mathcal{T} = A \sqsubseteq \exists r.A \sqcap \exists s.B$. Is A satisfiable w.r.t. \mathcal{T} ?

We obtain the following contradiction-free tableau:

 $L(v_0) = \{A, C_{\mathcal{T}}, \exists r.A \sqcap \exists s.B, \exists r.A, \exists s.B\}$ $L(v_1) = \{A, C_{\mathcal{T}}, \exists r.A \sqcap \exists s.B, \exists r.A, \exists s.B\}$ $L(v_2) = \{B, C_{\mathcal{T}}, \neg A\}$

in which v_1 is again directly blocked by v_0

From the Tableau to a Model II

again, we can construct a finite model from a contradiction-free tableau:

$$\Delta^{\mathcal{I}} = \{v_0, v_2\}$$
$$A^{\mathcal{I}} = \{v_0\}$$
$$B^{\mathcal{I}} = \{v_2\}$$
$$r^{\mathcal{I}} = \{\langle v_0, v_0 \rangle$$
$$s^{\mathcal{I}} = \{\langle v_0, v_2 \rangle$$

Agenda

- Recap Tableau Calculus
- Tableau with \mathcal{ALC} TBoxes
- Tableau for *ALC* Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary

to take an ABox A into account, initialize G such that

• V contains a node v_a for each individual a occurring in A

to take an ABox A into account, initialize G such that

- V contains a node v_a for each individual a occurring in A
- $L(v_a) = \{C \mid C(a) \in \mathcal{A}\}$

to take an ABox \mathcal{A} into account, initialize G such that

- V contains a node v_a for each individual a occurring in A
- $L(v_a) = \{C \mid C(a) \in \mathcal{A}\}$
- $\langle v_a, v_b \rangle \in E$ and $r \in L(\langle v_a, v_b \rangle)$ iff $r(a, b) \in A$

to take an ABox A into account, initialize G such that

- V contains a node v_a for each individual a occurring in A
- $L(v_a) = \{C \mid C(a) \in \mathcal{A}\}$
- $\langle v_a, v_b \rangle \in E$ and $r \in L(\langle v_a, v_b \rangle)$ iff $r(a, b) \in A$

the tableau rules can then be applied to this initialized graph

Agenda

- Recap Tableau Calculus
- Tableau with ALC TBoxes
- Tableau for *ALC* Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary

Tableau for \mathcal{ALC} with Inverse Roles

in order to take into account inverse roles, we have to make the following changes

1 edge labels may contain inverse roles (r^{-}) ,

Tableau for \mathcal{ALC} with Inverse Roles

in order to take into account inverse roles, we have to make the following changes

- 2 a node v' is an *r*-neighbor of a node *v* if either
 - v' is an r-successor of v or
 - v is an r^- -successor of v'

Tableau for \mathcal{ALC} with Inverse Roles

in order to take into account inverse roles, we have to make the following changes

- 2 a node v' is an *r*-neighbor of a node v if either
 - -v' is an *r*-successor of *v* or
 - -v is an r^- -successor of v'

the ∃-rule still generates

- an *r*-successor for a concept $\exists r.C$ (if no fitting neighbor exists yet)
- an r^- -successor for a concept $\exists r^- . C$ (if no fitting neighbor exists yet)

Tableau Example with Inverses

Example: is A satisfiable w.r.t. T?

 $\mathcal{T} = \{A \equiv \exists r^- . A \sqcap (\forall r. (\neg A \sqcup \exists s. B))\}$

Example: is A satisfiable w.r.t. T?

$$\mathcal{T} = \{ A \equiv \exists r^-.A \sqcap (\forall r.(\neg A \sqcup \exists s.B)) \}$$
$$C_{\mathcal{T}} = (\neg A \sqcup \exists r^-.A) \sqcap (\neg A \sqcup \forall r.(\neg A \sqcup \exists s.B)) \sqcap (\forall r^-.(\neg A) \sqcup \exists r.(A \sqcap \forall s.(\neg B)) \sqcup A)$$

