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Tableau Algorithm for ALC Concepts and TBoxes

• check of satisfiability of C by construction of an abstraction of a model I such that CI 6= ∅

• concepts in negation normal form (NNF) easier rules
• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉
• initialize G with a node v such that L(v) = {C}
• extend G by applying tableau rules

– t rule is non-deterministic (we guess)
• tableau branch closed if G contains an atomic contradiction (aka clash)
• tableau construction successful if no rules applicable and no contradiction
• C is satisfiable iff there is a successful tableau construction
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Tableau Rules for ALC Concepts
u-rule: For an v ∈ V with C u D ∈ L(v) and

{C, D} 6⊆ L(v), let L(v) := L(v) ∪ {C, D}.
t-rule: For an v ∈ V with C t D ∈ L(v) and

{C, D} ∩ L(v) = ∅, choose X ∈ {C, D} and let
L(v) := L(v) ∪ {X}.

∃-rule: For an v ∈ V with ∃r.C ∈ L(v) such that
there is no r-successor v′ of v with C ∈ L(v′),
let V = V ∪ {v′}, E = E ∪ {〈v, v′〉}, L(v′) := {C} and
L(v, v′) := {r} for v′ a new node.

∀-rule: For v, v′ ∈ V, v′ r-successor of v,
∀r.C ∈ L(v) and C /∈ L(v′), let L(v′) := L(v′) ∪ {C}.
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Tableau Algorithm for TBoxes

We extend the tableau algorithm to capture ALC TBoxes

• a TBox contains axioms (GCIs) of the form C v D
• assumption: occurrences of C ≡ D have been replaced by C v D and D v C
• every GCI is equivalent to > v ¬C t D

We can compress the whole TBox into one axiom (we say we “internalize” it):

T = {Ci v Di | 1 ≤ i ≤ n}

is equivalent to:

T ′ = {> v
l

1≤i≤n

¬Ci t Di}

Let CT be the concept on the rhs of the GCI in NNF.
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Tableau Algorithm for TBoxes

We extend the rules of the ALC tableau algorithm with the rule:

T rule: For an arbitrary v ∈ V with CT /∈ L(v),
let L(v) := L(v) ∪ {CT }.

Example: Let T = A v ∃r.A. Is A satisfiable given T ?

the tableau algorithm doesn’t terminate any more!

the quantifier depth does not necessarily decrease for newly introduced child nodes

solution: we will recognize cycles (that is, repeating node labellings)
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Tableau Algorithm for TBoxes

Definition (Blocking)
A node v ∈ V blocks a node v′ ∈ V directly, if:

1 v′ is reachable from v,
2 L(v′) ⊆ L(v); and
3 there is no directly blocking node v′′ such that v′ is reachable from v′′.

A node v′ ∈ V is blocked if either
1 v′ is blocked directly or
2 there is a directly blocked node v, such that v′ is reachable from v.

The application of the ∃ rule is restricted to nodes that are not blocked.
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Tableau Algorithm with Blocking

Example: Let T = A v ∃r.A. Is A satisfiable w.r.t. T ?

we obtain the following contradiction-free tableau:

v0

v1

r

L(v0) = {A, CT , ∃r.A}
L(v1) = {A, CT , ∃r.A}

wherein v1 is directly blocked by v0

again, the algorithm constructs finite trees
• from a contradiction-free tableau, we can construct a model
• if there is no contradiction-free tableau, there is no model
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From the Tableau to the Model
again, we can construct a finite model from a contradiction-free tableau:

∆I = {v0}

AI = ∆I

rI = {〈v0, v0〉}

• blocked nodes do not represent elements of the model
• when constructing the model, an edge from a node v to a directly blocked node v′ will be

“translated” into an “edge” from v to the node, that directly blocks v′

 we have the finite model property

 constructed model is not necessarily tree-shaped
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Tableau Algorithm with Blocking II

Example: Let T = A v ∃r.A u ∃s.B. Is A satisfiable w.r.t. T ?

We obtain the following contradiction-free tableau:

v0

v1 v2

r s

L(v0) = {A, CT , ∃r.A u ∃s.B, ∃r.A, ∃s.B}
L(v1) = {A, CT , ∃r.A u ∃s.B, ∃r.A, ∃s.B}
L(v2) = {B, CT ,¬A}

in which v1 is again directly blocked by v0
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From the Tableau to a Model II
again, we can construct a finite model from a contradiction-free tableau:

∆I = {v0, v2}

AI = {v0}

BI = {v2}

rI = {〈v0, v0〉}

sI = {〈v0, v2〉}
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Treatment of ABoxes
to take an ABox A into account, initialize G such that
• V contains a node va for each individual a occurring in A

• L(va) = {C | C(a) ∈ A}
• 〈va, vb〉 ∈ E and r ∈ L(〈va, vb〉) iff r(a, b) ∈ A

the tableau rules can then be applied to this initialized graph
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Tableau for ALC with Inverse Roles
in order to take into account inverse roles, we have to make the following changes

1 edge labels may contain inverse roles (r−),

2 a node v′ is an r-neighbor of a node v if either
– v′ is an r-successor of v or
– v is an r−-successor of v′

3 replace the term “r-successor” in the ∀- and the ∃-rule with “r-neighbor”

the ∃-rule still generates
• an r-successor for a concept ∃r.C (if no fitting neighbor exists yet)
• an r−-successor for a concept ∃r−.C (if no fitting neighbor exists yet)
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Tableau Example with Inverses

Example: is A satisfiable w.r.t. T ?

