
Inconsistency Measurement based on Variables in
Minimal Unsatisfiable Subsets

Guohui Xiao1 and Yue Ma2

Abstract. Measuring inconsistency degrees of knowledge bases
(KBs) provides important context information for facilitating incon-
sistency handling. Several semantic and syntax based measures have
been proposed separately.

In this paper, we propose a new way to define inconsistency mea-
surements by combining semantic and syntax based approaches. It
is based on counting the variables of minimal unsatisfiable subsets
(MUSes) and minimal correction subsets (MCSes), which leads to
two equivalent inconsistency degrees, named IDMUS and IDMCS. We
give the theoretical and experimental comparisons between them
and two purely semantic-based inconsistency degrees: 4-valued and
the Quasi Classical semantics based inconsistency degrees. More-
over, the computational complexities related to our new inconsis-
tency measurements are studied. As it turns out that computing the
exact inconsistency degrees is intractable in general, we then propose
and evaluate an anytime algorithm to make IDMUS and IDMCS usable
in knowledge management applications. In particular, as most of syn-
tax based measures tend to be difficult to compute in reality due to
the exponential number of MUSes, our new inconsistency measures
are practical because the numbers of variables in MUSes are often
limited or easily to be approximated.

We evaluate our approach on the DC benchmark. Our encourag-
ing experimental results show that these new inconsistency measure-
ments or their approximations are efficient to handle large knowledge
bases and to better distinguish inconsistent knowledge bases.

1 Introduction
Inconsistency handling has been recognized as an important issue
in the field of artificial intelligence. Recently, as the ever expending
amount of logic-based data available in diverse information systems,
there is an increasing interests in quantifying inconsistency. This is
because it is not fine-grained enough to simply say that two incon-
sistent knowledge bases contain the same amount of inconsistency.
Indeed, it has been shown that analyzing inconsistency can provide
useful context information to resolve inconsistency [8, 12, 10, 9, 5].
Furthermore, measuring inconsistency in a knowledge base proves
meaningful in different scenarios such as news reports [9], integrity
constraints [4], software engineering [20], and semantic annota-
tion [17].

Having been studied for inconsistency handling, minimal incon-
sistency subsets theories and multi-valued logics are used as two
main distinct approaches to define inconsistency metrics, which fo-
cus on different views of atomic inconsistency [12]. The former puts
atomicity to formulae touched by inconsistency [14, 11, 22, 21].

1 Vienna University of Technology, Austria, email: xiao@kr.tuwien.ac.at
2 Université Paris Nord – CNRS, France, email: yue.ma@lipn.univ-paris13.fr

While the latter puts atomicity to the propositional letters val-
ued as conflictions under the corresponding multi-valued models
[3, 8, 9, 4, 19, 24, 18]. Usually, the above two approaches are as-
sumed to have their own suitable application scenarios [12]. How-
ever, there have been an increasing requirement recently to define
inconsistency measures by combining these two aspects [10, 11]. To
achieve this, we propose, in this paper, a novel approach by consid-
ering the number of conflicting atoms in MUSes and MCSes of a
knowledge base.

Our work is based on the observations that MUSes and MCSes
are cornerstones of analyzing thus measuring inconsistencies [16]
and that various multi-valued semantics show interesting properties
for measuring inconsistency [8, 4, 9, 19]. Indeed, we find that the
measurements merely by multi-valued semantics can easily give a
same degree for many different knowledge bases because of the ne-
glect of syntax differences (see Section 6 for examples). Similarly,
measurements merely based on the number of MUSes or the car-
dinalities of MUSes, such as MIVD(K) and MIVC(K) in [11], are
blunt to evaluate inconsistency values of some knowledge bases. For
example, suppose that there are n groups {g1, ..., gn} of policies to
poll on. The poll result is represented by the set {γ1, ..., γn}, where
γi is defined as follows: if a policy a in gi is supported (resp. de-
nied) by some people, a (resp. ¬a) is a conjunct of γi; otherwise, a
and ¬a are left out of γi. For simplicity, we consider only one group
with two policies {a, b}. So K = {a ∧ ¬a} represents a poll that
there are people supporting and people denying a, but no opinion on
b. And K′ = {a ∧ ¬a ∧ b ∧ ¬b} indicates conflicting opinions on
both a and b. So we consider the first poll, without explicit conflic-
tion on b, is less contradictory than the second. However, bothK and
K′ have only one minimal inconsistent subset with the same cardi-
nality. So they cannot be distinguished by MIVD(K) or MIVC(K).
But if we consider the conflicting atoms in each, we get that K′ is
more inconsistent, which accords with our intuition. Additionally, as
most of syntax based measures tend to be difficult to compute in real-
ity due to the exponential number of MUSes, our new inconsistency
measures are experimentally shown practical because the numbers
of variables in MUSes are often limited or easily to be approximated
(see Section 6).

