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Abstract. The Description Logic EL has recently drawn considerable attention since, on
the one hand, important inference problems such as the subsumption problem are polyno-
mial. On the other hand, EL is used to define large biomedical ontologies. Unification in
Description Logics has been proposed as a novel inference service that can, for example,
be used to detect redundancies in ontologies. The main result of this paper is that unifica-
tion in EL is decidable. More precisely, EL-unification is NP-complete, and thus has the
same complexity as EL-matching. We also show that, w.r.t. the unification type, EL is
less well-behaved: it is of type zero, which in particular implies that there are unification
problems that have no finite complete set of unifiers.

1. Introduction

Description logics (DLs) [6] are a family of logic-based knowledge representation for-
malisms, which can be used to represent the conceptual knowledge of an application domain
in a structured and formally well-understood way. They are employed in various application
domains, such as natural language processing, configuration of technical systems, databases,
and biomedical ontologies, but their most notable success so far is the adoption of the DL-
based language OWL [20] as standard ontology language for the semantic web.

In DLs, concepts are formally described by concept terms, i.e., expressions that are
built from concept names (unary predicates) and role names (binary predicates) using con-
cept constructors. The expressivity of a particular DL is determined by which concept
constructors are available in it. From a semantic point of view, concept names and concept
terms represent sets of individuals, whereas roles represent binary relations between indi-
viduals. For example, using the concept name Woman, and the role name child, the concept
of women having a daughter can be represented by the concept term

Woman ⊓ ∃ child.Woman,

and the concept of women having only daughters by

Woman ⊓ ∀ child.Woman.
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Knowledge representation systems based on DLs provide their users with various inference
services that allow them to deduce implicit knowledge from the explicitly represented knowl-
edge. An important inference problem solved by DL systems is the subsumption problem:
the subsumption algorithm allows one to determine subconcept-superconcept relationships.
For example, the concept term Woman subsumes the concept term Woman⊓∃ child.Woman

since all instances of the second term are also instances of the first term, i.e., the second
term is always interpreted as a subset of the first term. With the help of the subsumption
algorithm, a newly introduced concept term can automatically be placed at the correct
position in the hierarchy of the already existing concept terms.

Two concept terms C,D are equivalent (C ≡ D) if they subsume each other, i.e., if
they always represent the same set of individuals. For example, the terms ∀ child.Rich ⊓
∀ child.Woman and ∀ child.(Rich⊓Woman) are equivalent since the value restriction operator
(∀ r.C) distributes over the conjunction operator (⊓). If we replace the value restriction
operator by the existential restriction operator (∃ r.C), then this equivalence no longer
holds. However, for this operator, we still have the equivalence

∃ child.Rich ⊓ ∃ child.(Woman ⊓ Rich) ≡ ∃ child.(Woman ⊓ Rich).

The equivalence test can, for example, be used to find out whether a concept term repre-
senting a particular notion has already been introduced, thus avoiding multiple introduction
of the same concept into the concept hierarchy. This inference capability is very important
if the knowledge base containing the concept terms is very large, evolves during a long time
period, and is extended and maintained by several knowledge engineers. However, testing
for equivalence of concepts is not always sufficient to find out whether, for a given concept
term, there already exists another concept term in the knowledge base describing the same
notion. On the one hand, different knowledge engineers may use different names for con-
cepts, like Male versus Masculine. On the other hand, they may model on different levels of
granularity. For example, assume that one knowledge engineer has defined the concept of
men loving fast cars by the concept term

Human ⊓Male ⊓ ∃ loves.Sports car.

A second knowledge engineer might represent this notion in a somewhat different way, e.g.,
by using the concept term

Man ⊓ ∃ loves.(Car ⊓ Fast).

These two concept terms are not equivalent, but they are meant to represent the same
concept. The two terms can obviously be made equivalent by substituting the concept
name Sports car in the first term by the concept term Car ⊓ Fast and the concept name
Man in the second term by the concept term Human ⊓ Male. This leads us to unification
of concept terms, i.e., the question whether two concept terms can be made equivalent by
applying an appropriate substitution, where a substitution replaces (some of the) concept
names by concept terms. Of course, it is not necessarily the case that unifiable concept
terms are meant to represent the same notion. A unifiability test can, however, suggest
to the knowledge engineer possible candidate terms. A unifier (i.e., a substitution whose
application makes the two terms equivalent) then proposes appropriate definitions for the
concept names. In our example, we know that, if we define Man as Human ⊓ Male and
Sports car as Car ⊓ Fast, then the concept terms Human ⊓ Male ⊓ ∃ loves.Sports car and
Man ⊓ ∃ loves.(Car ⊓ Fast) are equivalent w.r.t. these definitions.
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Unification in DLs was first considered in [12] for a DL called FL0, which has the
concept constructors conjunction (⊓), value restriction (∀ r.C), and the top concept (⊤). It
was shown that unification in FL0 is decidable and ExpTime-complete, i.e., given an FL0-
unification problem, we can effectively decide whether it has a solution or not, but in the
worst-case, any such decision procedure needs exponential time. This result was extended
in [8] to a more expressive DL, which additionally has the role constructor transitive closure.
Interestingly, the unification type of FL0 had been determined almost a decade earlier in
[2]. In fact, as shown in [12], unification in FL0 corresponds to unification modulo the
equational theory of idempotent Abelian monoids with several homomorphisms. In [2] it
was shown that, already for a single homomorphism, unification modulo this theory has
unification type zero, i.e., there are unification problems for this theory that do not have
a minimal complete set of unifiers. In particular, such unification problems cannot have a
finite complete set of unifiers.

In this paper, we consider unification in the DL EL. The EL-family consists of inexpres-
sive DLs whose main distinguishing feature is that they provide their users with existential
restrictions (∃ r.C) rather than value restrictions (∀ r.C) as the main concept constructor
involving roles. The core language of this family is EL, which has the top concept, conjunc-
tion, and existential restrictions as concept constructors. This family has recently drawn
considerable attention since, on the one hand, the subsumption problem stays tractable
(i.e., decidable in polynomial time) in situations where FL0, the corresponding DL with
value restrictions, becomes intractable: subsumption between concept terms is tractable
for both FL0 and EL [25, 10], but allowing the use of concept definitions or even more
expressive terminological formalisms makes FL0 intractable [26, 3, 23, 5], whereas it leaves
EL tractable [4, 17, 5]. On the other hand, although of limited expressive power, EL is
nevertheless used in applications, e.g., to define biomedical ontologies. For example, both
the large medical ontology Snomed ct1 and the Gene Ontology2 can be expressed in EL,
and the same is true for large parts of the medical ontology Galen [27]. The importance
of EL can also be seen from the fact that the new OWL2 standard3 contains a sub-profile
OWL2EL, which is based on (an extension of) EL.

Unification in EL has, to the best of our knowledge, not been investigated before, but
matching (where one side of the equation(s) to be solved does not contain variables) has
been considered in [7, 24]. In particular, it was shown in [24] that the decision problem, i.e.,
the problem of deciding whether a given EL-matching problem has a matcher or not, is NP-
complete. Interestingly, FL0 behaves better w.r.t. matching than EL: for FL0, the decision
problem is tractable [9]. In this paper, we show that, w.r.t. the unification type, FL0 and
EL behave the same: just as FL0, the DL EL has unification type zero. However, w.r.t.
the decision problem, EL behaves much better than FL0: EL-unification is NP-complete,
and thus has the same complexity as EL-matching.

Regarding unification in DLs that are more expressive than EL and FL0, one must
look at the literature on unification in modal logics. It is well-known that there is a close
connection between modal logics and DLs [6]. For example, the DL ALC, which can be
obtained by adding negation to EL or FL0, corresponds to the basic (multi-)modal logic K.
Decidability of unification in K is a long-standing open problem. Recently, undecidability
of unification in some extensions of K (for example, by the universal modality) was shown

1http://www.ihtsdo.org/snomed-ct/
2http://www.geneontology.org/
3See http://www.w3.org/TR/owl2-profiles/
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in [29]. The undecidability results in [29] also imply undecidability of unification in some
expressive DLs (e.g., SHIQ [21]). The unification types of some modal (and related)
logics have been determined by Ghilardi; for example in [19] he shows that K4 and S4 have
unification type finitary. Unification in sub-Boolean modal logics (i.e., modal logics that are
not closed under all Boolean operations, such as the modal logics corresponding to EL and
FL0) has, to the best of our knowledge, not been considered in the modal logic literature.

In addition to unification of concept terms as introduced until now, we will also consider
unification w.r.t. a so-called acyclic TBox in this article. Until now, we have only talked
about concept terms, i.e., complex descriptions of concepts that are built from concept
and role names using the concept constructors of the given DL. In applications of DLs,
it is, of course, inconvenient to always use such complex descriptions when referring to
concepts. For this reason, DLs are usually also equipped with a terminological formalism.
In its simplest form, this formalism allows to introduce abbreviations for concept terms.
For example, the two concept definitions

Mother ≡ Woman ⊓ ∃ child.Human and Woman ≡ Human ⊓ Female

introduce the abbreviation Woman for the concept term Human ⊓ Female and the abbre-
viation Mother for the concept term Human ⊓ Female ⊓ ∃ child.Human. A finite set of such
concept definitions is called an acyclic TBox if it is unambiguous (i.e., every concept name
occurs at most once as left-hand side) and acyclic (i.e., there are no cyclic dependencies
between concept definitions). These restrictions ensure that every defined concept (i.e.,
concept name occurring on the left-hand side of a definition) has a unique expansion to a
concept term that it abbreviates. Inference problems like subsumption and unification can
also be considered w.r.t. such acyclic TBoxes. As mentioned above, the complexity of the
subsumption problem increases for the DL FL0 if acyclic TBoxes are taken into account
[26]. In contrast, for EL, the complexity of the subsumption problem stays polynomial in
the presence of acyclic TBoxes. We show that, for unification in EL, adding acyclic TBoxes
is also harmless, i.e., unification in EL w.r.t. acyclic TBoxes is also NP-complete.

This article is structured as follows. In the next section, we define the DL EL and
unification in EL more formally. In Section 3, we recall the characterization of subsumption
and equivalence in EL from [24], and in Section 4 we use this to show that unification
in EL has type zero. In Section 5, we show that unification in EL is NP-complete. The
unification algorithm establishing the complexity upper bound is a typical “guess and then
test” NP-algorithm, and thus it is unlikely that a direct implementation of this algorithm
will perform well in practice. In Section 6, we introduce a more goal-oriented unification
algorithm for EL, in which non-deterministic decisions are only made if they are triggered
by “unsolved parts” of the unification problem. In Section 7, we point out that our results
for EL-unification imply that unification modulo the equational theory of semilattices with
monotone operators [28] is NP-complete and of unification type zero.

More information about Description Logics can be found in [6], and about unification
theory in [16]. This article is an extended version of a paper [11] published in the pro-
ceedings of the 20th international Conference on Rewriting Techniques and applications
(RTA’09). In addition to giving more detailed proofs, we have added the goal-oriented
unification algorithm (Section 6) and the treatment of unification modulo acyclic TBoxes
(Subsection 2.3).
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Name Syntax Semantics

concept name A AI ⊆ DI

role name r rI ⊆ DI ×DI

top-concept ⊤ ⊤I = DI

conjunction C ⊓D (C ⊓D)I = CI ∩DI

existential restriction ∃ r.C (∃ r.C)I = {x | ∃ y : (x, y) ∈ rI ∧ y ∈ CI}

subsumption C ⊑ D CI ⊆ DI

equivalence C ≡ D CI = DI

Table 1: Syntax and semantics of EL

2. Unification in EL

In this section, we first define the syntax and semantics of EL-concept terms as well as
the subsumption and the equivalence relation on these terms. Then, we introduce unification
of EL-concept terms, and finally extend this notion to unification modulo an acyclic TBox.

2.1. The Description Logic EL. Starting with a set Ncon of concept names and a set
Nrole of role names, EL-concept terms are built using the following concept constructors:
the nullary constructor top-concept (⊤), the binary constructor conjunction (C ⊓D), and
for every role name r ∈ Nrole , the unary constructor existential restriction (∃ r.C). The
semantics of EL is defined in the usual way, using the notion of an interpretation I =
(DI , ·

I), which consists of a nonempty domain DI and an interpretation function ·I that
assigns binary relations on DI to role names and subsets of DI to concept terms, as shown
in the semantics column of Table 1.