T = {A ≡ ∃r−.A u (∀r.(¬A t ∃s.B))}

CT = (¬A t ∃r−.A) u (¬A t ∀r.(¬A t ∃s.B)) u

(∀r−.(¬A) t ∃r.(A u ∀s.(¬B)) t A)

v0

v1 v2

r− s

L(v0) = {A, CT , ∃r−.A, ∀r.(¬A t ∃s.B),

¬A t ∃s.B, ∃s.B}

L(v1) = {A, CT , ∃r−.A, ∀r.(¬A t ∃s.B)}

L(v2) = {B, CT ,¬A, ∀r−.(¬A)}
v0 blocks v1

Is the algorithm thus correct? No!
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Tableau Example with Inverses II

Example: Is C u ∃s.C satisfiable w.r.t. T ?

v0

v1 v2

v3

s r

T = {> v ∀r−.(∀s−.(¬C)) u ∃r.C}

CT = ∀r−.(∀s−.(¬C)) u ∃r.C

L(v0) = {C, ∃s.C, CT , ∀r−.(∀s−.(¬C)), ∃r.C, ∀s−.(¬C)}

∪ {¬C}

L(v1) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

∪ {∀s−.(¬C)}

L(v2) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}
v0 blocks v1 and v2  tableau complete

but

L(v3) = {C, CT ,∀r−.(∀s−.(¬C)),∃r.C}

We have blocked too early! Correctness can be retained by replacing subset blocking with equality
blocking i.e., replace L(v′) ⊆ L(v) by L(v′) = L(v) in the blocking condition.
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blocking i.e., replace L(v′) ⊆ L(v) by L(v′) = L(v) in the blocking condition.
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Model Construction for Tableau Example with Inverses II

Why does subset blocking not work anymore?
We cannot build a cyclic model as we could up to now!

Example: early blocked tableau from previous example would yield:

v0 C

r, s

However, this is not a model of > v ∀r−.(∀s−.(¬C)) u ∃r.C.

TU Dresden, 14 May 2018 Deduction Systems slide 49 of 80



Example with Inverses & Equality Blocking

Example: Is C u ∃s.C satisfiable w.r.t. T ?

v0

v1 v2

v3

s r

T = {> v ∀r−.(∀s−.(¬C)) u ∃r.C}

CT = ∀r−.(∀s−.(¬C)) u ∃r.C

L(v0) = {C, ∃s.C, CT , ∀r−.(∀s−.(¬C)), ∃r.C, ∀s−.(¬C)}

∪ {¬C}

L(v1) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

∪ {∀s−.(¬C)}

L(v2) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}

L(v3) = {C, CT , ∀r−.(∀s−.(¬C)), ∃r.C}
v1 blocks v3 but ∀-rule applicable

Now unsatisfiability is recognized!
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Agenda

• Recap Tableau Calculus
• Tableau with ALC TBoxes
• Tableau for ALC Knowledge Bases
• Extension by Inverse Roles
• Extension by Functional Roles
• Model Construction with Unravelling
• Summary
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Tableau with Functional Roles
Example: is A satisfiable w.r.t. T ?
Note: > v 61 f expresses funtionality of the role f

v0

v1 v2

f f

T = {A v ∃f .B u ∃f .(¬B),> v 61 f}

CT = (¬A t (∃f .B u ∃f .(¬B))) u 61 f

L(v0) = {A, CT , . . . , ∃f .B, ∃f .(¬B),61 f}
L(v1) = {B, CT , . . . ,¬A,61 f}
L(v2) = {¬B, CT , . . . ,¬A,61 f}

functionality requires v1 = v2!

 we need a new tableau rule for treating functional roles
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Tableau Rules for ALCIF Concepts and TBoxes
u-rule: For an v ∈ V with C u D ∈ L(v) and

{C, D} 6⊆ L(v), let L(v) := L(v) ∪ {C, D}.
t-rule: For an v ∈ V with C t D ∈ L(v) and

{C, D} ∩ L(v) = ∅, choose X ∈ {C, D} and let
L(v) := L(v) ∪ {X}.

∃-rule: For a non-blocked v ∈ V with ∃r.C ∈ L(v) such that
there is no r-neighbor v′ of v with C ∈ L(v′),
let V = V ∪ {v′}, E = E ∪ {〈v, v′〉}, L(v′) := {C} and
L(v, v′) := {r} for v′ a new node.

∀-rule: For v, v′ ∈ V, v′ r-neighbor of v,
∀r.C ∈ L(v) and C /∈ L(v′), let L(v′) := L(v′) ∪ {C}.