Although many inconsistency measures have been studied, the
complete comparison of them is challenging. We have known some
positive answers: for example, the inconsistency degrees under 4-
valued semantics, 3-valued semantics, LPm are the same, but dif-
ferent from the one based on Quasi Classical semantics [24]. Also,
we have negative answers that many inconsistency measures are in-
compatible [5]. In this paper, we show that the two proposed incon-
sistency degrees are equivalent to each other . Moreover, they are
compatible with multi-valued based inconsistency measures: they are

always between the inconsistency degrees based on 4-valued seman-
tics and QC semantics. By examples, we can see that the new novel
inconsistency degrees can compensate the bluntness of the widely
studied multi-value based inconsistency degrees.

For computing the inconsistency degrees, we first study the com-
putational complexities of the proposed inconsistency degrees and
find that they are theoretically harder than multi-valued based in-
consistency degrees. To handle this problem, we finally propose an
anytime approximating algorithm which is shown efficient to han-
dle large knowledge bases, and even outperforms the state-of-the-art
approaches for computing multi-valued based inconsistency degrees
[24] on some real use case data from the DC benchmark [23].

The rest of the paper is structured as follows: preliminaries are
given in the next section, followed by the definition and properties
of our inconsistency measurements. The theoretical complexities are
given in Section 4 and an anytime algorithm for practical comput-
ing the proposed inconsistency measures are detailed in Section 5.
The evaluation of our approach is done on the DC benchmark data
in Section 6. Related work is discussed in Section 7. Due to space
limitation, we only give proof sketches through the paper.

2 Preliminaries
Given a finite set of propositional variablesA = {p1, . . . , pn}, a lit-
eral l is a variable p or its negation ¬p. A clauseC = l1∨l2∨. . .∨lk
is a disjunction of literals. W.o.l.g, we assume that a knowledge base
(KB) is a CNF formula, i.e., a conjunction of clauses, represented as
a set of clauses K = {C1, C2, . . . , Cm}. Indeed, all the definitions
and results in the following paper could be extended into KBs of ar-
bitrary propositional formulas in a straightforward way. We denote
by Var(K) the set of variables occurring inK and |S| the cardinality
of a set S.

2.1 MUS and MCS
A Minimal Unsatisfiable Subset (MUS) is a subset of a KB which
is both unsatisfiable and cannot be made smaller without becoming
satisfiable. A Minimal Correction Subset (MCS) is a subset of a KB
whose removal from that system results in a satisfiable set of con-
straints (“correcting” the infeasibility) and which is minimal in the
same sense that any proper subset does not have that defining prop-
erty. Any KB K can have multiple MUSes and MCSes, potentially
exponential in |K| [16]. Formally, given a KB K, its MUSes and
MCSes are defined as follows:

Definition 1 A subset U ⊆ K is an MUS if U is unsatisfiable and
∀Ci ∈ U,U \ {Ci} is satisfiable.

Definition 2 A subset M ⊆ K is an MCS if K \M is satisfiable
and ∀Ci ∈M,K \ (M \ {Ci}) is unsatisfiable.

2.1.1 MUS/MCS Duality

For a KB, the relationship of MCSes and MUSes can be stated sim-
ply: the set of its MUSes and the set of its MCSes are “hitting set
duals” of one another, where the hitting set is defined as follows:

Definition 3 H is a hitting set of a set of sets Ω if ∀S ∈ Ω, H∩S 6=
∅. A hitting set H is irreducible if there is no other hitting set H ′, s.t.
H ′ (H .

