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Review

There are many well-defined static optimisation tasks that are independent of the
database
{ query equivalence, containment, emptiness

Unfortunately, all of them are undecidable for FO queries
{ Slogan: “all interesting questions about FO queries are undecidable”

{ Let’s look at simpler query languages
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Optimisation for Conjunctive Queries

Optimisation is simpler for conjunctive queries

Example 10.1: Conjunctive query containment:

Q1 : ∃x, y, z. R(x, y) ∧ R(y, y) ∧ R(y, z)

Q2 : ∃u, v, w, t. R(u, v) ∧ R(v, w) ∧ R(w, t)

Q1 find R-paths of length two with a loop in the middle
Q2 find R-paths of length three

{ in a loop one can find paths of any length
{ Q1 v Q2

Markus Krötzsch, 14th May 2019 Database Theory slide 3 of 17

Deciding Conjunctive Query Containment

Consider conjunctive queries Q1[x1, . . . , xn] and Q2[y1, . . . , yn].

Definition 10.2: A query homomorphism from Q2 to Q1 is a mapping µ

from terms (constants or variables) in Q2 to terms in Q1 such that:

• µ does not change constants, i.e., µ(c) = c for every constant c

• xi = µ(yi) for each i = 1, . . . , n

• if Q2 has a query atom R(t1, . . . , tm)
then Q1 has a query atom R(µ(t1), . . . , µ(tm))

Theorem 10.3 (Homomorphism Theorem): Q1 v Q2 if and only if there is a
query homomorphism Q2 → Q1.

{ decidable (only need to check finitely many mappings from Q2 to Q1)
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Example

Q1 : ∃x, y, z. R(x, y) ∧ R(y, y) ∧ R(y, z)

Q2 : ∃u, v, w, t. R(u, v) ∧ R(v, w) ∧ R(w, t)
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Review: CQs and Homomorphisms

If 〈d1, . . . , dn〉 is a result of Q1[x1, . . . , xn] over database I then:

• there is a mapping ν from variables in Q1 to the domain of I
• di = ν(xi) for all i = 1, . . . , m

• for all atoms R(t1, . . . , tm) of Q1, we find 〈ν(t1), . . . , ν(tm)〉 ∈ RI

(where we take ν(c) to mean c for constants c)

{ I |= Q1[d1, . . . , dn] if there is such a homomorphism ν from Q1 to I

(Note: this is a slightly different formulation from the “homomorphism problem” discussed in a previous lecture,

since we keep constants in queries here)
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Proof of the Homomorphism Theorem

“⇐”: Q1 v Q2 if there is a query homomorphism Q2 → Q1.

(1) Let 〈d1, . . . , dn〉 be a result of Q1[x1, . . . , xn] over database I.

(2) Then there is a homomorphism ν from Q1 to I.

(3) By assumption, there is a query homomorphism µ : Q2 → Q1.

(4) But then the composition ν ◦ µ, which maps each term t to ν(µ(t)), is a
homomorphism from Q2 to I.

(5) Hence 〈ν(µ(y1)), . . . , ν(µ(yn))〉 is a result of Q2[y1, . . . , yn] over I.

(6) Since ν(µ(yi)) = ν(xi) = di, we find that 〈d1, . . . , dn〉 is a result of Q2[y1, . . . , yn] over
I.

Since this holds for all results 〈d1, . . . , dn〉 of Q1, we have Q1 v Q2.

(See board for a sketch showing how we compose homomorphisms here)
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Proof of the Homomorphism Theorem

“⇒”: there is a query homomorphism Q2 → Q1 if Q1 v Q2.

(1) Turn Q1[x1, . . . , xn] into a database I1 in the natural way:
– The domain of I1 are the terms in Q1
– For every relation R, we have 〈t1, . . . , tm〉 ∈ RI1 exactly if R(t1, . . . , tm) is an

atom in Q1

(2) Then Q1 has a result 〈x1, . . . , xn〉 over I1

(the identity mapping is a homomorphism – actually even an isomorphism)

(3) Therefore, since Q1 v Q2, 〈x1, . . . , xn〉 is also a result of Q2 over I1

(4) Hence there is a homomorphism ν from Q2 to I1

(5) This homomorphism ν is also a query homomorphism Q2 → Q1.
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Implications of the Homomorphism Theorem

The proof has highlighted another useful fact:

The following two are equivalent:

• Finding a homomorphism from Q2 to Q1

• Finding a query result for Q2 over I1

{ all complexity results for CQ query answering apply

Theorem 10.4: Deciding if Q1 v Q2 is NP-complete.

If Q2 is a tree query (or of bounded treewidth, or of bounded hypertree width)
then deciding if Q1 v Q2 is polynomial (in fact LOGCFL-complete).

