
Technische Universität Dresden

Prof. Dr. Sebastian Rudolph

Formal Concept Analysis
Exercise Sheet 7, Winter Semester 2015/16

Exercise 1 (frequent concept intents and closure systems)

Definition (frequent concept intent). Let K = (G,M, I) be a formal context.

(a) The support of a set B ⊆M of attributes in K is given by

supp(B) :=
|B′|
|G|

.

(b) For a given minimal support minsupp the set of frequent concept intents is given by

{B ⊆M | ∃A ⊆ G : (A,B) ∈ B(G,M, I) ∧ supp(B) ≥ minsupp}.

Show that the set of frequent concept intents together with the set M forms a closure system.

Solution:
Proof: We have to show that the intersection of frequent concept intents is again a frequent
concept intent. We already know that the intersection of intents produces an intent. It remains
to show that it is frequent. So let I be a set of frequent intents. We pick one B ∈ I and
observe supp(B) = |B′|

|G| ≥ minsupp. Moreover, we have
⋂
I ⊆ B and consequently B′ ⊆ (

⋂
I)′.

Therefore supp(
⋂

I) = |(
⋂

I)′|
|G| ≥

|B′|
|G| ≥ minsupp, i.e.,

⋂
I is frequent.

Exercise 2 (support)
Show the validity of the properties of the support function that are employed by the Titanic
algorithm:

Let (G,M, I) be a formal context X, Y ⊆M . Then it holds:

1) X ⊆ Y =⇒ supp(X) ≥ supp(Y)

2) X ′′ = Y ′′ =⇒ supp(X) = supp(Y)

3) X ⊆ Y ∧ supp(X) = supp(Y) =⇒ X ′′ = Y ′′

Solution:

1. Let X ⊆ Y , then Y ′ ⊆ X ′ holds as we saw in Exercise Sheet 1. This implies,
supp(Y) = |Y ′|

|G| ≤
|X′|
|G| = supp(X)

2. X ′′ = Y ′′ =⇒ supp(X) = supp(Y)

X ′′ = Y ′′ ⇐⇒ X ′′′ = Y ′′′ ⇐⇒ X ′ = Y ′ =⇒ supp(X) = |X′|
|G| =

|Y ′|
|G| = supp(|Y |).

3. X ⊆ Y ∧ supp(X) = supp(Y) =⇒ X ′′ = Y ′′

supp(X) = supp(Y) =⇒ |X ′| = |Y ′| and X ⊆ Y =⇒ X ′ ⊇ Y ′. Hence X ′ = Y ′, since
X ′ and Y ′ are finite. It follows, X ′′ = Y ′′.

Exercise 3 (computing concept intents with Titanic)
The following context contains transactions in a supermarket. Compute the closure system of
all concept intents using the Titanic algorithm. (hint: use the table structure from the example
computation in the lecture slides)

ap
pl
es

(a
)

be
er

(b
)

ch
ip
s
(c
)

tv
m
ag

az
in
e
(d
)

to
ot
hp

as
te

(e
)

t1 × × ×
t2 × ×
t3 × × ×
t4 × × ×
t5 × ×
t6 × × ×
t7 × ×
t8 × ×

Solution:
In the first pass, the algorithm deals with the empty set and singletons, all 1-sets. It returns
the results for k =0 and k=1:

k = 0:
step 1 step2
x x.s x ∈ Kk ?
∅ 1 yes

k = 1:

steps 4+5 step 7 step 9
X X.p_s X.s X ∈ Kk?
{a} 1 3/8 yes
{b} 1 5/8 yes
{c} 1 6/8 yes
{d} 1 4/8 yes
{e} 1 2/8 yes

Step 8 returns: ∅.closure ← ∅

k = 2:

steps 12 step 7 step 9
X X.p_s X.s X ∈ Kk?

{a,b} 3/8 3/8 no
{a,c} 3/8 1/8 yes
{a,d} 3/8 0 yes
{a,e} 2/8 1/8 yes
{b,c} 5/8 3/8 yes
{b,d} 4/8 2/8 yes
{b,e} 2/8 1/8 yes
{c,d} 4/8 4/8 no
{c,e} 2/8 1/8 yes
{d,e} 2/8 0 yes

Step 8 returns:
{a}.closure ← {a, b}
{b}.closure ← {b}
{c}.closure ← {c}
{d}.closure ← {c, d}
{e}.closure ← {e}

2

k = 3:

steps 12 step 7 step 9
X X.p_s X.s X ∈ Kk?

{a,c,e} 1/8 0 yes
{a,d,e} 0 0 no
{b,c,e} 1/8 0 yes
{b,d,e} 1/8 0 yes

Step 8 returns:
{a, c}.closure ← {a, b, c}
{a, d}.closure ← {a, b, c, d, e}
{a, e}.closure ← {a, b, e}
{b, c}.closure ← {b, c}
{b, d}.closure ← {b, c, d}
{b, e}.closure ← {a, b, e}
{c, e}.closure ← {c, e}
{d, e}.closure ← {a, b, c, d, e}

k = 4:

Step 12: returns the empty set. Hence there is nothing to WEIGH in Step 7. Step 9 sets
K4 = ∅; and in step 10, the loop is exited.
Step 8 returns:
{a, c, e}.closure ← {a, b, c, d, e}
{b, c, e}.closure ← {a, b, c, e, e}
{b, d, e}.closure ← {a, b, c, d, e}

Step 14: Collects all concept intents:
∅, {a,b}, {b}, {c}, {c,d}, {e}, {a,b,c}, {b,c}, {b,c,d}, {a,b,e}, {c,e}, {a,b,c,d,e}

3

Algorithm 1 Titanic
1) Support({∅});
2) K0 ← {∅};
3) k ← 1;
4) forall m ∈M do {m}.p_s← ∅.s;
5) C ← {{m} | m ∈M};
6) loop begin
7) Support(C);
8) forall X ∈ Kk−1 do X.closure← Closure(X);
9) Kk ← {X ∈ C | X.s 6= X.p_s};
10) if Kk = ∅ then exit loop ;
11) k ++;
12) C ← Titanic-Gen(Kk−1);
13) end loop ;
14) return

⋃k−1
i=0 {X.closure | X ∈ Ki}.

Algorithm 2 Titanic-Gen
Input: Kk−1, the set of key (k − 1)-sets K with their weight K.s.

Output: C, the set of candidate k-sets C
with the values C.p_s := min{s(C \ {m} | m ∈ C}.

The variables p_s assigned to the sets {m1, . . . ,mk} which are generated in step 1 are initialized
by {m1, . . . ,mk}.p_s← smax.

1) C ← {{m1 < m2 < · · · < mk} | {m1, . . . ,mk−2,mk−1}, {m1, . . . ,mk−2,mk}
2) forall X ∈ C do begin eb ∈ Kk−1};
3) forall (k − 1)-subsets S of X do begin
4) if S /∈ Kk−1 then begin C ← C \ {X}; exit forall ; end;
5) X.p_s← min(X.p_s, S.s);
6) end;
7) end;
8) return C.

Algorithm 3 Closure(X) for X ∈ Kk−1

1) Y ← X;
2) forall m ∈ X do Y ← Y ∪ (X \ {m}).closure; forall m ∈M \ Y do begin
3) if X ∪ {m} ∈ C then s← (X ∪ {m}).s
4) else s← min{K.s | K ∈ K, K ⊆ X ∪ {m}};
5) if s = X.s then Y ← Y ∪ {m}
6) end;
7) return Y .

4