The concept term C is subsumed by the concept term D (written C ⊑ D) iff CI ⊆ DI

holds for all interpretations I. We say that C is equivalent to D (written C ≡ D) iff
C ⊑ D and D ⊑ C, i.e., iff CI = DI holds for all interpretations I. The concept term
C is strictly subsumed by the concept term D (written C ⊏ D) iff C ⊑ D and C 6≡ D.
It is well-known that subsumption (and thus also equivalence) of EL-concept terms can be
decided in polynomial time [10].

2.2. Unification of concept terms. In order to define unification of concept terms, we
first introduce the notion of a substitution operating on concept terms. To this purpose,
we partition the set of concepts names into a set Nv of concept variables (which may be
replaced by substitutions) and a set Nc of concept constants (which must not be replaced by
substitutions). Intuitively, Nv are the concept names that have possibly been given another
name or been specified in more detail in another concept term describing the same notion.
The elements of Nc are the ones of which it is assumed that the same name is used by all
knowledge engineers (e.g., standardized names in a certain domain).

A substitution σ is a mapping from Nv into the set of all EL-concept terms. This
mapping is extended to concept terms in the obvious way, i.e.,

• σ(A) := A for all A ∈ Nc,
• σ(⊤) := ⊤,
• σ(C ⊓D) := σ(C) ⊓ σ(D), and
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• σ(∃ r.C) := ∃ r.σ(C).

Definition 2.1. An EL-unification problem is of the form Γ = {C1 ≡
? D1, . . . , Cn ≡? Dn},

where C1,D1, . . . , Cn,Dn are EL-concept terms. The substitution σ is a unifier (or solution)
of Γ iff σ(Ci) ≡ σ(Di) for i = 1, . . . , n. In this case, Γ is called solvable or unifiable.

When we say that EL-unification is decidable, then we mean that the following decision
problem is decidable: given an EL-unification problem Γ, decide whether Γ is solvable or
not. Accordingly, we say that EL-unification is NP-complete if this decision problem is
NP-complete.

In the following, we introduce some standard notions from unification theory [16], but
formulated for the special case of EL-unification rather than for an arbitrary equational
theory. Unifiers can be compared using the instantiation preorder ≤•. Let Γ be an EL-
unification problem, V the set of variables occurring in Γ, and σ, θ two unifiers of this
problem. We define

σ ≤• θ iff there is a substitution λ such that θ(X) ≡ λ(σ(X)) for all X ∈ V.

If σ ≤• θ, then we say that θ is an instance of σ.

Definition 2.2. Let Γ be an EL-unification problem. The set of substitutions M is called
a complete set of unifiers for Γ iff it satisfies the following two properties:

(1) every element of M is a unifier of Γ;
(2) if θ is a unifier of Γ, then there exists a unifier σ ∈ M such that σ ≤• θ.

The set M is called a minimal complete set of unifiers for Γ iff it additionally satisfies

(3) if σ, θ ∈ M , then σ ≤• θ implies σ = θ.

The unification type of a given unification problem is determined by the existence and
cardinality4 of such a minimal complete set.

Definition 2.3. Let Γ be an EL-unification problem. This problem has type

• unitary iff it has a minimal complete set of unifiers of cardinality 1;
• finitary iff it has a finite minimal complete set of unifiers;
• infinitary iff it has an infinite minimal complete set of unifiers;
• zero iff it does not have a minimal complete set of unifiers.

Note that the set of all unifiers of a given EL-unification problem is always a complete
set of unifiers. However, this set is usually infinite and redundant (in the sense that some
unifiers are instances of others). For a unitary or finitary EL-unification problem, all unifiers
can be represented by a finite complete set of unifiers, whereas for problems of type infinitary
or zero this is no longer possible. In fact, if a problem has a finite complete set of unifiers
M , then it also has a finite minimal complete set of unifiers, which can be obtained by
iteratively removing redundant elements from M . For an infinite complete set of unifiers,
this approach of removing redundant unifiers may be infinite, and the set reached in the
limit need no longer be complete. This is what happens for problems of type zero. The
difference between infinitary and type zero is that a unification problem of type zero cannot
even have a non-redundant complete set of unifiers, i.e., every complete set of unifiers must
contain different unifiers σ, θ such that σ ≤• θ. More information on unification type zero
can be found in [1].

4It is easy to see that the cardinality of a minimal complete set of unifiers is uniquely determined by the
unification problem.
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When we say that EL has unification type zero, we mean that there exists an EL-
unification problem that has type zero. Before we can prove in Section 4 that this is indeed
the case, we must have a closer look at equivalence in EL in Section 3. But first, we consider
unification modulo acyclic TBoxes.

2.3. Unification modulo acyclic TBoxes. A concept definition is of the form A
.
= C

where A is a concept name and C is a concept term. A TBox T is a finite set of concept
definitions such that no concept name occurs more than once on the left-hand side of a
concept definition in T . The TBox T is called acyclic if there are no cyclic dependencies
between its concept definitions. To be more precise, we say that the concept name A directly
depends on the concept name B in a TBox T if T contains a concept definition A

.
= C

and B occurs in C. Let depends on be the transitive closure of the relation directly depends
on. Then T contains a terminological cycle if there is a concept name A that depends on
itself. Otherwise, T is called acyclic. Given a TBox T , we call a concept name A a defined
concept if it occurs as the left-side of a concept definition A

.
= C in T . All other concept

names are called primitive concepts.
The interpretation I is a model of the TBox T iff AI = CI holds for all concept

definitions A
.
= C in T . Subsumption and equivalence w.r.t. a TBox are defined as follows:

C ⊑T D (C ≡T D) iff CI ⊆ DI (CI = DI) holds for all models I of T .
Subsumption and equivalence w.r.t. an acyclic TBox can be reduced to subsumption

and equivalence of concept terms (without TBox) by expanding the concept terms w.r.t.
the TBox: given a concept term C, its expansion CT w.r.t. the acyclic TBox T is obtained
by exhaustively replacing all defined concept names A occurring on the left-hand side of
concept definitions A

.
= C in T by their defining concept terms C. Given concept terms

C,D, we have C ⊑T D iff CT ⊑ DT [14]. The same is true for equivalence, i.e., C ≡T D

iff CT ≡ DT . This expansion process may, however, result in an exponential blow-up
[26, 14], and thus this reduction of subsumption and equivalence w.r.t. an acyclic TBox
to subsumption and equivalence without a TBox is not polynomial. Nevertheless, in EL,
subsumption (and thus also equivalence) w.r.t. acyclic TBoxes can be decided in polynomial
time [4].

In our definition of unification modulo acyclic TBoxes, we assume that all defined
concepts are concept constants. In fact, defined concepts already have a definition in the
given TBox, and thus it does not make sense to introduce new ones for them by unification.
In this setting, a substitution σ is a mapping from Nv into the set of all EL-concept terms
not containing any defined concepts.5 The extension of σ to concept terms is defined as in
the previous subsection, and its application to T is defined as

σ(T ) := {A
.
= σ(C) | A

.
= C ∈ T }.

Definition 2.4. An EL-unification problem modulo an acyclic TBox is of the form Γ =
{C1 ≡?

T
D1, . . . , Cn ≡?

T
Dn}, where C1,D1, . . . , Cn,Dn are EL-concept terms, and T is an

acyclic EL-TBox. The substitution σ is a unifier (or solution) of Γ modulo T iff σ(Ci) ≡σ(T )

σ(Di) for i = 1, . . . , n. In this case, Γ is called solvable modulo T or unifiable modulo T .

Coming back to our example from the introduction, assume that one knowledge engineer
has written the concept definition

Real man
.
= Human ⊓Male ⊓ ∃ loves.Sports car.

5This restriction prevents the unifier from introducing cycles into the TBox.
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to the TBox, whereas a second one has written the definition

Stupid man
.
= Man ⊓ ∃ loves.(Car ⊓ Fast),

where all the concept names occurring on the left-hand side of these definitions are primitive
concepts. Then the substitution that replaces Sports car by Car⊓Fast and Man by Human⊓
Male is a unifier of {Real man ≡?

T
Stupid man} w.r.t. the TBox T consisting of these two

definitions.
Using expansion, we can reduce unification modulo an acyclic TBox to unification

without a TBox. In fact, the following lemma is an easy consequence of the fact that
σ(CT ) = σ(C)σ(T ) holds for all EL-concept terms C.

Lemma 2.5. The substitution σ is a unifier of {C1 ≡?
T
D1, . . . , Cn ≡?

T
Dn} modulo T iff

it is a unifier of {CT
1 ≡? DT

1 , . . . , C
T
n ≡? DT

n }.

Since expansion can cause an exponential blow-up, this is not a polynomial reduction.
In the remainder of this subsection, we show that there actually exists a polynomial-time
reduction of unification modulo an acyclic TBox to unification without a TBox.

We say that the EL-unification problem Γ is in dag-solved form if it can be written as
Γ = {X1 ≡

? C1, . . . ,Xn ≡? Cn}, where X1, . . . ,Xn are distinct concept variables such that,
for all i ≤ n, Xi does not occur in Ci, . . . , Cn. For i = 1, . . . , n, let σi be the substitution
that maps Xi to Ci and leaves all other variables unchanged. We define the substitution
σΓ as

σΓ(Xi) := σn(· · · (σi(Xi)) · · · )

for i = 1, . . . , n, and σΓ(X) := X for all other variables X. The following is an instance of
a well-known fact from unification theory [22].

Lemma 2.6. Let Γ = {X1 ≡? C1, . . . ,Xn ≡? Cn} be an EL-unification problem in dag-
solved form. Then, the set {σΓ} is a complete set of unifiers for Γ.

There is a close relationship between acyclic TBoxes and unification problems in dag-
solved form. In fact, if T is an acyclic TBox, then there is an enumeration A1, . . . , An of
the defined concepts in T such that T = {A1

.
= C1, . . . , An

.
= Cn} and Ai does not occur

in Ci, . . . , Cn. Consequently, the corresponding unification problem

Γ(T ) := {A1 ≡
? C1, . . . , An ≡? Cn}

(where A1, . . . , An are now viewed as concept variables) is in dag-solved form. In addition,
it is easy to see that, for any EL-concept term C, we have CT = σΓ(T )(C).

Lemma 2.7. The EL-unification problem Γ = {C1 ≡?
T

D1, . . . , Cn ≡?
T

Dn} is solvable

modulo the acyclic TBox T iff {C1 ≡
? D1, . . . , Cn ≡? Dn} ∪ Γ(T ) is solvable.6

Proof. Assume that θ is a unifier of Γ = {C1 ≡?
T

D1, . . . , Cn ≡?
T

Dn} modulo T . Then it

is a unifier of Γ̂ := {CT
1 ≡? DT

1 , . . . , C
T
n ≡? DT

n }, by Lemma 2.5. Since CT
i = σΓ(T )(Ci)

and DT
i = σΓ(T )(Di), we have Γ̂ = {σΓ(T )(Ci) ≡

? σΓ(T )(Di) | 1 ≤ i ≤ n}. Consequently, if
we define the substitution τ by setting τ(X) := θ(σΓ(T )(X)) for all concept variables and

defined concepts X, then τ is a unifier of {C1 ≡? D1, . . . , Cn ≡? Dn}. In addition, since
σΓ(T ) is a unifier of Γ(T ), τ is also a unifier of {C1 ≡? D1, . . . , Cn ≡? Dn} ∪ Γ(T ).

6Note that the defined concepts of T are treated as concept constants in Γ, and as concept variables in
{C1 ≡? D1, . . . , Cn ≡? Dn} ∪ Γ(T ).
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Conversely, assume that τ is a unifier of {C1 ≡
? D1, . . . , Cn ≡? Dn} ∪ Γ(T ). In partic-

ular, this implies that τ is a unifier of Γ(T ). By Lemma 2.6, {σΓ(T )} is a complete set of
unifiers for Γ(T ), and thus there is a substitution θ such that τ(X) = θ(σΓ(T )(X)) for all

concept variables occurring in the unification problem {C1 ≡? D1, . . . , Cn ≡? Dn} ∪ Γ(T ).
Since CT

i = σΓ(T )(Ci) and DT
i = σΓ(T )(Di), this implies that θ is a unifier of {CT

1 ≡?

DT
1 , . . . , C

T
n ≡? DT

n }, and thus of Γ = {C1 ≡?
T

D1, . . . , Cn ≡?
T

Dn} modulo T , by
Lemma 2.5.

Since the size of Γ(T ) is basically the same as the size of T , the size of Γ ∪ Γ(T ) is
linear in the size of Γ and T . Thus, the above lemma provides us with a polynomial-time
reduction of EL-unification w.r.t. acyclic TBoxes to EL-unification.

Theorem 2.8. EL-unification w.r.t. acyclic TBoxes can be reduced in polynomial time to
EL-unification.