Note that even in the NP-complete case the problem size is rather small (only queries,
no databases)
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Application: CQ Minimisation

Definition 10.5: A conjunctive query Q is minimal if:

• for all subqueries Q′ of Q (that is, queries Q′ that are obtained by dropping
one or more atoms from Q),

• we find that Q′ . Q.

A minimal CQ is also called a core.

It is useful to minimise CQs to avoid unnecessary joins in query answering.
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CQ Minimisation the Direct Way

A simple idea for minimising Q:

• Consider each atom of Q, one after the other

• Check if the subquery obtained by dropping this atom
is contained in Q
(Observe that the subquery always contains the original query.)

• If yes, delete the atom; continue with the next atom

Example 10.6: Example query Q[v, w]:

∃x, y, z.R(a, y) ∧ R(x, y) ∧ S(y, y) ∧ S(y, z) ∧ S(z, y) ∧ T(y, v) ∧ T(y, w)

{ Simpler notation: write as set and mark answer variables

{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, v̄), T(y, w̄)}
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CQ Minimisation Example

{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, v̄), T(y, w̄)}
Can we map the left side homomorphically to the right side?

R(a, y)

?

R(a, y) Keep (cannot map constant a)

R(x, y)

?

R(x, y) Drop; map R(x, y) to R(a, y)

S(y, y)

?

S(y, y) Keep (no other atom of form S(t, t))

S(y, z)

?

S(y, z) Drop; map S(y, z) to S(y, y)

S(z, y)

?

S(z, y) Drop; map S(z, y) to S(y, y)

T(y, v̄)

?

T(y, v̄) Keep (cannot map answer variable)

T(y, w̄)

?

T(y, w̄) Keep (cannot map answer variable)

Core: ∃y.R(a, y) ∧ S(y, y) ∧ T(y, v) ∧ T(y, w)
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CQ Minimisation

Does this algorithm work?

• Is the result minimal?
Or could it be that some atom that was kept can be dropped later, after some other
atoms were dropped?

• Is the result unique?
Or does the order in which we consider the atoms matter?

Theorem 10.7: The CQ minimisation algorithm always produces a core, and this
result is unique up to query isomorphisms (bijective renaming of non-result vari-
ables).

Proof: exercise
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How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to
decide if there is a homomorphism from Q to Q \ {A}.

Proof: We reduce 3-colourability of connected graphs to this special kind of
homomorphism problem. (If a graph consists of several connected components, then
3-colourability can be solved independently for each, hence 3-colourability is NP-hard
when considering only connected graphs.)

Let G be a connected, undirected graph. Let ≺ be an arbitrary total order on G’s vertices.
Query Q is defined as follows:
• Q contains atoms R(r, g), R(g, r), R(r, b), R(b, r), R(g, b), and R(b, r)

(the colouring template)
• For every undirected edge {e, f } in G with e ≺ f , Q contains an atom R(e, f )
• For a single (arbitrarily chosen) edge {e, f } in G with e ≺ f , Q contains an atom

A = R(f , e)
Claim: G is 3-colourable if and only if there is a homomorphism Q→ Q \ {A}
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Proof

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to
decide if there is a homomorphism from Q to Q \ {A}.

Proof (continued): (⇒) If G is 3-colourable then there is a homomorphism Q→ Q \ {A}.
• Then there is a homomorphism µ from G to the colouring template
• We can extend µ to the colouring template (mapping each colour to itself)
• Then µ is a homomorphism Q→ Q \ {A}

(⇐) If there is a homomorphism Q→ Q \ {A} then G is 3-colourable.
• Let µ be such a homomorphism, and let A = R(f , e).
• Since Q \ {A} contains the pattern R(s, t), R(t, s) only in the colouring template,
µ(e) ∈ {r, g, b} and µ(f ) ∈ {r, g, b}.

• Since the colouring template is not connected to other atoms of Q, µ must
therefore map all elements of Q to the colouring template.

• Hence, µ induces a 3-colouring.
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CQ Minimisation: Complexity

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to
decide if there is a homomorphism from Q to Q \ {A}.

Proof (summary): For an arbitrary connected graph G, we constructed a query Q with
atom A, such that
• G is 3-colourable if and only if
• there is a homomorphism Q→ Q \ {A}.

Since the former problem is NP-hard, so is the latter.
Inclusion in NP is obvious (just guess the homomorphism). �

Checking minimality is the dual problem, hence:

Theorem 10.9: Deciding if a conjunctive query Q is minimal (that is: a core) is
coNP-complete.

However, the size of queries is usually small enough for minimisation to be feasible.
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Summary and Outlook

Perfect query optimisation is possible for conjunctive queries
{ Homomorphism problem, similar to query answering
{ NP-complete

Using this, conjunctive queries can effectively be minimised

Coming up next:

• How to study expressivity of queries

• The limits of FO queries

• Datalog
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