6 1-rule: For a functional role f and a v ∈ V with two
f -neighbors v1 and v2, execute merge(v1, v2).

T -rule: For a v ∈ V with CT /∈ L(v),
let L(v) := L(v) ∪ {CT }.
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Merging Nodes

we define merge(v1, v2) as follows:
• if v1 is an ancestor of v2,

let vi = v1 and vo = v2;
• otherwise let vi = v2 and vo = v1.

let L(vi) = L(vi) ∪ L(vo) and execute prune(vo).

where prune(vo) is defined as:
• Vo = {v | v belongs to the subtree with root vo},
• let V = V \ Vo and E = E \ {〈v, vo〉 | vo ∈ Vo, 〈v, vo〉 ∈ E}.
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Tableau with Functional Roles
Example: Is ∃f .A satisfiable w.r.t. T ?

v0

v1

v2

f

f

T = {A v ∃f .A,> v6 1 f−}

CT = (¬A t ∃f .A)u 6 1 f−

L(v0) = {∃f .A, CT ,¬A,6 1 f−}

L(v1) = {A, CT , ∃f .A,6 1 f−}

L(v2) = {A, CT , ∃f .A,6 1 f−}

v1 blocks v2, but cyclic model construction does not work (functionality violated)!
v0

v1

f

f
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Agenda

• Recap Tableau Calculus
• Tableau with ALC TBoxes
• Tableau for ALC Knowledge Bases
• Extension by Inverse Roles
• Extension by Functional Roles
• Model Construction with Unravelling
• Summary
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Unravelling

goal: we build an infinite model
How? Every blocked node is replaced by a subtree whose root is the corresponding blocking node.

v0

v1

v2

f

f

L(v0) = {∃f .A, CT ,¬A,6 1 f−}

L(v1) = {A, CT , ∃f .A,6 1 f−}

L(v2) = {A, CT , ∃f .A,6 1 f−}
v1 blocks v2
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Unravelling

goal: we build an infinite model
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f
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Blocking: Inverse and Functional Roles

Example: Is ¬C u ∃f−.D satisfiable w.r.t. T ?

T = {D v C u ∃f .(¬C) u ∃f−.D,> v6 1 f}

CT = (¬D t (C u ∃f .(¬C) u ∃f−.D)) u 6 1 f

v0

v1

v2

v′′1

f−

f−

f−

L(v0) = {¬C, ∃f−.D, CT , . . . ,¬D,6 1 f}

L(v1) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}

L(v2) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}
v1 blocks v2(same label)

but

L(v′′1 ) = {D, CT , . . . , C, ∃f .(¬C),∃f−.D,6 1 f}

but we cannot build a model any more (neither cyclic nor infinite)!
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Pairwise Blocking

A node x with predecessor x′ blocks a node y with predecessor y′ directly, if:
1 y is reachable from x,
2 L(x) = L(y), L(x′) = L(y′) and L(x′, x) = L(y′, y); and
3 there is no directly blocked node z such that y is reachable from z.

A node y ∈ V is blocked if either
1 y is directly blocked or
2 there is a directly blocked node x, such that y can be reached from x.
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Pairwise Blocking: Inverses and Functional Roles

Example: Is ¬C u ∃f−.D satisfiable w.r.t. T ?

T = {D v C u ∃f .(¬C) u ∃f−.D,> v6 1 f}

CT = (¬D t (C u ∃f .(¬C) u ∃f−.D)) u 6 1 f

v0

v1

v2

v3

f−

f−

f

L(v0) = {¬C, ∃f−.D, CT , . . . ,¬D,6 1 f}

L(v1) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D,6 1 f}

L(v2) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D, 6 1 f}
v1 cannot block v2 pairwise

L(v3) = {¬C}
v3 is merged into v1

L(v1) = L(v1) ∪ L(v3) ⊇ {¬C, C}

now the contradiction can be detected
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Pairwise Blocking: Inverses and Functional Roles

Example: Is ¬C u ∃f−.D satisfiable w.r.t. T ?

T = {D v C u ∃f .(¬C) u ∃f−.D,> v6 1 f}

CT = (¬D t (C u ∃f .(¬C) u ∃f−.D)) u 6 1 f

v0

v1

v2

v3

f−

f−

f

L(v0) = {¬C, ∃f−.D, CT , . . . ,¬D,6 1 f}
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L(v2) = {D, CT , . . . , C, ∃f .(¬C), ∃f−.D, 6 1 f}
v1 cannot block v2 pairwise

L(v3) = {¬C}

v3 is merged into v1

L(v1) = L(v1) ∪ L(v3) ⊇ {¬C, C}

now the contradiction can be detected
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Agenda

• Recap Tableau Calculus
• Tableau with ALC TBoxes
• Tableau for ALC Knowledge Bases
• Extension by Inverse Roles
• Extension by Functional Roles
• Model Construction with Unravelling
• Summary
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Summary

• we now have a tableau algorithm for ALCIF knowledge bases
– treat the ABox like for ALC
– number restrictions can be handled similar to functional roles

• termination through cycle detection
– becomes harder the more expressive the logic gets
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