3. Equivalence and subsumption in EL

In order to characterize equivalence of EL-concept terms, the notion of a reduced EL-
concept term is introduced in [24]. A given EL-concept term can be transformed into an
equivalent reduced term by applying the following rules modulo associativity and commu-
tativity of conjunction:

C ⊓⊤ → C for all EL-concept terms C

A ⊓A → A for all concept names A ∈ Ncon

∃ r.C ⊓ ∃ r.D → ∃ r.C for all EL-concept terms C,D with C ⊑ D

Obviously, these rules are equivalence preserving. We say that the EL-concept term D is
reduced if none of the above rules is applicable to it (modulo associativity and commutativity
of ⊓), and that C can be reduced to D if D can be obtained from C by applying the above
rules (modulo associativity and commutativity of ⊓). The EL-concept term D is a reduced
form of C if C can be reduced to D and D is reduced. The following theorem is an easy
consequence of Theorem 6.3.1 on page 181 of [24].

Theorem 3.1. Let C,D be EL-concept terms, and Ĉ, D̂ reduced forms of C,D, respectively.

Then C ≡ D iff Ĉ is identical to D̂ up to associativity and commutativity of ⊓.

This theorem can also be used to derive a recursive characterization of subsumption in
EL. In fact, if C ⊑ D, then C ⊓ D ≡ C, and thus C and C ⊓ D have the same reduced
form. Thus, during reduction, all concept names and existential restrictions of D must be
“eaten up” by corresponding concept names and existential restrictions of C.

Corollary 3.2. Let C = A1 ⊓ . . . ⊓ Ak ⊓ ∃ r1.C1 ⊓ . . . ⊓ ∃ rm.Cm and D = B1 ⊓ . . . ⊓ Bℓ ⊓
∃ s1.D1 ⊓ . . . ⊓ ∃ sn.Dn, where A1, . . . , Ak, B1, . . . , Bℓ are concept names. Then C ⊑ D iff
{B1, . . . , Bℓ} ⊆ {A1, . . . , Ak} and for every j, 1 ≤ j ≤ n, there exists an i, 1 ≤ i ≤ m, such
that ri = sj and Ci ⊑ Dj .

Note that this corollary also covers the cases where some of the numbers k, ℓ,m, n are
zero. The empty conjunction should then be read as ⊤. The following lemma, which is an
immediate consequence of this corollary, will be used in our proof that EL has unification
type zero.
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Lemma 3.3. If C,D are reduced EL-concept terms such that ∃ r.D ⊑ C, then C is either
⊤, or of the form C = ∃ r.C1 ⊓ . . . ⊓ ∃ r.Cn where n ≥ 1; C1, . . . , Cn are reduced and
pairwise incomparable w.r.t. subsumption; and D ⊑ C1, . . . ,D ⊑ Cn. Conversely, if C,D
are EL-concept terms such that C = ∃ r.C1 ⊓ . . . ⊓ ∃ r.Cn and D ⊑ C1, . . . ,D ⊑ Cn, then
∃ r.D ⊑ C.

The following lemma states several other obvious consequences of Corollary 3.2.

Lemma 3.4.

(1) The existential restriction ∃ r.C is reduced iff C is reduced.
(2) Let C1 ⊓ . . . ⊓ Cn be concept names or existential restrictions. Then the conjunction

C1 ⊓ . . . ⊓ Cn is reduced iff C1, . . . , Cn are reduced and pairwise incomparable w.r.t.
subsumption.

(3) Let C = C1 ⊓ . . . ⊓ Cm and D = D1 ⊓ . . . ⊓ Dn be conjunctions of EL-concept terms.
If, for all i, 1 ≤ i ≤ n, there exists j, 1 ≤ j ≤ m, such that Cj ⊑ Di, then C ⊑ D.
If D1, . . . ,Dn are concept names or existential restrictions, then the implication in the
other direction also holds.

In the proof of decidability of EL-unification, we will make use of the fact that the
inverse strict subsumption order is well-founded.

Proposition 3.5. There is no infinite sequence C0, C1, C2, C3, . . . of EL-concept terms such
that C0 ⊏ C1 ⊏ C2 ⊏ C3 ⊏ · · · .

Proof. We define the role depth of an EL-concept term C as the maximal nesting of exis-
tential restrictions in C. Let n0 be the role depth of C0. Since C0 ⊑ Ci for i ≥ 1, it is an
easy consequence of Corollary 3.2 that the role depth of Ci is bounded by n0, and that Ci

contains only concept and role names occurring in C0. In addition, it is known that, for a
given natural number n0 and finite sets of concept names Ncon and role names Nrole , there
are, up to equivalence, only finitely many EL-concept terms built using concept names from
C and role names from R and of a role depth bounded by n0 [15]. Consequently, there are
indices i < j such that Ci ≡ Cj . This contradicts our assumption that Ci ⊏ Cj .

4. An EL-unification problem of type zero

To show that EL has unification type zero, we exhibit an EL-unification problem that
has this type.

Theorem 4.1. Let X,Y be variables. The EL-unification problem Γ := {X ⊓ ∃ r.Y ≡?

∃ r.Y } has unification type zero.

Proof. It is enough to show that any complete set of unifiers for this problem is redundant,
i.e., contains two different unifiers that are comparable w.r.t. the instantiation preorder.
Thus, let M be a complete set of unifiers for Γ.

First, note that M must contain a unifier that maps X to an EL-concept term not
equivalent to ⊤ or ∃ r.⊤. In fact, consider a substitution τ such that τ(X) = ∃ r.A and
τ(Y ) = A. Obviously, τ is a unifier of Γ. Thus, M must contain a unifier σ such that σ ≤• τ .
In particular, this means that there is a substitution λ such that ∃ r.A = τ(X) ≡ λ(σ(X)).
Obviously, σ(X) ≡ ⊤ would imply λ(σ(X)) ≡ ⊤, and thus ∃ r.A ≡ ⊤, which is, however,
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not the case. Similarly, σ(X) ≡ ∃ r.⊤ would imply λ(σ(X)) ≡ ∃ r.⊤, and thus ∃ r.A ≡ ∃ r.⊤,
which is also not the case.

Thus, let σ ∈ M be such that σ(X) 6≡ ⊤ and σ(X) 6≡ ∃ r.⊤. Without loss of generality,
we assume that C := σ(X) and D := σ(Y ) are reduced. Since σ is a unifier of Γ, we have
∃ r.D ⊑ C. Consequently, Lemma 3.3 yields that C is of the form C = ∃ r.C1 ⊓ . . . ⊓ ∃ r.Cn

where n ≥ 1, C1, . . . , Cn are reduced and pairwise incomparable w.r.t. subsumption, and
D ⊑ C1, . . . ,D ⊑ Cn.

We use σ to construct a new unifier σ̂ as follows:

σ̂(X) := ∃ r.C1 ⊓ . . . ⊓ ∃ r.Cn ⊓ ∃ r.Z

σ̂(Y ) := D ⊓ Z

where Z is a new variable (i.e., one not occurring in C,D). The second part of Lemma 3.3
implies that σ̂ is indeed a unifier of Γ.

Next, we show that σ̂ ≤• σ. To this purpose, we consider the substitution λ that
maps Z to C1, and does not change any of the other variables. Then we have λ(σ̂(X)) =
∃ r.C1⊓. . .⊓∃ r.Cn⊓∃ r.C1 ≡ ∃ r.C1⊓. . .⊓∃ r.Cn = σ(X) and λ(σ̂(Y )) = D⊓C1 ≡ D = σ(Y ).
Note that the second equivalence holds since we have D ⊑ C1.

Since M is complete, there exists a unifier θ ∈ M such that θ ≤• σ̂. Transitivity of the
relation ≤• thus yields θ ≤• σ. Since σ and θ both belong to M , we have completed the proof
of the theorem once we have shown that σ 6= θ. Assume to the contrary that σ = θ. Then
we have σ ≤• σ̂, and thus there exists a substitution µ such that µ(σ(X)) ≡ σ̂(X), i.e.,

∃ r.µ(C1) ⊓ . . . ⊓ ∃ r.µ(Cn) ≡ ∃ r.C1 ⊓ . . . ⊓ ∃ r.Cn ⊓ ∃ r.Z. (4.1)

Recall that the concept terms C1, . . . , Cn are reduced and pairwise incomparable w.r.t.
subsumption. In addition, since σ(X) = ∃ r.C1 ⊓ . . . ⊓ ∃ r.Cn is reduced and not equivalent
to ∃ r.⊤, none of the concept terms C1, . . . , Cn can be equivalent to ⊤. Finally, Z is a concept
name that does not occur in C1, . . . , Cn. All this implies that ∃ r.C1 ⊓ . . .⊓∃ r.Cn ⊓∃ r.Z is
reduced. Obviously, any reduced form for ∃ r.µ(C1) ⊓ . . . ⊓ ∃ r.µ(Cn) is a conjunction of at
most n existential restrictions. Thus, Theorem 3.1 shows that the above equivalence (4.1)
actually cannot hold.

To sum up, we have shown that M contains two distinct unifiers σ, θ such that θ ≤• σ.
Since M was an arbitrary complete set of unifiers for Γ, this shows that this unification
problem cannot have a minimal complete set of unifiers.

5. The decision problem

Before we can describe our decision procedure for EL-unification, we must introduce
some notation. An EL-concept term is called an atom iff it is a concept name (i.e., concept
constant or concept variable) or an existential restriction ∃ r.D.7 Obviously, any EL-concept
term is (equivalent to) a conjunction of atoms, where the empty conjunction is ⊤. The set
At(C) of atoms of an EL-concept term C is defined inductively: if C = ⊤, then At(C) := ∅;
if C is a concept name, then At(C) := {C}; if C = ∃ r.D then At(C) := {C} ∪ At(D); if
C = C1 ⊓ C2, then At(C) := At(C1) ∪ At(C2).

Concept names and existential restrictions ∃ r.D where D is a concept name or ⊤ are
called flat atoms. An EL-concept term is flat iff it is a conjunction of flat atoms (where the

7Note that ⊤ is not an atom.
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empty conjunction is ⊤). The EL-unification problem Γ is flat iff it consists of equations
between flat EL-concept terms. By introducing new concept variables and eliminating
⊤, any EL-unification problem Γ can be transformed in polynomial time into a flat EL-
unification problem Γ′ such that Γ is solvable iff Γ′ is solvable. Thus, we may assume
without loss of generality that our input EL-unification problems are flat. Given a flat EL-
unification problem Γ = {C1 ≡

? D1, . . . , Cn ≡? Dn}, we call the atoms of C1,D1, . . . , Cn,Dn

the atoms of Γ. Atoms of Γ that are not variables (i.e., not elements of Nv) are called non-
variable atoms of Γ.

The unifier σ of Γ is called reduced iff, for all concept variables X occurring in Γ, the
EL-concept term σ(X) is reduced. It is ground iff, for all concept variables X occurring in
Γ, the EL-concept term σ(X) does not contain variables. Obviously, Γ is solvable iff it has
a reduced ground unifier. Given a ground unifier σ of Γ, the atoms of σ are the atoms of
all the concept terms σ(X), where X ranges over all variables occurring in Γ.

Remark 5.1. In the following, we consider situations where all occurrences of a given
reduced atom D in a reduced concept term C are replaced by a more general concept
term, i.e., by a concept term D′ with D ⊏ D′. However, when we say occurrence of D
in C, we mean occurrence modulo equivalence (≡) rather than syntactic occurrence. For
example, if C = ∃ r.(A ⊓B) ⊓ ∃ r.(B ⊓A), D = ∃ r.(A ⊓B), and D′ = ∃ r.A, then the term
obtained by replacing all occurrences of D in C by D′ should be ∃ r.A ⊓ ∃ r.A, and not
∃ r.A ⊓ ∃ r.(B ⊓ A). Since C and D are reduced, equivalence is actually the same as being
identical up to associativity and commutativity of ⊓. In particular, this means that any
concept term that (syntactically) occurs in C and is equivalent to the atom D is also an
atom, i.e., only atoms can be replaced by D′. In order to make this meaning of occurrence
explicit we will call it occurrence modulo AC in the following. We will write D1 =AC D2 to
express that the atoms D1 and D2 are identical up to associativity and commutativity of
⊓. Obviously, D1 =AC D2 implies D1 ≡ D2.

Lemma 5.2. Let C,D,D′ be EL-concept terms such that D is a reduced atom, D ⊏ D′,
and C is reduced and contains at least one occurrence of D modulo AC. If C ′ is obtained
from C by replacing all occurrences of D by D′, then C ⊏ C ′.