Example: is A satisfiable w.r.t. T?

$$\mathcal{T} = \{ A \equiv \exists r^- .A \sqcap (\forall r. (\neg A \sqcup \exists s.B)) \}$$
$$C_{\mathcal{T}} = (\neg A \sqcup \exists r^- .A) \sqcap (\neg A \sqcup \forall r. (\neg A \sqcup \exists s.B)) \sqcap (\forall r^- . (\neg A) \sqcup \exists r. (A \sqcap \forall s. (\neg B)) \sqcup A)$$

$$L(v_0) = \{A, C_{\mathcal{T}}, \exists r^-.A, \forall r. (\neg A \sqcup \exists s.B), \\ \neg A \sqcup \exists s.B, \exists s.B \}$$
$$L(v_1) = \{A, C_{\mathcal{T}}, \exists r^-.A, \forall r. (\neg A \sqcup \exists s.B)\}$$
$$L(v_2) = \{B, C_{\mathcal{T}}, \neg A, \forall r^-. (\neg A)\}$$
$$v_0 \text{ blocks } v_1$$

Example: is A satisfiable w.r.t. T?

$$\mathcal{T} = \{ A \equiv \exists r^- .A \sqcap (\forall r.(\neg A \sqcup \exists s.B)) \}$$
$$C_{\mathcal{T}} = (\neg A \sqcup \exists r^- .A) \sqcap (\neg A \sqcup \forall r.(\neg A \sqcup \exists s.B)) \sqcap (\forall r^- .(\neg A) \sqcup \exists r.(A \sqcap \forall s.(\neg B)) \sqcup A)$$

Is the algorithm thus correct?

Example: is A satisfiable w.r.t. T?

$$\mathcal{T} = \{ A \equiv \exists r^- .A \sqcap (\forall r.(\neg A \sqcup \exists s.B)) \}$$
$$C_{\mathcal{T}} = (\neg A \sqcup \exists r^- .A) \sqcap (\neg A \sqcup \forall r.(\neg A \sqcup \exists s.B)) \sqcap (\forall r^- .(\neg A) \sqcup \exists r.(A \sqcap \forall s.(\neg B)) \sqcup A)$$

Is the algorithm thus correct? No!

Example: Is $C \sqcap \exists s. C$ satisfiable w.r.t. \mathcal{T} ?

 $\mathcal{T} = \{\top \sqsubseteq \forall r^- . (\forall s^- . (\neg C)) \sqcap \exists r . C\}$

Example: Is $C \sqcap \exists s. C$ satisfiable w.r.t. \mathcal{T} ?

 $\mathcal{T} = \{ \top \sqsubseteq \forall r^- . (\forall s^- . (\neg C)) \sqcap \exists r.C \}$ $C_{\mathcal{T}} = \forall r^- . (\forall s^- . (\neg C)) \sqcap \exists r.C$

We have blocked too early!

We have blocked too early! Correctness can be retained by replacing subset blocking with equality blocking i.e., replace $L(v') \subseteq L(v)$ by L(v') = L(v) in the blocking condition.

Model Construction for Tableau Example with Inverses II

Why does subset blocking not work anymore? We cannot build a cyclic model as we could up to now!

Example: early blocked tableau from previous example would yield:

 r, s_{\bigcap} $v_0 C$

However, this is not a model of $\top \sqsubseteq \forall r^- . (\forall s^- . (\neg C)) \sqcap \exists r.C.$

Example: Is $C \sqcap \exists s. C$ satisfiable w.r.t. \mathcal{T} ?

$$\mathcal{T} = \{ \top \sqsubseteq \forall r^- . (\forall s^- . (\neg C)) \sqcap \exists r.C \}$$
$$C_{\mathcal{T}} = \forall r^- . (\forall s^- . (\neg C)) \sqcap \exists r.C$$

$$L(v_0) = \{C, \exists s.C, C_{\mathcal{T}}, \forall r^-. (\forall s^-. (\neg C)), \exists r.C, \forall s^-. (\neg C)\}$$
$$L(v_1) = \{C, C_{\mathcal{T}}, \forall r^-. (\forall s^-. (\neg C)), \exists r.C\}$$
$$L(v_2) = \{C, C_{\mathcal{T}}, \forall r^-. (\forall s^-. (\neg C)), \exists r.C\}$$

Example: Is $C \sqcap \exists s. C$ satisfiable w.r.t. \mathcal{T} ?