Proposition 1 ([16]) Given an inconsistent knowledge base K:

• A subset M of K is an MCS of K iff M is an irreducible hitting
set of MUSes(K);

• A subset U of K is an MUS of K iff U is an irreducible hitting set
of MCSes(K).

Example 1 Let K = {p,¬p, p ∨ q,¬q,¬p ∨ r}. Then
MUSes(K) = {{p,¬p}, {¬p, p ∨ q,¬q}} and MCSes(K) =
{{¬p}, {p, p ∨ q}, {p,¬q}}. Clearly, MUSes(K) and MCSes(K)
are hitting set duals of each other.

A free formula of a knowledge baseK is a formula ofK that does not
belong to any MUS of K. This means that this formula has nothing
to do with the conflicts of the KB. In [11], an inconsistency measure
by number of MUSes of K is defined as IMI(K) = |MUSes(K)|.

The state-of-the-art MCS/MUS finders are highly optimized and
scalable. Some of them are CAMUS 3[16], and HYCAM 4 [7].

2.2 Inconsistency Measures by Multi-Valued
Semantics

Different from classical two-valued (true, false) semantics, multi-
valued semantics (3-valued, 4-valued, LPm, and Quasi Classical),
use a third truth value B to stand for the contradictory information,
thus able to measure inconsistency. Since 3-valued, 4-valued, and
LPm based inconsistency degrees are the same, but different from
the one based on Quasi Classical [24], only 4-valued and Quasi Clas-
sical inconsistency degree are necessarily discussed and denoted by
ID4 and IDQ, respectively.

Let I be a multi-valued interpretation under i-semantics (i =
4, Q). Then Conflict(K, I) = {p ∈ Var(K) | pI = B} is
called the conflicting set of I with respect to K, simply written
Conflict(I) when K is clear from the context. The preferred i-
model set, written PMi(K), is defined as PMi(K) = {I | I |=i

K and ∀J |=i K : |Conflict(J)| ≥ |Conflict(I)|}, where I |=i K
means that I is a model of K under i-semantics as defined in
subsequent subsections. Then the inconsistency degree of a KB K
w.r.t. I is defined as IDi(K, I) = |Conflict(K,I)|

|Var(K)| . Finally The in-
consistency degree of K under i-semantics is defined as IDi(K) =
|Conflict(K,I)|
|Var(K)| , for some I ∈ PMi(K).

2.2.1 Four-valued Semantics

The set of truth values for 4-valued semantics [1] contains four ele-
ments: true, false, unknown and both, written by t, f,N,B, respec-
tively. The truth value N allows to express incompleteness of infor-
mation. The four truth values together with the ordering � defined
below form a lattice FOUR = ({t, f, B,N},�): f � N � t, f �
B � t,N 6� B,B 6� N . The 4-valued semantics of connectives
∨,∧ are defined according to the upper and lower bounds of two el-
ements based on the ordering �, respectively, and the operator ¬ is
defined as ¬t = f,¬f = t,¬B = B, and ¬N = N .

A 4-valued interpretation I is a 4-model of a KBK, denoted I |=4

K, if and only if for each formula φ ∈ K, φI ∈ {t, B}.

Example 2 Let K = {p,¬p ∨ q,¬q ∨ r,¬r, s ∨ u}. Consider three
4-valued models I1, I2 and I3 of K defined as:

pI1 = t, qI1 = B, rI1 = f, sI1 = t, uI1 = N ;

pI2 = B, qI2 = f, rI2 = B, sI2 = t, uI2 = N ;

pI3 = B, qI3 = B, rI3 = B, sI3 = t, uI3 = N.

3 http://www.eecs.umich.edu/˜liffiton/camus/
4 http://www.cril.univ-artois.fr/˜piette/#resources

Obviously, ID4(K, I1) = 1/5, ID4(K, I2) = 2/5, ID4(K, I3) =
3/5. Moreover, since K is 2-valued unsatisfiable, every 4-model of
K contains at least one contradiction. So ID4(K) = 1/5.