Proof. We prove the lemma by induction on the size of C. If C =AC D, then C ′ = D′,
and thus C ≡ D ⊏ D′ = C ′, which yields C ⊏ C ′. Thus, assume that C 6=AC D. In
this case, C cannot be a concept name since it contains the atom D. If C = ∃ r.C1, then
D occurs in C1 modulo AC . By induction, we can assume that C1 ⊏ C ′

1, where C ′
1 is

obtained from C1 by replacing all occurrences of D (modulo AC ) by D′. Thus, we have
C = ∃ r.C1 ⊏ ∃ r.C ′

1 = C ′ by Corollary 3.2. Finally, assume that C = C1⊓ . . .⊓Cn for n > 1
atoms C1, . . . , Cn. Since C is reduced, these atoms are incomparable w.r.t. subsumption,
and since the atom D occurs in C modulo AC we can assume without loss of generality
that D occurs in C1 modulo AC . Let C ′

1, . . . , C
′
n be respectively obtained from C1, . . . , Cn

by replacing every occurrence of D (modulo AC ) by D′, and then reducing the concept
term obtained this way. By induction, we have C1 ⊏ C ′

1. Assume that C 6⊏ C ′. Since the
concept constructors of EL are monotone w.r.t. subsumption ⊑, we have C ⊑ C ′, and thus
C 6⊏ C ′ means that C ≡ C ′. Consequently, C = C1 ⊓ . . . ⊓ Cn and the reduced form of
C ′
1⊓. . .⊓C

′
n must be equal up to associativity and commutativity of ⊓. If C ′

1⊓. . .⊓C
′
n is not

reduced, then its reduced form is actually a conjunction of m < n atoms, which contradicts
C ≡ C ′. If C ′

1 ⊓ . . . ⊓ C ′
n is reduced, then C1 ⊏ C ′

1 implies that there is an i 6= 1 such that
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Ci ≡ C ′
1. However, then Ci ≡ C ′

1 ⊐ C1 contradicts the fact that the atoms C1, . . . , Cn are
incomparable w.r.t. subsumption.

Proposition 3.5 says that the inverse strict subsumption order on concept terms is
well-founded. We use this fact to obtain a well-founded strict order ≻ on ground unifiers.

Definition 5.3. Let σ, θ be ground unifiers of Γ. We define

(1) σ � θ iff σ(X) ⊑ θ(X) holds for all variables X occurring in Γ.
(2) σ ≻ θ iff σ � θ and θ 6� σ, i.e., iff σ(X) ⊑ θ(X) holds for all variables X occurring in

Γ, and σ(X) ⊏ θ(X) holds for at least one variable X occurring in Γ.

If Γ contains n variables, then � is the n-fold product of the order ⊑ with itself. Since
the strict part ⊏ of the inverse subsumption order ⊑ is well-founded by Proposition 3.5, the
strict part ≻ of � is also well-founded [13]. The ground unifier σ of Γ is called is-minimal
iff there is no ground unifier θ of Γ such that σ ≻ θ. The following proposition is an easy
consequence of the fact that ≻ is well-founded.

Proposition 5.4. Let Γ be an EL-unification problem. Then Γ is solvable iff it has an
is-minimal reduced ground unifier.

In the following, we show that is-minimal reduced ground unifiers of flat EL-unification
problems satisfy properties that make it easy to check (with an NP-algorithm) whether such
a unifier exists or not.

Lemma 5.5. Let Γ be a flat EL-unification problem and γ an is-minimal reduced ground
unifier of Γ. If C is an atom of γ, then there is a non-variable atom D of Γ such that
C ≡ γ(D).

The main idea underlying the proof of this crucial lemma is that an atom C of a unifier
σ that violates the condition of the lemma (i.e., that is not of the form C ≡ γ(D) for a

non-variable atom D of Γ) can be replaced by a concept term D̂ such that C ⊏ D̂, which
yields a unifier of Γ that is smaller than σ w.r.t. ≻.

Before proving the lemma formally, let us illustrate this idea by two examples.

Example 5.6. First, consider the unification problem

Γ1 := {∃ r.X ⊓ ∃ r.A ≡? ∃ r.X}.

The substitution σ1 := {X 7→ A ⊓ B} is a unifier of Γ1 that does not satisfy the condition
of Lemma 5.5. In fact, B is an atom of σ1, but none of the non-variable atoms D of Γ1

(which are A, ∃ r.A, and ∃ r.X) satisfy B ≡ σ1(D). The unifier σ1 is not is-minimal since
γ1 := {X 7→ A}, which can be obtained from σ1 by replacing the offending atom B with
⊤, is a unifier of Γ1 that is smaller than σ1 w.r.t. ≻. The unifier γ1 is is-minimal, and it
clearly satisfies the condition of Lemma 5.5.

Second, consider the unification problem

Γ2 := {X ⊓ ∃ r.A ⊓ ∃ r.B ≡? X}.

The substitution σ2 := {X 7→ ∃ r.(A ⊓ B)} is a unifier of Γ2 that does not satisfy the
condition of Lemma 5.5. In fact, ∃ r.(A⊓B) is an atom of σ2, but none of the non-variable
atoms D of Γ2 (which are A, B, ∃ r.A, and ∃ r.B) satisfy ∃ r.(A ⊓B) ≡ σ2(D). The unifier
σ2 is not is-minimal since γ2 := {X 7→ ∃ r.A ⊓ ∃ r.B}, which can be obtained from σ2
by replacing the offending atom ∃ r.(A ⊓ B) with ∃ r.A ⊓ ∃ r.B, is a unifier of Γ2 that is
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smaller than σ2 w.r.t. ≻. The unifier γ2 is is-minimal, and it clearly satisfies the condition
of Lemma 5.5.

Proof of Lemma 5.5. Assume that γ is an is-minimal reduced ground unifier of Γ. Since γ

is reduced, all atoms of γ are reduced. In particular, this implies that C is reduced, and
since γ is ground, we know that C is either a concept constant or an existential restriction.

First, assume that C is of the form A for a concept constant A, but there is no non-
variable atom D of Γ such that A ≡ γ(D). This simply means that A does not appear in
Γ. Let γ′ be the substitution obtained from γ by replacing every occurrence of A by ⊤.
Since equivalence in EL is preserved under replacing concept names by ⊤, and since A does
not appear in Γ, it is easy to see that γ′ is also a unifier of Γ. However, since γ ≻ γ′, this
contradicts our assumption that γ is is-minimal.

Second, assume that C is an existential restriction of the form ∃ r.C1, but there is no
non-variable atom D of Γ such that C ≡ γ(D). We assume that C is maximal (w.r.t.
subsumption) with this property, i.e., for every atom C ′ of γ with C ⊏ C ′, there is a non-
variable atom D′ of Γ such that C ′ ≡ γ(D′). Let D1, . . . ,Dℓ be all the non-variable atoms
of Γ with C ⊑ γ(Di) (i = 1, . . . , ℓ). By our assumptions on C, we actually have C ⊏ γ(Di)
and, by Lemma 3.3, the atom Di is also an existential restriction Di = ∃ r.D′

i (i = 1, . . . , ℓ).
We consider the conjunction

D̂ := γ(D1) ⊓ . . . ⊓ γ(Dℓ),

which is ⊤ in case ℓ = 0.

Definition 5.7. Given an EL-concept term F , the concept term F [C/D̂] is obtained from F

by replacing every occurrence of C (modulo AC ) by D̂. The substitution γ[C/D̂] is obtained

from γ by replacing every occurrence of C (modulo AC ) by D̂, i.e., γ[C/D̂](X) := γ(X)[C/D̂]

for all variables X.

We will show in the following that γ[C/D̂] is a unifier of Γ that is smaller than γ w.r.t.
≻. This will then again contradict our assumption that γ is is-minimal.

Lemma 5.8. γ ≻ γ[C/D̂].

Proof. Obviously, D̂ subsumes C. We claim that this subsumption relationship is actually

strict. In fact, if ℓ = 0, then D̂ = ⊤, and since C is an atom, it is not equivalent to ⊤.
If ℓ ≥ 1, then C = ∃ r.C1 ⊒ ∃ r.γ(D′

1) ⊓ . . . ⊓ ∃ r.γ(D′
ℓ) would imply (by Corollary 3.2)

that there is an i, 1 ≤ i ≤ ℓ, with C1 ⊒ γ(D′
i). However, this would yield C = ∃ r.C1 ⊒

∃ r.γ(D′
i) = γ(Di), which contradicts the fact that C ⊏ γ(Di). Thus, we have shown that

C ⊏ D̂. Lemma 5.2 implies that γ ≻ γ′.

To complete the proof of Lemma 5.5, it remains to show the next lemma.

Lemma 5.9. γ[C/D̂] is a unifier of Γ.

Proof. Consider an equation in Γ of the form L1⊓. . .⊓Lm ≡? R1⊓. . .⊓Rn where L1, . . . , Lm

and R1, . . . , Rn are flat atoms, and define L := γ(L1⊓. . .⊓Lm) and R := γ(R1⊓. . .⊓Rn). We
know that L,R are conjunctions of atoms of the form L = A1⊓. . .⊓Aµ and R = B1⊓. . .⊓Bν ,
where each conjunct A1, . . . , Aµ, B1, . . . , Bν is a reduced ground atom that is either an atom
of γ or equal to γ(E) for a non-variable atom E of Γ. Since γ is a unifier of Γ, we have
L ≡ R.
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(1) Since C is an atom, we obviously have L[C/D̂] = A
[C/D̂]
1 ⊓ . . . ⊓ A

[C/D̂]
µ and R[C/D̂] =

B
[C/D̂]
1 ⊓ . . .⊓B

[C/D̂]
ν . Now, we show that L[C/D̂] = γ[C/D̂](L1 ⊓ . . .⊓Lm) and R[C/D̂] =

γ[C/D̂](R1 ⊓ . . . ⊓ Rn). We concentrate on proving the first identity since the second
one can be shown analogously. To show the first identity, it is enough to prove that

γ(Lj)
[C/D̂] = γ[C/D̂](Lj) holds for all j, 1 ≤ j ≤ m.

(a) If Lj is a variable X, then γ[C/D̂](X) = γ(X)[C/D̂] holds by the definition of γ[C/D̂].

(b) If Lj is a concept constant A, then A[C/D̂] = A since C is an existential restriction.

Thus, we have γ[C/D̂](A) = A = A[C/D̂] = γ(A)[C/D̂].
(c) Otherwise, Lj is an existential restriction ∃ rj.L

′
j . By our assumption on C, we

have C 6≡ γ(Lj), and thus γ(Lj)
[C/D̂] = ∃ rj .

(
γ(Lj)

[C/D̂]
)
. In addition, we have

γ[C/D̂](Lj) = ∃ rj.γ
[C/D̂](L′

j). Thus, it is enough to show γ(L′
j)

[C/D̂] = γ[C/D̂](L′
j).

Since Lj is a flat atom, we know that L′
j is either a concept constant, the top-concept

⊤, or a concept variable. In the first to cases, we can show γ(L′
j)

[C/D̂] = γ[C/D̂](L′
j)

as in (1b), and in the third case we can show this identity as in (1a).

(2) Because of (1), if we can prove that L[C/D̂] ≡ R[C/D̂], then we have shown that γ[C/D̂]

solves the equation L1 ⊓ . . . ⊓ Lm ≡? R1 ⊓ . . . ⊓Rn.

Without loss of generality, we concentrate on showing that L[C/D̂] ⊑ R[C/D̂]. Since

L[C/D̂] = A
[C/D̂]
1 ⊓ . . . ⊓ A

[C/D̂]
µ and R[C/D̂] = B

[C/D̂]
1 ⊓ . . . ⊓B

[C/D̂]
ν , it is thus sufficient

to show that, for every i, 1 ≤ i ≤ ν, there exists a j, 1 ≤ j ≤ µ, such that A
[C/D̂]
j ⊑

B
[C/D̂]
i (see (3) of Lemma 3.4). Since L = A1 ⊓ . . . ⊓ Aµ ⊑ B1 ⊓ . . . ⊓ Bν = R and

A1, . . . , Aµ, B1, . . . , Bν are atoms, we actually know that, for every i, 1 ≤ i ≤ ν, there
exists a j, 1 ≤ j ≤ µ, such that Aj ⊑ Bi. Thus, it is sufficient to show that Aj ⊑ Bi

implies A
[C/D̂]
j ⊑ B

[C/D̂]
i . This is an easy consequence of the next lemma since Ai, Bj

satisfy the conditions of this lemma.