Example: Is $C \sqcap \exists s. C$ satisfiable w.r.t. \mathcal{T} ?

Example: Is $C \sqcap \exists s. C$ satisfiable w.r.t. \mathcal{T} ?

Now unsatisfiability is recognized!

Agenda

- Recap Tableau Calculus
- Tableau with ALC TBoxes
- Tableau for *ALC* Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary

Example: is A satisfiable w.r.t. \mathcal{T} ? Note: $\top \sqsubseteq \leq 1f$ expresses functionality of the role f

 $\mathcal{T} = \{ A \sqsubseteq \exists f.B \sqcap \exists f.(\neg B), \top \sqsubseteq \leqslant 1f \}$

Example: is A satisfiable w.r.t. \mathcal{T} ? Note: $\top \sqsubseteq \leq 1f$ expresses functionality of the role f

 $\begin{aligned} \mathcal{T} &= \{ A \sqsubseteq \exists f.B \sqcap \exists f.(\neg B), \top \sqsubseteq \leqslant 1f \} \\ C_{\mathcal{T}} &= (\neg A \sqcup (\exists f.B \sqcap \exists f.(\neg B))) \ \sqcap \leqslant 1f \end{aligned}$

Example: is A satisfiable w.r.t. \mathcal{T} ? Note: $\top \sqsubseteq \leq 1f$ expresses functionality of the role f

$$\mathcal{T} = \{ A \sqsubseteq \exists f.B \sqcap \exists f.(\neg B), \top \sqsubseteq \leqslant 1f \}$$
$$C_{\mathcal{T}} = (\neg A \sqcup (\exists f.B \sqcap \exists f.(\neg B))) \sqcap \leqslant 1f$$
$$L(v_0) = \{ A, C_{\mathcal{T}}, \dots, \exists f.B, \exists f.(\neg B), \leqslant 1f \}$$

$$L(v_1) = \{B, C_{\mathcal{T}}, \dots, \neg A, \leqslant 1f\}$$
$$L(v_2) = \{\neg B, C_{\mathcal{T}}, \dots, \neg A, \leqslant 1f\}$$

Example: is A satisfiable w.r.t. \mathcal{T} ? Note: $\top \sqsubseteq \leq 1f$ expresses functionality of the role f

$$\mathcal{T} = \{A \sqsubseteq \exists f.B \sqcap \exists f.(\neg B), \top \sqsubseteq \leqslant 1f\}$$
$$C_{\mathcal{T}} = (\neg A \sqcup (\exists f.B \sqcap \exists f.(\neg B))) \sqcap \leqslant 1f$$
$$L(v_0) = \{A, C_{\mathcal{T}}, \dots, \exists f.B, \exists f.(\neg B), \leqslant 1f\}$$
$$L(v_1) = \{B, C_{\mathcal{T}}, \dots, \neg A, \leqslant 1f\}$$