2.2.2 Quasi-Classical Semantics (Q-semantics)

For the propositional variables set A, let A± be a set of objects de-
fined as A± = {+p,−p | p ∈ A}.

Definition 4 (Q-models[2]) Suppose p ∈ A, C1, . . . , Cm are
clauses and l1, . . . , ln are literals. For I ⊆ A±, the Q-satisfiability
relation |=Q is defined as follows:

I |=Q p iff +p ∈ I;

I |=Q ¬p iff −p ∈ I;

I |=Q l1 ∨ . . . ∨ ln iff [I |=Q l1 or . . . or I |=Q ln]

and [for all i, I |=Q ¬li implies

I |=Q l1 ∨ . . . ∨ li−1 ∨ li+1 ∨ . . . ∨ ln];

I |=Q {C1, ..., Cm} iff I |=Q Ci(1 ≤ i ≤ m).

Q-semantics can also be regarded as assigning one of the four truth
values {B, t, f,N} to symbols in A in the following way, which
enables the uniform way to define inconsistency degrees as above.

pI =


t iff +p ∈ I and −p 6∈ I;

f iff +p 6∈ I and −p ∈ I;

B iff +p ∈ I and −p ∈ I;

N iff +p 6∈ I and −p 6∈ I.

Example 3 (Example 2 Contd.) Consider again the 4-models I1 ,
I2 and I3 of K. By definition 4, I1 and I2 are not Q-models of K,
although they are 4-models of K. In fact, I3 is a preferred Q-model
of K and we have IDQ(K) = IDQ(K, I3) = 3/5.

3 Inconsistency Degrees by MUS and MCS
MUSes and MCSes are fundamental features in characterizing the
inconsistency of a knowledge base. In this section, we propose two
inconsistency degrees through MUSes and MCSes respectively. We
prove that these two inconsistency degrees are actually equivalent
to each other and with desirable properties. More interestingly, we
find the relation between the proposed syntax-semantics combined
measures and purely semantic based inconsistency degrees ID4 and
IDQ. Their experimental comparison is given in Section 6.

As we have seen from the example given in the introduction, con-
sidering the cardinality of variables occurring in MUSes can provide
a more fine-grained way for measuring inconsistency. This intuition
is formalized by the following definition.

Definition 5 For a given set of variables S and a given knowledge
base K such that Var(K) ⊆ S, its MUS-variable based inconsis-
tency degree, written IDMUS(K), is defined as:

IDMUS(K) =
|Var(MUSes(K))|

|S| .

That is, IDMUS(K) is the ratio of the number of variables occurring
in some MUSes divided by the amount of all concerned variables
in S. Obviously, this is a new way to measure the proportion of the
language touched by the inconsistency in the knowledge base K.
Note that S is provided to compare different knowledge bases, as
shown in Example 5. When S is not explicitly given, we assume that
S = Var(K), that is, we only consider variables occurring in the KB.

Example 4 (Example 1 contd.) LetK = {p,¬p, p∨q,¬q,¬p∨r}
and S = Var(K), MUSes(K) = {{p,¬p}, {¬p, p ∨ q,¬q}}. Then
IDMUS(K) = 2/3.

Example 5 For K = {a ∧ ¬a} and K′ = {a ∧ ¬a ∧ b ∧ ¬b} as
given in the introduction, let S = Var(K)∪Var(K′) = {a, b}. Then
we have MUSes(K) = {{a∧¬a}} and MUSes(K′) = {{a∧¬a∧
b ∧ ¬b}}, IDMUS(K) = 1/2 and IDMUS(K

′) = 1. So under IDMUS,
K′ is more inconsistent than K.

Similarly to IDMUS(K), we can define another inconsistency de-
gree through MCS as follows:

Definition 6 For a given set of variables S and a given knowledge
base K such that Var(K) ⊆ S, its MCS-variable based inconsis-
tency degree, written IDMCS(K), is defined as follows:

IDMCS(K) =
|Var(MCSes(K))|

|S| .

Example 6 (Example 1 contd.) LetK = {p,¬p, p∨q,¬q,¬p∨r}
and S = Var(K), MCSes(K) = {{¬p}, {p, p ∨ q}, {p,¬q}}, then
IDMCS(K) = 2/3.