Lemma 5.10. Let A,B be reduced ground atoms such that B is an atom of γ or of the

form γ(D) for a non-variable atom D of Γ. If A ⊑ B, then A[C/D̂] ⊑ B[C/D̂].

Proof. We show A[C/D̂] ⊑ B[C/D̂] by induction on the size of A.

(1) First, assume that A =AC C, which implies that A[C/D̂] = D̂ = γ(D1) ⊓ . . . ⊓ γ(Dn).
(a) If B is of the form B ≡ γ(D) for a non-variable atom D of Γ, then there is an

h, 1 ≤ h ≤ n, such that D = Dh, which shows that A[C/D̂] ⊑ B. Since C ⊑ D̂ and

the constructors of EL are monotone w.r.t. subsumption, we also have B ⊑ B[C/D̂],

and thus A[C/D̂] ⊑ B[C/D̂].

(b) Assume that B is an atom of γ. If B =AC C, then B[C/D̂] = D̂, and thus A[C/D̂] =

B[C/D̂], which implies A[C/D̂] ⊑ B[C/D̂]. Otherwise, since C,B are reduced atoms,
B 6=AC C implies B 6≡ C. Together with C ≡ A ⊑ B, this shows that C ⊏ B.
Thus, the maximality of C implies that there is a non-variable atom D of Γ such

that B ≡ γ(D). Thus, we are actually in case (a), which yields A[C/D̂] ⊑ B[C/D̂].
(2) Now, assume that A 6=AC C. If there is no occurrence (modulo AC ) of C in A, then

we have A[C/D̂] = A ⊑ B ⊑ B[C/D̂].
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Otherwise, A is of the form A = ∃ s.E and C occurs in E (modulo AC ). Obviously,
A ⊑ B then implies that B is of the form B = ∃ s.F with E ⊑ F . The concept
terms E,F are conjunctions of reduced ground atoms, i.e., E = E1 ⊓ . . . ⊓Eκ and F =
F1 ⊓ . . .⊓Fλ where E1, . . . , Eκ, F1, . . . , Fλ are reduced ground atoms. By Corollary 3.2,
for every h, 1 ≤ h ≤ λ, there exists k, 1 ≤ k ≤ κ such that Ek ⊑ Fh.

In order to be able to assume, by induction, that Ek ⊑ Fh implies E
[C/D̂]
k ⊑ F

[C/D̂]
h ,

we must show that the conditions in the statement of the lemma hold for the concept
terms Ek, Fh, where Ek plays the rôle of A and Fh plays the rôle of B. Since we already
know that E1, . . . , Eκ, F1, . . . , Fλ are reduced ground atoms, it is sufficient to show that
each of the atoms F1, . . . , Fλ is an atom of γ or of the form γ(D) for a non-variable
atom D of Γ. We know that B = ∃ s.(F1 ⊓ . . . ⊓ Fλ) is an atom of γ or an instance
(w.r.t. γ) of a non-variable atom of Γ. In the first case, the atoms F1, . . . , Fλ are clearly
also atoms of γ. In the second case, B = γ(D′) for a non-variable atom D′ of Γ. If D′

is a ground atom, then F1, . . . , Fλ are also ground atoms that are atoms of Γ, and thus
they are instances (w.r.t. γ) of non-variable atoms of Γ. Otherwise, since Γ is flat, D′

is of the form ∃ s.X for a variable X and γ(X) = F1 ⊓ . . . ⊓Fλ. In this case, F1, . . . , Fλ

are clearly atoms of γ.
Thus, we can assume by induction:

(∗) for every h, 1 ≤ h ≤ λ, there exists k, 1 ≤ k ≤ κ such that E
[C/D̂]
k ⊑ F

[C/D̂]
h

It remains to show that this implies A[C/D̂] ⊑ B[C/D̂].

(a) If B 6=AC C, then A[C/D̂] = ∃ s.(E
[C/D̂]
1 ⊓ . . . ⊓ E

[C/D̂]
κ ) and B[C/D̂] = ∃ s.(F

[C/D̂]
1 ⊓

. . . ⊓ F
[C/D̂]
λ ), and thus property (∗) yields A[C/D̂] ⊑ B[C/D̂].

(b) Assume that B =AC C. In this case, C cannot occur (modulo AC ) in any of the

concept terms F1, . . . , Fh, which implies that B = ∃ s.(F1⊓ . . .⊓Fλ) = ∃ s.(F
[C/D̂]
1 ⊓

. . .⊓F
[C/D̂]
λ ). Since we have A[C/D̂] = ∃ s.(E

[C/D̂]
1 ⊓ . . .⊓E

[C/D̂]
κ ), property (∗) yields

A[C/D̂] ⊑ B. Since we also have B ⊑ B[C/D̂], this yields A[C/D̂] ⊑ B[C/D̂].

Thus, we have shown in all cases that A[C/D̂] ⊑ B[C/D̂], which completes the proof of
Lemma 5.10.

Overall, we have thus completed the proof of Lemma 5.5. The next proposition is an
easy consequence of this lemma.

Proposition 5.11. Let Γ be a flat EL-unification problem and γ an is-minimal reduced
ground unifier of Γ. If X is a concept variable occurring in Γ, then γ(X) ≡ ⊤ or there are
non-variable atoms D1, . . . ,Dn (n ≥ 1) of Γ such that γ(X) ≡ γ(D1) ⊓ . . . ⊓ γ(Dn).

Proof. If γ(X) 6≡ ⊤, then it is a non-empty conjunction of atoms, i.e., there are atoms
C1, . . . , Cn (n ≥ 1) such that γ(X) = C1 ⊓ . . . ⊓ Cn. Then C1, . . . , Cn are atoms of γ,
and thus Lemma 5.5 yields non-variable atoms D1, . . . ,Dn of Γ such that Ci ≡ γ(Di) for
i = 1, . . . n. Consequently, γ(X) ≡ γ(D1) ⊓ . . . ⊓ γ(Dn).

This proposition suggests the following non-deterministic algorithm for deciding solv-
ability of a given flat EL-unification problem.

Algorithm 5.12. Let Γ be a flat EL-unification problem.
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(1) For every variableX occurring in Γ, guess a finite, possibly empty, set SX of non-variable
atoms of Γ.

(2) We say that the variable X directly depends on the variable Y if Y occurs in an atom of
SX . Let depends on be the transitive closure of directly depends on. If there is a variable
that depends on itself, then the algorithm returns “fail.” Otherwise, there exists a strict
linear order > on the variables occurring in Γ such that X > Y if X depends on Y .

(3) We define the substitution σ along the linear order >:
• If X is the least variable w.r.t. >, then SX does not contain any variables. We define
σ(X) to be the conjunction of the elements of SX , where the empty conjunction is ⊤.

• Assume that σ(Y ) is defined for all variables Y < X. Then SX only contains variables
Y for which σ(Y ) is already defined. If SX is empty, then we define σ(X) := ⊤.
Otherwise, let SX = {D1, . . . ,Dn}. We define σ(X) := σ(D1) ⊓ . . . ⊓ σ(Dn).

(4) Test whether the substitution σ computed in the previous step is a unifier of Γ. If this
is the case, then return σ; otherwise, return “fail.”

This algorithm is trivially sound since it only returns substitutions that are unifiers of
Γ. In addition, it obviously always terminates. Thus, to show correctness of our algorithm,
it is sufficient to show that it is complete.

Lemma 5.13 (Completeness). If Γ is solvable, then there is a way of guessing in Step 1
subsets SX of the non-variable atoms of Γ such that the depends on relation determined in
Step 2 is acyclic and the substitution σ computed in Step 3 is a unifier of Γ.

Proof. If Γ is solvable, then it has an is-minimal reduced ground unifier γ. By Proposi-
tion 5.11, for every variable X occurring in Γ we have γ(X) ≡ ⊤ or there are non-variable
atoms D1, . . . ,Dn (n ≥ 1) of Γ such that γ(X) ≡ γ(D1) ⊓ . . . ⊓ γ(Dn). If γ(X) ≡ ⊤, then
we define SX := ∅. Otherwise, we define SX := {D1, . . . ,Dn}.

We show that the relation depends on induced by these sets SX is acyclic, i.e., there is
no variable X such that X depends on itself. If X directly depends on Y , then Y occurs in
an element of SX . Since SX consists of non-variable atoms of the flat unification problem
Γ, this means that there is a role name r such that ∃ r.Y ∈ SX . Consequently, we have
γ(X) ⊑ ∃ r.γ(Y ). Thus, if X depends on X, then there are k ≥ 1 role names r1, . . . , rk such
that γ(X) ⊑ ∃ r1. · · · ∃ rk.γ(X). This is clearly not possible since γ(X) cannot be subsumed
by an EL-concept term whose role depth is larger than the role depth of γ(X).

To show that the substitution σ induced by the sets SX is a unifier of Γ, we prove
that σ is equivalent to γ, i.e., σ(X) ≡ γ(X) holds for all variables X occurring in Γ. The
substitution σ is defined along the linear order >. If X is the least variable w.r.t. >, then
the elements of SX do not contain any variables. If SX is empty, then σ(X) = ⊤ ≡ γ(X).
Otherwise, let SX = {D1, . . . ,Dn}. Since the atoms Di do not contain variables, we have
Di = γ(Di). Thus, the definitions of SX and of σ yield σ(X) = D1 ⊓ . . . ⊓Dn = γ(D1) ⊓
. . . ⊓ γ(Dn) ≡ γ(X).

Assume that σ(Y ) ≡ γ(Y ) holds for all variables Y < X. If SX = ∅, then we have
again σ(X) = ⊤ ≡ γ(X). Otherwise, let SX = {D1, . . . ,Dn}. Since the atoms Di contain
only variables that are smaller than X, we have σ(Di) ≡ γ(Di) by induction. Thus, the
definitions of SX and of σ yield σ(X) = σ(D1)⊓. . .⊓σ(Dn) ≡ γ(D1)⊓. . .⊓γ(Dn) ≡ γ(X).

Note that our proof of completeness actually shows that, up to equivalence, the algo-
rithm returns all is-minimal reduced ground unifiers of Γ.

Theorem 5.14. EL-unification is NP-complete.
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Proof. NP-hardness follows from the fact that EL-matching is NP-complete [24].8 To show
that the problem can be decided by a non-deterministic polynomial-time algorithm, we
analyze the complexity of our algorithm. Obviously, guessing the sets SX (Step 1) can be
done within NP. Computing the depends on relation and checking it for acyclicity (Step 2)
is clearly polynomial.

Steps 3 and 4 are more problematic. In fact, since a variable may occur in different
atoms of Γ, the substitution σ computed in Step 3 may be of exponential size. This is
actually the same reason that makes a naive algorithm for syntactic unification compute
an exponentially large most general unifier [16]. As in the case of syntactic unification, the
solution to this problem is basically structure sharing. Instead of computing the substitution
σ explicitly, we view its definition as an acyclic TBox. To be more precise, for every concept
variable X occurring in Γ, the TBox Tσ contains the concept definition X

.
= ⊤ if SX = ∅

and X
.
= D1⊓ . . .⊓Dn if SX = {D1, . . . ,Dn} (n ≥ 1). Instead of computing σ in Step 3, we

compute Tσ. Because of the acyclicity test in Step 2, we know that Tσ is an acyclic TBox.
The size of Tσ is obviously polynomial in the size of Γ, and thus this modified Step 3 is
polynomial.

It is easy to see that applying the substitution σ to a concept term C is the same as
expanding C w.r.t. the TBox Tσ, i.e., σ(C) = CTσ . This implies that, for every equation
C ≡? D in Γ, we have C ≡Tσ D iff σ(C) ≡ σ(D). Thus, testing in Step 4 whether σ is a
unifier of Γ can be reduced to testing whether C ≡Tσ D holds for every equation C ≡? D

in Γ. Since subsumption (and thus equivalence) in EL w.r.t. acyclic TBoxes can be decided
in polynomial time [4], this completes the proof of the theorem.

In Subsection 2.3, we have shown that there exists a polynomial-time reduction of
unification modulo an acyclic TBox to unification without a TBox. Thus, Theorem 5.14
also yields the exact complexity for EL-unification w.r.t. acyclic TBoxes.

Corollary 5.15. EL-unification w.r.t. acyclic TBoxes is NP-complete.

Proof. The problem is in NP since Theorem 2.8 states that there is a polynomial-time
reduction of EL-unification w.r.t. acyclic TBoxes to EL-unification, and we have just shown
that EL-unification is in NP.

NP-hardness for EL-unification w.r.t. acyclic TBoxes follows from NP-hardness of EL-
unification since EL-unification can be viewed as the special case of EL-unification w.r.t.
acyclic TBoxes where the TBox is empty.