 $L(v_2) = \{\neg B, C_{\mathcal{T}}, \dots, \neg A, \leqslant 1f\}$

functionality requires $v_1 = v_2!$

 \rightsquigarrow we need a new tableau rule for treating functional roles

Tableau Rules for \mathcal{ALCIF} Concepts and TBoxes

□-rule :	For an $v \in V$ with $C \sqcap D \in L(v)$ and
	$\{C, D\} \not\subseteq L(v), \text{ let } L(v) := L(v) \cup \{C, D\}.$
⊔-rule:	For an $v \in V$ with $C \sqcup D \in L(v)$ and
	$\{C,D\} \cap L(v) = \emptyset$, choose $X \in \{C,D\}$ and let
	$L(v) := L(v) \cup \{X\}.$
∃-rule:	For a non-blocked $v \in V$ with $\exists r. C \in L(v)$ such that
	there is no <i>r</i> -neighbor v' of <i>v</i> with $C \in L(v')$,
	let $V = V \cup \{v'\}, E = E \cup \{\langle v, v' \rangle\}, L(v') := \{C\}$ and
	$L(v, v') := \{r\}$ for v' a new node.
∀-rule:	For $v, v' \in V$, v' <i>r</i> -neighbor of v ,
	$\forall r.C \in L(v) \text{ and } C \notin L(v'), \text{ let } L(v') := L(v') \cup \{C\}.$
\leq 1-rule:	For a functional role f and a $v \in V$ with two
	<i>f</i> -neighbors v_1 and v_2 , execute merge(v_1 , v_2).
\mathcal{T} -rule:	For a $v \in V$ with $C_{\mathcal{T}} \notin L(v)$,
	$let L(v) := L(v) \cup \{C_{\mathcal{T}}\}.$

Merging Nodes

we define merge(v_1 , v_2) as follows:

- if v₁ is an ancestor of v₂, let v_i = v₁ and v_o = v₂;
- otherwise let $v_i = v_2$ and $v_o = v_1$.

let $L(v_i) = L(v_i) \cup L(v_o)$ and execute prune (v_o) .

where prune(v_o) is defined as:

- $V_o = \{v \mid v \text{ belongs to the subtree with root } v_o\},$
- let $V = V \setminus V_o$ and $E = E \setminus \{ \langle v, v_o \rangle \mid v_o \in V_o, \langle v, v_o \rangle \in E \}.$

Example: Is $\exists f.A$ satisfiable w.r.t. \mathcal{T} ?

 $\mathcal{T} = \{ A \sqsubseteq \exists f.A, \top \sqsubseteq \leqslant 1f^- \}$

Example: Is $\exists f.A$ satisfiable w.r.t. T?

 $\mathcal{T} = \{ A \sqsubseteq \exists f.A, \top \sqsubseteq \leqslant 1f^- \}$ $C_{\mathcal{T}} = (\neg A \sqcup \exists f.A) \sqcap \leqslant 1f^-$

Example: Is $\exists f.A$ satisfiable w.r.t. T?

Example: Is $\exists f.A$ satisfiable w.r.t. T?

v1 blocks v2, but cyclic model construction does not work (functionality violated)!

Agenda

- Recap Tableau Calculus
- Tableau with ALC TBoxes
- Tableau for *ALC* Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary

goal: we build an infinite model

goal: we build an infinite model

f

f

f

goal: we build an infinite model

 v_0

 v_1

f

f

goal: we build an infinite model

 v_0

v

f

 v_{1}'''

$$L(v_0) = \{ \exists f.A, C_{\mathcal{T}}, \neg A, \leqslant 1f^- \}$$
$$L(v_1) = \{ A, C_{\mathcal{T}}, \exists f.A, \leqslant 1f^- \}$$
$$L(v_2) = \{ A, C_{\mathcal{T}}, \exists f.A, \leqslant 1f^- \}$$
$$v_1 \text{ blocks } v_2$$

Example: Is $\neg C \sqcap \exists f \neg D$ satisfiable w.r.t. \mathcal{T} ?

 $\mathcal{T} = \{ D \sqsubseteq C \sqcap \exists f.(\neg C) \sqcap \exists f^-.D, \top \sqsubseteq \leqslant 1f \}$

Example: Is $\neg C \sqcap \exists f \neg D$ satisfiable w.r.t. \mathcal{T} ?

$$\begin{split} \mathcal{T} &= \{ D \sqsubseteq C \sqcap \exists f. (\neg C) \sqcap \exists f^-.D, \top \sqsubseteq \leqslant 1f \} \\ C_{\mathcal{T}} &= (\neg D \sqcup (C \sqcap \exists f. (\neg C) \sqcap \exists f^-.D)) \sqcap \leqslant 1f \end{split}$$

Example: Is $\neg C \sqcap \exists f \neg D$ satisfiable w.r.t. \mathcal{T} ?

 $f^{-} \bigcup_{\substack{v_1\\v_1}}^{v_0}$

V2

$$\mathcal{T} = \{ D \sqsubseteq C \sqcap \exists f.(\neg C) \sqcap \exists f^-.D, \top \sqsubseteq \leqslant 1f \}$$

$$C_{\mathcal{T}} = (\neg D \sqcup (C \sqcap \exists f.(\neg C) \sqcap \exists f^-.D)) \sqcap \leqslant 1f$$

$$L(v_0) = \{\neg C, \exists f^-.D, C_{\mathcal{T}}, \dots, \neg D, \leqslant 1f \}$$

$$L(v_1) = \{D, C_{\mathcal{T}}, \dots, C, \exists f.(\neg C), \exists f^-.D, \leqslant 1f \}$$

$$L(v_2) = \{D, C_{\mathcal{T}}, \dots, C, \exists f.(\neg C), \exists f^-.D, \leqslant 1f \}$$

$$v_1 \text{ blocks } v_2 \text{ (same label)}$$

Example: Is $\neg C \sqcap \exists f \neg D$ satisfiable w.r.t. \mathcal{T} ?

$$\mathcal{T} = \{ D \sqsubseteq C \sqcap \exists f.(\neg C) \sqcap \exists f^-.D, \top \sqsubseteq \leqslant 1f \}$$

$$C_{\mathcal{T}} = (\neg D \sqcup (C \sqcap \exists f.(\neg C) \sqcap \exists f^-.D)) \sqcap \leqslant 1f$$

$$L(v_0) = \{\neg C, \exists f^-.D, C_{\mathcal{T}}, \dots, \neg D, \leqslant 1f \}$$

$$f^- \downarrow \qquad L(v_1) = \{D, C_{\mathcal{T}}, \dots, C, \exists f.(\neg C), \exists f^-.D, \leqslant 1f \}$$

$$f^- \downarrow \qquad v_1 \text{ blocks } v_2 \text{ (same label) but }$$

$$f^- \downarrow \qquad L(v_1'') = \{D, C_{\mathcal{T}}, \dots, C, \exists f.(\neg C), \exists f^-.D, \leqslant 1f \}$$

$$f^- \downarrow \qquad v_1 \text{ blocks } v_2 \text{ (same label) but }$$

$$f^- \downarrow \qquad L(v_1'') = \{D, C_{\mathcal{T}}, \dots, C, \exists f.(\neg C), \exists f^-.D, \leqslant 1f \}$$

but we cannot build a model any more (neither cyclic nor infinite)!

 v_1''

Pairwise Blocking

A node x with predecessor x' blocks a node y with predecessor y' directly, if:

- 1 y is reachable from x,
- 2 L(x) = L(y), L(x') = L(y') and L(x', x) = L(y', y); and

 \bigcirc there is no directly blocked node *z* such that *y* is reachable from *z*.

- A node $y \in V$ is blocked if either
 - y is directly blocked or
 - 2 there is a directly blocked node x, such that y can be reached from x.

Example: Is $\neg C \sqcap \exists f \neg D$ satisfiable w.r.t. \mathcal{T} ?

$$\mathcal{T} = \{ D \sqsubseteq C \sqcap \exists f.(\neg C) \sqcap \exists f^-.D, \top \sqsubseteq \leqslant 1f \}$$

$$C_{\mathcal{T}} = (\neg D \sqcup (C \sqcap \exists f.(\neg C) \sqcap \exists f^-.D)) \sqcap \leqslant 1f$$

$$L(v_0) = \{\neg C, \exists f^-.D, C_{\mathcal{T}}, \dots, \neg D, \leqslant 1f \}$$

$$L(v_1) = \{D, C_{\mathcal{T}}, \dots, C, \exists f.(\neg C), \exists f^-.D, \leqslant 1f \}$$

$$L(v_2) = \{D, C_{\mathcal{T}}, \dots, C, \exists f.(\neg C), \exists f^-.D, \leqslant 1f \}$$

$$v_1 \text{ cannot block } v_2 \text{ pairwise}$$

Example: Is $\neg C \sqcap \exists f \neg D$ satisfiable w.r.t. \mathcal{T} ?