6. A goal-oriented algorithm

The NP-algorithm introduced in the previous section is a typical “guess and then test”
NP-algorithm, and thus it is unlikely that a direct implementation of this algorithm will
perform well in practice. Here, we introduce a more goal-oriented unification algorithm for
EL, in which non-deterministic decisions are only made if they are triggered by “unsolved
parts” of the unification problem.

As in the previous section, we assume without loss of generality that our input unifica-
tion problem Γ0 is flat. For a given flat equation C ≡? D, the concept terms C,D are thus

8The NP-hardness proof in [24] is by reduction of SAT. This reduction employs two concept constants
and four role names. However, the roles are mainly used to encode several (matching) equations into a single
one. When using a set of equations rather than a single equation, one role name is sufficient.
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conjunctions of flat atoms. We will often view such an equation as consisting of four sets:
the left-hand side C is given by the set of variables occurring in the top-level conjunction of
C, together with the set of non-variable atoms occurring in this top-level conjunction; the
right-hand side D is given by the set of variables occurring in the top-level conjunction of
D, together with the set of non-variable atoms occurring in this top-level conjunction. To
be more precise, let e denote the equation C ≡? D, where C = X1⊓ . . .⊓Xm⊓A1⊓ . . .⊓Ak

and D = Y1 ⊓ . . . ⊓ Yn ⊓ B1 ⊓ . . . ⊓ Bℓ for concept variables X1, . . . ,Xm, Y1, . . . , Yn and
non-variable atoms A1, . . . , Ak, B1, . . . Bℓ. Then we define

LVar(e) := {X1, . . . ,Xm}, RVar(e) := {Y1, . . . , Yn},
LAto(e) := {A1, . . . , Ak}, RAto(e) := {B1, . . . Bℓ}.

Obviously, the equation e : C ≡? D is uniquely determined (up to associativity, commutativ-
ity, and idempotency of conjunction) by the four sets LVar(e),LAto(e),RVar (e),RAto(e).
Instead of viewing an equation e as being given by a pair of concept terms, we can thus
also view it as being given by these four sets. In the following, it will often be convenient
to employ this representation of equations. If, with this point of view, we say that we add
an atom to the set LAto(e) or RAto(e), then this means, for the other point of view, that
we conjoin this atom to the top-level conjunction of the left-hand side or right-hand side of
the equation. In addition, if we say that the equation e contains the variable X, then we
mean that X ∈ LVar(e)∪RVar (e). Similarly, if we say that the left-hand side of e contains
X, then we mean that X ∈ LVar(e), and if we say that the right-hand side of e contains
X, then we mean that X ∈ RVar(e)).9

In addition to the unification problem itself, the algorithm also maintains, for every
variable X occurring in the input problem Γ0, a set SX of non-variable atoms of Γ0. Initially,
all the sets SX are empty. We call the set SX the current assignment forX, and the collection
of all these sets the current assignment. Throughout the run of our goal-oriented algorithm,
we will ensure that the current assignment is acyclic in the sense that no variable depends
on itself w.r.t. this assignment (see (2) of Algorithm 5.12). An acyclic assignment induces
a substitution σ, as defined in (3) of Algorithm 5.12. We call this substitution the current
substitution. Initially, the current substitution maps all variables to ⊤.

The algorithm applies rules that can

(1) change an equation of the unification problem by adding non-variable atoms of the input
problem Γ0 to one side of the equation;

(2) introduce a new flat equation of the form C⊓B ≡ B, where C,B are atoms of the input
problem Γ0 or ⊤;

(3) add non-variable atoms of the input problem Γ0 to the sets SX .

Another property that is maintained throughout the run of our algorithm is that all equa-
tions e are expanded w.r.t. the current assignment in the following sense: for all variables
X we have

A ∈ SX ∧X ∈ LVar(e) ⇒ A ∈ LAto(e) and A ∈ SX ∧X ∈ RVar(e) ⇒ A ∈ RAto(e).

Given a flat equation e that contains the variable X, the expansion of e w.r.t. the assignment
SX for X is defined as follows: if X ∈ LVar(e) then all elements of SX are added to LAto(e),
and if X ∈ RVar(e) then all elements of SX are added to RAto(e).

9 Note that occurrences of X inside non-variable atoms ∃ r.X ∈ LAto(e) ∪ RAto(e) are not taken into
consideration here.
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The L-variant of the Eager-Assignment rule applies to the equation e if there is an
unfinished variable X ∈ LVar(e) such that

• all variables Z ∈ (LVar(e) \ {X}) ∪ RVar(e) are finished;
• LAto(e) = ∅.

Its application sets SX := RAto(e).

(1) If this makes the current assignment cyclic, then return “fail.”
(2) Otherwise, label X as finished and expand all equations containing X w.r.t.

the new assignment for X.

Figure 1: The Eager-Assignment rule in its L-variant. The R-variant is obtained by ex-
changing the rôles of the two sides of the equation.

The following lemma is an immediate consequence of the definition of expanded equa-
tions and of the construction of the current substitution.

Lemma 6.1. If the equation C ≡? D is expanded w.r.t. the current assignment, then
LAto(C ≡? D) = RAto(C ≡? D) implies that the current substitution σ solves this equation,
i.e., σ(C) ≡ σ(D).

We say that an equation e is solved if LAto(e) = RAto(e). An atom A ∈ LAto(e) ∩
RAto(e) is called solved in e; atoms A ∈ LAto(e) ∪ RAto(e) that are not solved in e are
called unsolved in e. Obviously, an equation e is solved iff all atoms A ∈ LAto(e)∪RAto(e)
are solved in e.

Basically, in each step, the goal-oriented algorithm considers an unsolved equation and
an unsolved atom in this equation, and tries to solve it. Picking the unsolved equation and
the unsolved atom in it is don’t care non-deterministic, i.e., there is no need to backtrack
over such a choice. Once an unsolved equation and an unsolved atom in it was picked,
don’t know non-determinism comes in since there may be several possibilities for how to
solve this atom in the equation, some of which may lead to overall success whereas others
won’t. In some cases, however, a given equation uniquely determines the assignment for a
certain variable X. In this case, we make this assignment and then label the variable X as
finished. This has the effect that the set SX can no longer be extended. Initially, none of
the variables occurring in the input unification problem is labeled as finished. We say that
the variable X is unfinished if it is not labeled as finished.

Algorithm 6.2. Let Γ0 be a flat EL-unification problem. We define Γ := Γ0 and SX := ∅
for all variables X occurring in Γ0. None of these variables is labeled as finished.

As long as Γ contains an unsolved equation, do the following:

(1) If the Eager-Assignment rule applies to some equation e, then apply it to this equation
(see Figure 1).

(2) Otherwise, let e be an unsolved equation and A an unsolved atom in e. If neither
of the rules Decomposition (see Figure 2) and Extension (see Figure 3) applies to A

in e, then return “fail.” If one of these rules applies to A in e, then (don’t know)
non-deterministically choose one of these rules and apply it.

Once all equations of Γ are solved, return the substitution σ that is induced by the current
assignment.

The Eager-Assignment rule is described in Figure 1. Note that, after a non-failing
application of this rule, the equation it was applied to is solved since the expansion of this
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The L-variant of the Decomposition rule applies to the unsolved atom A in the equa-
tion e if

• A ∈ LAto(e) \ RAto(e);
• A is of the form A = ∃ r.C;
• there is at least one atom of the form ∃ r.B ∈ RAto(e).

Its application chooses (don’t know) non-deterministically an atom of the form ∃ r.B ∈
RAto(e) and

• adds ∃ r.C to RAto(e);
• creates a new equation C ⊓ B ≡? B and expands it w.r.t. the assignments of all
variables contained in this equation, unless this equation has already been generated
before. If the equation has already been generated before, it is not generated again.

Figure 2: The Decomposition rule in its L-variant. The R-variant is obtained by exchanging
the rôles of the two sides of the equation.

equation w.r.t. the new assignment for X adds all elements of RAto(e) to LAto(e). As an
example, consider the equations

Y ≡? ⊤, Z ≡? ∃ r.⊤, X ⊓ Y ≡? Z,

and assume that SX = SY = SZ = ∅ and none of the three variables X,Y,Z is finished.
An application of the Eager-Assignment rule to the first equation labels Y as finished, but
does not change anything else. The subsequent application of the Eager-Assignment rule
to the second equation changes the assignment for Z to SZ = {∃ r.⊤}, labels Z as finished,
and expands the second and the third equation w.r.t. the new assignment for Z. Thus, we
now have the equations

Y ≡? ⊤, Z ⊓ ∃ r.⊤ ≡? ∃ r.⊤, X ⊓ Y ≡? Z ⊓ ∃ r.⊤.

Since Y,Z are finished, the Eager-Assignment rule can now be applied to the third equation.
This changes the assignment for X to SX = {∃ r.⊤}, labels X as finished, and adds ∃ r.⊤
to the left-hand side of the third equation. Now all equations are solved. The current
assignment induces a substitution σ with σ(X) = ∃ r.⊤ = σ(Z) and σ(Y ) = ⊤, which is a
unifier of the original set of equations.

The Decomposition rule is described in Figure 2. This rule solves the unsolved atom
A = ∃ r.C by adding it to the other side. For this to be admissible, one needs a more specific
atom ∃ r.B on that side, where the “more specific” is meant to hold after application of the
unifier. Thus, to ensure that the unifier σ computed by the algorithm satisfies σ(∃ r.B) ⊑
σ(∃ r.C), the rule adds the new equation C ⊓ B ≡? B. Obviously, if the substitution σ

solves this equation, then it satisfies σ(B) ⊑ σ(C), and thus σ(∃ r.B) ⊑ σ(∃ r.C). As an
example, consider the equation

∃ r.X ⊓ ∃ r.A ≡? ∃ r.A,

and assume that SX = ∅ and that X is unfinished. An application of the L-variant of the
Decomposition rule to this equation adds ∃ r.X to the right-hand side of this equation, and
thus solves it. In addition, it generates the new equation X ⊓ A ≡? A, which is solved.
The current assignment induces a substitution σ with σ(X) = ⊤, which solves the original
equation.
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The L-variant of the Extension rule applies to the unsolved atom A of the equation e

if

• A ∈ LAto(e) \ RAto(e);
• there is at least one unfinished variable X ∈ RAto(e)

Its application chooses (don’t know) non-deterministically an unfinished variable X ∈
RAto(e) and adds A to SX .

• If this makes the current assignment cyclic, then return “fail.”
• Otherwise, expand all equations containing X w.r.t. the new
assignment for X.

Figure 3: The Extension rule in its L-variant. The R-variant is obtained by exchanging the
rôles of the two sides of the equation.

The Extension rule is described in Figure 3. Basically, this rule solves the unsolved
atom A by extending with this atom the assignment of an unfinished variable contained in
the other side of the equation. As an example, consider the equation

A ⊓ ∃ r.⊤ ≡? ∃ r.⊤ ⊓X,

where A is a concept constant, SX = ∅, andX is unfinished. An application of the Extension
rule to A in this equation extends the assignment for X to SX = {A}, and expands this
equation by adding A to the right-hand side. The equation obtained this way is solved. The
substitution σ induced by the current assignment replaces X by A, and solves the original
equation.

Theorem 6.3. Algorithm 6.2 is an NP-algorithm for testing solvability of flat EL-unifica-
tion problems.

First, we show that the algorithm is indeed an NP-algorithm. For this, we consider
all runs of the algorithm, where for every (don’t care) non-deterministic choice exactly one
alternative is taken. Since a single rule application can obviously be realized in polynomial
time, it is sufficient to show the following lemma.

Lemma 6.4 (Termination). Every run of the algorithm terminates after a polynomial num-
ber of rule applications.

Proof. Each application of the Eager-Assignment rule finishes an unfinished variable. Thus,
since finished variables never become unfinished again, it can only be applied k times, where
k is the number of variables occurring in the input unification problem Γ0. This number is
clearly linearly bounded by the size of Γ0.

Every application of the Decomposition rule or the Extension rule turns an unsolved
atom in an equation into a solved one, and a solved atom in an equation never becomes
unsolved again in this equation. For a fixed equation, in the worst case every atom of Γ0

may become an unsolved atom of the equation that needs to be solved. There is, however,
only a linear number of atoms of Γ0. Each equation considered during the run of the
algorithm is either descended from an original equation of Γ0, or from an equation of the
form C ⊓ B ≡? B for atoms ∃ r.B and ∃ r.C of Γ0. Thus, the number of equations is also
polynomially bounded by the size of Γ0. Overall, this shows that the Decomposition rule
and the Extension rule can only be applied a polynomial number of times.
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Next, we show soundness of Algorithm 6.2. We call a run of this algorithm non-failing
if it terminates with a unification problem containing only solved equations.

Lemma 6.5 (Soundness). Let Γ0 be a flat EL-unification problem. The substitution σ

returned after a successful run of Algorithm 6.2 on input Γ0 is an EL-unifier of Γ0.

Proof. First, note that the rules employed by Algorithm 6.2 indeed preserve the two invari-
ants mentioned before:

(1) the current assignment is always acyclic;
(2) all equations are expanded.

In fact, whenever the current assignment is extended, the rules test acyclicity (and return
“fail,” if it is not satisfied). In addition, they expand all equations w.r.t. the new assignment.

Now, assume that the run of the algorithm has terminated with the EL-unification
problem Γ̂, in which all equations are solved. The first invariant ensures that the final
assignment constructed by the run is acyclic, and thus indeed induces a substitution σ.
Because of the second invariant, Lemma 6.1 applies, and thus we know that σ is a solution

of Γ̂.
It remains to show that the substitution σ is also a solution of the input problem Γ0. To

this purpose, we take all the equations that were considered during the run of the algorithm,
i.e., present in Γ0 or in any of the other unification problems generated during the run. Let
E denote the set of these equations. We define the relation → on E as follows: e → e′

if e was transformed into e′ using one of the rules of Algorithm 6.2. To be more precise,
the Eager-Assignment rule transforms equations containing X from the current unification
problem Γ by expanding them w.r.t. the new assignment for X. The same is true for the
Extension rule. The decomposition rule transforms an equation e containing the unsolved
atom A = ∃ r.C by adding this atom to the other side, which needs to contain an atom
of the form ∃ r.B. For this new equation e′, we have e → e′. The decomposition rule
may also generate a new equation e′′ of the form C ⊓ B ≡? B (if this equation was not
generated before). However, we do not view this equation as a successor of e w.r.t. →, i.e.,
we do not have e → e′′. Equations C ⊓ B ≡? B that are generated by an application of
the decomposition rule are called D-equations. Equations that are elements of the input
problem Γ0 are called I-equations. Any equation e′ that is not an I-equation or a D-equation
has a unique predecessor w.r.t. →, i.e., there is an equation e ∈ E such that e → e′.

Starting with the set F := Γ̂ we will now step by step extend F by a predecessor of
an equation in F until no new predecessors can be added. Since E is finite, this process
terminates after a finite number of steps. After termination we have E = F , and thus in
particular Γ0 ⊆ F . This is due to the fact that, for every element e0 of E , there are n ≥ 0

elements e1, . . . , en ∈ E such that e0 → e1 → . . . → en and en ∈ Γ̂. Thus, it is enough to
show that the set F satisfies the following invariant :

(∗) the substitution σ solves every equation in F .

Since σ is a solution of Γ̂, this invariant is initially satisfied. To prove that it is preserved
under adding predecessors of equations in F , we start with the equations of minimal role
depth. To be more precise, if the equation e is of the form C ≡? D, we define the role depth
of e w.r.t. σ to be the role depth10 of the concept term σ(C)⊓ σ(D). The strict order ≻ on
E is defined as follows: e ≻σ e′ iff the role depth of e w.r.t. σ is larger than the role depth

10 see the proof of Proposition 3.5 for a definition.
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of e′ w.r.t. σ. We write e ≈σ e′ if e and e′ have the same role depth w.r.t. σ. The following
is an easy consequence of the definition of σ and of our rules:

(∗∗) e1 → e2 → . . . → en implies e1 ≈σ e2 ≈σ . . . ≈σ en.

Assume that we have already constructed a set F such that the invariant (∗) is satisfied.
Let e′ be an equation in F such that

• there is an e ∈ E \ F with e → e′;
• e′ is of minimal role depth with this property, i.e., if f ′ ∈ F is such that e′ ≻ f ′ and f ′

has a predecessor f w.r.t. →, then f ∈ F .

If no such equation e′ exists, then we are finished, and we have E = F . Otherwise, let e′

be such an equation and e its predecessor w.r.t. →. We add e to F . In order to show that
the invariant (∗) is still satisfied, we make a case distinction according to which rule was
applied to e to produce e′:

(1) Eager-Assignment. By an application of this rule, the assignment for X is modified
from SX = ∅ to SX = {A1, . . . , An}, where A1, . . . , An are non-variable atoms. In
addition, X is labeled as finished. Since the assignment of a finished variable cannot be
changed anymore, we know that we also have SX = {A1, . . . , An} in the final assignment,
and thus σ(X) = σ(A1) ⊓ . . . ⊓ σ(An). The rule modifies equations as follows: all
equations containing X are expanded w.r.t. the assignment SX = {A1, . . . , An}. Since
e is transformed into e′ using this rule, it must contain X. We assume for the sake
of simplicity that X is contained in the left-hand side of e, but not in the right-hand
side, i.e., e is of the form C ⊓X ≡? D and the new equation e′ ∈ Γ′ obtained from e is
C⊓X⊓A1⊓ . . .⊓An ≡? D. Since σ solves e′, we have σ(D) ≡ σ(C⊓X⊓A1⊓ . . .⊓An) ≡
σ(C)⊓σ(A1)⊓ . . .⊓σ(An)⊓σ(A1)⊓ . . .⊓σ(An) ≡ σ(C)⊓σ(A1)⊓ . . .⊓σ(An) ≡ σ(C⊓X),
which shows that σ also solves e.

(2) Decomposition. Without loss of generality, we consider the L-variant of this rule. Thus,
the equation e is of the form D⊓∃ r.C ≡? E⊓∃ r.B, and e′ is obtained from e by adding
∃ r.C to the right-hand side, i.e., e′ is of the form D ⊓ ∃ r.C ≡? E ⊓ ∃ r.B ⊓ ∃ r.C. We
know that σ solves e′. Thus, if we can show σ(B) ⊑ σ(C), then we have σ(D⊓∃ r.C) ≡
σ(E) ⊓ σ(∃ r.B) ⊓ σ(∃ r.C) ≡ σ(E) ⊓ σ(∃ r.B), which shows that σ solves e.

Consequently, it is sufficient to prove σ(B) ⊑ σ(C). The Decomposition rule also
generates the equation C ⊓ B ≡? B and expands it w.r.t. the assignments of all the
variables contained in this equation, unless this equation has already been generated
before. Thus, either this application or a previous one of the Decomposition rule has
generated the equation C⊓B ≡? B, and then expanded it (w.r.t. the current assignment
at that time) to an equation e1. Since atoms are never removed from an assignment, the
atoms present in the assignment at the time when the Decomposition rule generated
the equation C ⊓ B ≡? B are also present in the final assignment used to define the
substitution σ. Thus, if we can show that σ solves e1, then we have also shown that σ
solves C ⊓B ≡? B, and thus satisfies σ(B) ⊑ σ(C).

Since equations are never completely removed by our rules, but only modified, there

is a sequence of equations e1 → e2 → . . . → en such that en ∈ Γ̂. Property (∗∗) thus
yields e1 ≈σ e2 ≈σ . . . ≈σ en. In addition, the role depth of C ⊓B ≡? B w.r.t. σ is the
same as the role depth of e1 w.r.t. σ. Consequently, we have e′ ≻ ei for all i, 1 ≤ i ≤ n.
Now, assume that e1 6∈ F . Then there is an i > 1 such that ei ∈ F , but ei−1 ∈ E \ F .
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This contradicts our assumption that e′ is minimal. Thus, we have shown that e1 ∈ F ,
and this implies that σ solves e1.

Overall, this finishes the proof that σ solves e.
(3) Extension. By an application of this rule, the assignment for X is modified by adding

a non-variable atom A to it. Since atoms are never removed from an assignment, we
know that we also have A ∈ SX in the final assignment, and thus σ(X) ⊑ σ(A).
The rule modifies equations as follows: all equations containing X are expanded w.r.t.
the new assignment for X. Since e is transformed into e′ using this rule, it must
contain X. We assume for the sake of simplicity that X is contained in the left-hand
side of e, but not in the right-hand side, i.e., e is of the form C ⊓ X ≡? D and the
new equation e′ obtained from e is C ⊓ X ⊓ A ≡? D. Since σ solves e′, we have
σ(D) ≡ σ(C ⊓X ⊓A) ≡ σ(C)⊓ σ(X) ⊓ σ(A) ≡ σ(C)⊓ σ(X) ≡ σ(C ⊓X), which shows
that σ also solves e.

To sum up, we have shown that the invariant (∗) is still satisfied after adding e to F . This
completes the proof of soundness of our procedure.

It remains to show completeness of Algorithm 6.2. Thus, assume that the input unifica-
tion problem Γ0 is solvable. Proposition 5.4 tells us that Γ0 then has an is-minimal reduced
ground unifier γ, and Proposition 5.11 implies that, for every variable X occurring in Γ0,
there is a set Sγ

X of non-variable atoms of Γ0 such that

γ(X) ≡ γ(
l

S
γ
X),

where, for a set of non-variable atoms S of Γ0, the expression
d
S denotes the conjunction

of the elements of S (where the empty conjunction is ⊤).

Lemma 6.6 (Completeness). Let Γ0 be a flat EL-unification problem, and assume that γ is
an is-minimal reduced ground unifier of Γ0. Then there is a successful run of Algorithm 6.2
on input Γ0 that returns a unifier σ that is equivalent to γ, i.e., satisfies σ(X) ≡ γ(X) for
all variables X occurring in Γ0.

Proof. The algorithm starts with Γ := Γ0 and the initial assignment SX := ∅ for all variables
X occurring in Γ0. It then applies rules that change Γ and the current assignment as long
as the problem Γ contains an unsolved equation.

We use γ to guide the (don’t know) non-deterministic choices to be made during the
algorithm. We show that this ensures that the run of the algorithm generated this way does
not fail and that the following invariants are satisfied throughout this run:

(I1) γ is a unifier of Γ;
(I2) for all atoms B ∈ SX there exists an atom A ∈ S

γ
X such that γ(A) ⊑ γ(B);

(I3) for all finished variables X we have γ(X) ≡ γ(
d
SX).

Before constructing a run that satisfies these invariants, let us point out two interesting
consequences that they have:

(C1) The current assignment is always acyclic. In fact, if X directly depends on Y , then
there is an atom B ∈ SX that has the form B = ∃ r.Y for some role name r. Invariant
I2 then implies that there is an A ∈ S

γ
X such that γ(X) ⊑ γ(A) ⊑ γ(B) = ∃ r.γ(Y ).

Thus, if X depends on X, then there are k ≥ 1 role names r1, . . . , rk such that
γ(X) ⊑ ∃ r1. · · · ∃ rk.γ(X), which is impossible.
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(C2) For each variable X occurring in Γ0, we have γ(X) ⊑ σ(X), where σ is the current
substitution induced by the current assignment. This is again a consequence of invari-
ant I2. Indeed, recall that the fact that the current assignment is acyclic implies that
there is a strict linear order > on the variables occurring in Γ such that X > Y if
X depends on Y . The current substitution σ is defined along this order. We prove
γ(X) ⊑ σ(X) by induction on this order.

Consider the least variable X. If SX = ∅, then σ(X) = ⊤, and thus γ(X) ⊑ σ(X)
is trivially satisfied. Otherwise, we know, for every B ∈ SX , that it does not contain
any variables, which implies that σ(B) = B = γ(B) ⊒ γ(A) for some atom A ∈ S

γ
X .

Obviously, this yields σ(X) = σ(
d
SX) ⊒ γ(

d
S
γ
X) = γ(X).

Now, assume that γ(Y ) ⊑ σ(Y ) holds for all variables Y < X. Since the concept
constructors of EL are monotone w.r.t. subsumption, this implies γ(C) ⊑ σ(C) for
all concept terms C containing only variables smaller than X. If SX is empty, then
σ(X) = ⊤ ⊒ γ(X) is trivially satisfied. Otherwise, we know, for every B ∈ SX , that
it contains only variables smaller than X. This yields σ(B) ⊒ γ(B) ⊒ γ(A) for some
atom A ∈ S

γ
X . Again, this implies σ(X) = σ(

d
SX) ⊒ γ(

d
S
γ
X) = γ(X).

Since γ was assumed to be an is-minimal unifier of Γ0, the consequence C2 implies that σ
can only be a unifier of Γ0 if σ is equivalent to γ. If the run has terminated successfully,
then the final substitution σ obtained by the run is a unifier of Γ0 (due to soundness). Thus,
in this case the computed unifier σ is indeed equivalent to γ. Consequently, to prove the
lemma, it is sufficient to construct a non-failing run of the algorithm that satisfies the above
invariants.