$$\mathcal{T} = \{ D \sqsubseteq C \sqcap \exists f.(\neg C) \sqcap \exists f^-.D, \top \sqsubseteq \leqslant 1f \}$$

$$C_{\mathcal{T}} = (\neg D \sqcup (C \sqcap \exists f.(\neg C) \sqcap \exists f^-.D)) \sqcap \leqslant 1f$$

$$L(v_0) = \{\neg C, \exists f^-.D, C_{\mathcal{T}}, \dots, \neg D, \leqslant 1f \}$$

$$L(v_1) = \{D, C_{\mathcal{T}}, \dots, C, \exists f.(\neg C), \exists f^-.D, \leqslant 1f \}$$

$$L(v_2) = \{D, C_{\mathcal{T}}, \dots, C, \exists f.(\neg C), \exists f^-.D, \leqslant 1f \}$$

$$v_1 \text{ cannot block } v_2 \text{ pairwise}$$

$$L(v_3) = \{\neg C\}$$

Example: Is $\neg C \sqcap \exists f \neg D$ satisfiable w.r.t. \mathcal{T} ?

$$\mathcal{T} = \{ D \sqsubseteq C \sqcap \exists f.(\neg C) \sqcap \exists f^-.D, \top \sqsubseteq \leqslant 1f \}$$

$$C_{\mathcal{T}} = (\neg D \sqcup (C \sqcap \exists f.(\neg C) \sqcap \exists f^-.D)) \sqcap \leqslant 1f$$

$$L(v_0) = \{\neg C, \exists f^-.D, C_{\mathcal{T}}, \dots, \neg D, \leqslant 1f \}$$

$$L(v_1) = \{D, C_{\mathcal{T}}, \dots, C, \exists f.(\neg C), \exists f^-.D, \leqslant 1f \}$$

$$L(v_2) = \{D, C_{\mathcal{T}}, \dots, C, \exists f.(\neg C), \exists f^-.D, \leqslant 1f \}$$

$$v_1 \text{ cannot block } v_2 \text{ pairwise}$$

$$L(v_3) = \{\neg C\}$$

TU Dresden, 14 May 2018

V3

 v_0

Example: Is $\neg C \sqcap \exists f \neg D$ satisfiable w.r.t. \mathcal{T} ?

$$\mathcal{T} = \{ D \sqsubseteq C \sqcap \exists f. (\neg C) \sqcap \exists f^-.D, \top \sqsubseteq \leqslant 1f \}$$

$$C_{\mathcal{T}} = (\neg D \sqcup (C \sqcap \exists f. (\neg C) \sqcap \exists f^-.D)) \sqcap \leqslant 1f$$

$$L(v_0) = \{\neg C, \exists f^-.D, C_{\mathcal{T}}, \dots, \neg D, \leqslant 1f \}$$

$$L(v_1) = \{D, C_{\mathcal{T}}, \dots, C, \exists f. (\neg C), \exists f^-.D, \leqslant 1f \}$$

$$L(v_2) = \{D, C_{\mathcal{T}}, \dots, C, \exists f. (\neg C), \exists f^-.D, \leqslant 1f \}$$

$$v_1 \text{ cannot block } v_2 \text{ pairwise}$$

$$L(v_3) = \{\neg C\}$$

$$v_3 \text{ is merged into } v_1$$

$$L(v_1) = L(v_1) \cup L(v_3) \supseteq \{\neg C, C\}$$

now the contradiction can be detected

V3

 v_0

Agenda

- Recap Tableau Calculus
- Tableau with ALC TBoxes
- Tableau for *ALC* Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary

Summary

- we now have a tableau algorithm for \mathcal{ALCIF} knowledge bases
 - treat the ABox like for \mathcal{ALC}
 - number restrictions can be handled similar to functional roles
- termination through cycle detection
 - becomes harder the more expressive the logic gets