The invariants are initially satisfied since γ is a unifier of Γ0, the initial assignment
for all variables X occurring in Γ0 is SX = ∅, and there are no finished variables. Now,
assume that, by application of the rules of Algorithm 6.2, we have constructed a unification
problem Γ and a current assignment such that the invariants are satisfied.

(1) If all equations in Γ are solved, then the run terminates successfully, and we are done.
(2) If there is an unsolved equation to which the Eager-Assignment rule applies, then the

algorithm picks such an equation e and applies this rule to it. Without loss of generality,
we assume that the L-variant of the rule is applied. The selected equation e is of the
form

X ⊓ Z1 ⊓ . . . ⊓ Zk ≡? A1 ⊓ . . . ⊓An ⊓ Y1 ⊓ . . . ⊓ Ym,

where A1, . . . , An are non-variable atoms, and Y1, . . . , Ym, Z1, . . . Zk are finished vari-
ables. Because the left-hand side of the equation does not contain any non-variable
atoms, we know that SX = SZ1

= . . . = SZk
= ∅ (since the algorithm keeps all equa-

tions expanded). Since Z1, . . . , Zk are finished, we thus have γ(Z1) = . . . = γ(Zk) = ⊤
(by invariant I3). We also know that SYi

⊆ {A1, . . . , An} for all i, 1 ≤ i ≤ m. Since the
variables Yi are finished, invariant I3 implies that γ(Yi) ⊒ γ(A1) ⊓ . . . ⊓ γ(An).

The new assignment for X is SX = {A1, . . . , An}, all equations containing X are
expanded w.r.t. this assignment, and X becomes a finished variable. First, we show
that I3 is satisfied. Nothing has changed for the variables that were already finished
before the application of the rule. However, X is now also finished. Thus, we must
show that γ(X) ≡ γ(

d
SX). We know that γ solves the equation e (by I1). This yields

γ(X) ≡ γ(X) ⊓ γ(Z1) ⊓ . . . ⊓ γ(Zk) ≡ γ(A1) ⊓ . . . ⊓ γ(An) ⊓ γ(Y1) ⊓ . . . ⊓ γ(Ym) ≡
γ(A1) ⊓ . . . ⊓ γ(An) = γ(

d
SX). Regarding I2, the only assignment that was changed

is the one for X. Since the new assignment for X is SX = {A1, . . . , An}, and we have
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already shown that γ(X) ≡ γ(A1)⊓ . . .⊓γ(An), the invariant I2 holds by Corollary 3.2.
Note that this also implies that the new assignment is acyclic, and thus the application
of the Eager-Assignment rule does not fail. Finally, consider the invariant I1. The rule
application modifies equations containing X by adding the atoms A1, . . . , An. Since
γ(X) ≡ γ(A1)⊓. . .⊓γ(An), an equation that was solved by γ before this modification, is
also solved by γ after this modification. To sum up, we have shown that the application
of the Eager-Assignment rule does not fail and preserves the invariants.

(3) If there is no unsolved equation to which the Eager-Assignment rule applies, then
the algorithm picks an unsolved equation e and an unsolved atom A occurring in this
equation. We must show that we can apply either the Decomposition or the Extension
rule to A in e such that the invariants stay satisfied. Without loss of generality, we
assume that the unsolved atom A occurs on the left-hand side of the equation e.
(a) First, assume that A is an existential restriction A = ∃ r.C. The selected unsolved

equation e is thus of the form

∃ r.C ⊓A1 ⊓ . . . ⊓Am ≡ B1 ⊓ . . . ⊓Bn,

where A1, . . . , Am and B1, . . . , Bn are (variable or non-variable) atoms and ∃ r.C 6∈
{B1, . . . , Bn}. Since γ solves this equation (by invariant I1), Corollary 3.2 implies
that there must be an i, 1 ≤ i ≤ n, such that γ(Bi) ⊑ ∃ r.γ(C).
(i) If Bi is an existential restriction Bi = ∃ r.B, then we have γ(B) ⊑ γ(C).

We apply the Decomposition rule to A and Bi. The application of this rule
modifies the equation e to an equation e′ by adding the atom A to the right-
hand side. In addition, it generates the equation C ⊓ B ≡? B and expands it
w.r.t. the assignments of all variables contained in this equation (unless this
equation has been generated before). After the application of this rule, the
invariants I2 and I3 are still satisfied since the current assignments and the set
of finished variables remain unchanged. Regarding invariant I1, since γ solves
e, it obviously also solves e′ due to the fact that γ(Bi) ⊑ γ(A) and Bi is a
conjunct on the right-hand side of e. In addition, γ(B) ⊑ γ(C) implies that γ
also solves the equation C⊓B ≡? B. Since invariant I2 is satisfied, this implies
that γ also solves the equation obtained from C ⊓ B ≡? B by expanding it
w.r.t. the assignments of all variables contained in it.

(ii) Assume that there is no i, 1 ≤ i ≤ n, such that Bi is an existential restriction
satisfying γ(Bi) ⊑ γ(A). Thus, if Bi is such that γ(Bi) ⊑ γ(A), then we know
that Bi = X is a variable. We want to apply the Extension rule to A and X.
To be able to do this, we must first show that X is not a finished variable.
Thus, assume that X is finished, and let SX = {C1, . . . , Cℓ}. Invariant I3
yields γ(C1) ⊓ . . . ⊓ γ(Cℓ) = γ(X) = γ(Bi) ⊑ γ(A) = ∃ r.γ(C), and thus there
is a j, 1 ≤ j ≤ ℓ, such that γ(Cj) ⊑ γ(A). Since A is an existential restriction,
the non-variable atom Cj must also be an existential restriction, and since the
equation e is expanded, Cj ∈ SX occurs on the right-hand side of this equation.
This contradicts our assumption that there is no such existential restriction
on the right-hand side. Thus, we have shown that X is not finished, which
means that we can apply the Extension rule to A and X.
The application of this rule adds the atom A to the assignment for X, and
it expands all equations containing X w.r.t. this new assignment, i.e., it adds
A to the left-hand side and/or right-hand side of an equation whenever X is
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contained in this side. Since we know that γ(X) ⊑ γ(A), it is easy to see
that, if γ solves an equation before this expansion, it also solves it after the
expansion. Thus invariant I1 is satisfied. Invariant I2 also remains satisfied.
In fact, if S

γ
X = {D1, . . . ,Dk}, then γ(D1) ⊓ . . . ⊓ γ(Dk) = γ(X) ⊑ γ(A)

implies that there is a j, 1 ≤ j ≤ ℓ, such that γ(Dj) ⊑ γ(A). The fact that
I2 is satisfied by the new assignment also implies that this new assignment is
acyclic, and thus the application of the Extension rule does not fail. Invariant
I3 is still satisfied since X is not finished, and the assignments of variables
different from X were not changed.

(b) Second, assume that A is a concept name. The selected unsolved equation e is thus
of the form

A ⊓A1 ⊓ . . . ⊓Am ≡ B1 ⊓ . . . ⊓Bn,

where A1, . . . , Am and B1, . . . , Bn are (variable or non-variable) atoms, and A 6∈
{B1, . . . , Bn}. Since γ solves this equation (by invariant I1), Corollary 3.2 implies
that there must be an i, 1 ≤ i ≤ n, such that γ(Bi) ⊑ γ(A) = A. Since A 6∈
{B1, . . . , Bn}, we know that Bi = X is a variable. We want to apply the Extension
rule to A and X. To be able to do this, we must first show that X is not a finished
variable.
Thus, assume that X is finished, and let SX = {C1, . . . , Cℓ}. Invariant I3 yields
γ(C1) ⊓ . . . ⊓ γ(Cℓ) = γ(X) = γ(Bi) ⊑ γ(A) = A, and thus there is a j, 1 ≤ j ≤ ℓ,
such that γ(Cj) ⊑ A. Since A is a concept name, the non-variable atom Cj must
actually be equal to A, and since the equation e is expanded, Cj = A ∈ SX occurs
on the right-hand side of this equation. This contradicts our assumption that A

is an unsolved atom. Thus, we have shown that X is not finished, which means
that we can apply the Extension rule to A and X. The application of this rule
adds the atom A to the assignment for X, and it expands all equations containing
X w.r.t. this new assignment. The proof that this rule application does not fail
and preserves the invariants is identical to the one for the case where A was an
existential restriction.

To sum up, we have shown that Algorithm 6.2 always terminates (in non-deterministic
polynomial time) and that it is sound and complete. This finishes the proof of Theorem 6.3.

7. Unification in semilattices with monotone operators

Unification problems and their types were originally not introduced for Description
Logics, but for equational theories [16]. In this section, we show that the above results for
unification in EL can actually be viewed as results for an equational theory. As shown in
[28], the equivalence problem for EL-concept terms corresponds to the word problem for the
equational theory of semilattices with monotone operators. In order to define this theory,
we consider a signature ΣSLmO consisting of a binary function symbol ∧, a constant symbol
1, and finitely many unary function symbols f1, . . . , fn. Terms can then be built using these
symbols and additional variable symbols and free constant symbols.
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Definition 7.1. The equational theory of semilattices with monotone operators is defined
by the following identities:

SLmO := {x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∧ y = y ∧ x, x ∧ x = x, x ∧ 1 = x} ∪

{fi(x ∧ y) ∧ fi(y) = fi(x ∧ y) | 1 ≤ i ≤ n}

A given EL-concept term C using only roles r1, . . . , rn can be translated into a term
tC over the signature ΣSLmO by replacing each concept constant A by a corresponding free
constant a, each concept variable X by a corresponding variable x, ⊤ by 1, ⊓ by ∧, and ∃ ri
by fi. For example, the EL-concept term C = A ⊓ ∃ r1.⊤ ⊓ ∃ r3.(X ⊓ B) is translated into
tC = a∧f1(1)∧f3(x∧ b). Conversely, any term over the signature ΣSLmO can be translated
back into an EL-concept term.

Lemma 7.2. Let C,D be EL-concept term using only roles r1, . . . , rn. Then C ≡ D iff
tC =SLmO tD.

As an immediate consequence of this lemma, we have that unification in the DL EL
corresponds to unification modulo the equational theory SLmO . Thus, Theorem 4.1 implies
that SLmO has unification type zero, and Theorem 5.14 implies that SLmO -unification is
NP-complete.

Corollary 7.3. The equational theory SLmO of semilattices with monotone operators has
unification type zero, and deciding solvability of an SLmO-unification problem is an NP-
complete problem.

Since the unification problem introduced in Theorem 4.1 contains only one role r, this
is already true in the presence of a single monotone operator.

8. Conclusion

In this paper, we have shown that unification in the DL EL is of type zero and NP-
complete. There are interesting differences between the behavior of EL and the closely
related DL FL0 w.r.t. unification and matching. Though the unification types coincide for
these two DLs, the complexities of the decision problems differ: FL0-unification is ExpTime-
complete, and thus considerably harder than EL-unification. In contrast, FL0-matching is
polynomial, and thus considerably easier than EL-matching, which is NP-complete. In
addition to showing the complexity upper bound for EL-unification by a simple “guess and
then test” NP-algorithm, we have also developed a more goal-oriented NP-algorithm that
makes (don’t know) non-deterministic decisions (i.e., ones that require backtracking) only
if they are triggered by unsolved atoms in the unification problem.

As future work, we will consider also unification of concept terms for other members
of the EL-family of DLs [5]. In addition, we will investigate unification modulo more
expressive terminological formalisms. On the practical side, we will optimize and implement
the goal-oriented EL-unification algorithm developed in Section 6. We intend to test the
usefulness of this algorithm for the purpose on finding redundancies in EL-based ontologies
by considering extensions of the medical ontology Snomed ct. For example, in [18], two
different extensions of Snomed ct by so-called post-coordinated concepts were considered.
The authors used an (incomplete) equivalence test to find out how large the overlap between
the two extensions is (i.e., how many of the new concepts belonged to both extensions).
As pointed out in the introduction, the equivalence test cannot deal with situations where
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different knowledge engineers use different names for concepts, or model on different levels
of granularity. We want to find out whether using unifiability rather than equivalence finds
more cases of overlapping concepts. Of course, in the case of unification one may also obtain
false positives, i.e., pairs of concepts that are unifiable, but are not meant to represent the
same (intuitive) concept. It is also important to find out how often this happens. Another
problem to be dealt with in this application is the development of heuristics for choosing
the pairs of concepts to be tested for unifiability and for deciding which concept names are
turned into variables.
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