In the examples 4 and 6, the MUS-variable and the MCS-variable
based inconsistency degrees are equal. Actually, this is not a coinci-
dence as shown by the following proposition followed by the duality
of MUS and MCS.

Proposition 2 For any CNF KB K, IDMUS(K) = IDMCS(K).

Proof. From the duality of MUS and MCS, we have
⋃

MUSes(K) =⋃
MCSes(K). Then the conclusion follows directly. �
By this proposition, in the rest of the paper, the discussion is only

about IDMUS(K), unless otherwise stated.

Proposition 3 The IDMUS(K) satisfies the following proper-
ties, for any knowledge base K and any formulae α, β with
Var(α),Var(β) ⊆ Var(K):

• IDMUS(K) = 0 iff K is consistent;
• IDMUS(K ∪ {α}) ≥ (K);
• If α is a free formula ofK∪{α}, IDMUS(K∪{α}) = IDMUS(K).

The above three properties are called consistency, monotony and free
formula independence respectively in [11].

3.1 Relationship between ID4(K) and IDMUS(K)

Lemma 4 Let U be an MUS, and p ∈ Var(U). Then there exists a
4-valued model I of U , such that pI = B and xI ∈ {t, f}, if x 6= p.

Proof (sketch). Suppose that p ∈ Var(C), for some C ∈ U . Since U
is minimal unsatisfiable, there exists a classical modelJ forU\{C}.
By changing the assignment of p to B, we get a 4-model I of U . �

Corollary 5 Let MUSes(K) = {U1, . . . , Un}, and H be a hitting
set of {Var(U1), . . . ,Var(Un)}. Then there exists a 4-model I of K,
such that xI = B, if x ∈ H; and xI ∈ {t, f}, otherwise.

Corollary 6 Let K be a KB and interpretation I ∈ PM4(K), then
Conflict(I,K) ⊆ Var(MUSes(K)).

Corollary 7 Let U be an MUS, then ID4(U) = 1/|Var(U)|.

The following theorem shows that ID4(K) can be determined by
the cardinality minimal hitting sets of MUSes(K).

Theorem 8 For a given KB K,

ID4(K) =
minH{|H| | ∀U ∈ MUSes(K),Var(U) ∩H 6= ∅}

|Var(K)| .

Proof (sketch). Note that the variables in the conflicting set of the pre-
ferred 4-models are the cardinality minimal hitting sets of {Var(U) |
U ∈ MUSes(K)}. �

Corollary 9 IDMUS(K) ≥ ID4(K).

Example 7 Let K = {r,¬r,¬p, p ∨ q,¬q}, then MUSes(K) =
{U1 = {r,¬r}, U2 = {¬p, p∨ q,¬q}}. So we have two cardinality
minimal hitting sets of {Var(U1),Var(U2)}, i.e. {r, p} and {r, q}.
Hence ID4(K2) = 2/3 < 1 = IDMUS(K).

3.2 Relationship between IDQ(K) and IDMUS(K)

Firstly, we introduce necessary notations. Let S be a set of clauses,
the resolution closure of S, denoted RC(S), is the minimal set of
clauses satisfying the following conditions:

1. If C = l1 ∨ . . . ∨ ln ∈ S, then C ∈ RC(S).
2. If C1 = l1 ∨ . . . ∨ ln ∨ c ∈ RC(S), C2 = l′1 ∨ . . . ∨ l′m ∨ ¬c ∈

RC(S), then Res(C1, C2, c) = l1∨. . .∨ln∨l′1∨. . .∨l′m ∈ RC(S).
In particular, if C1 = c ∈ RC(S) and C2 = ¬c ∈ RC(S), then
the empty clause � ∈ RC(S).

3. Every clause in RC(S) can be formed by the above rules.

Note that here we do not allow the resolve of the empty clause �
with a non-empty clause.

Proposition 10 If U is an MUS, then the resolution closure of U
contains all the literals formed by atomic letters occurring in U , i.e.
RC(U) ⊇ {p,¬p | p ∈ Var(U)}.

Proof (sketch). The existence of a resolution path from a clause C to
� in the resolution sequence ReSeq(�) is defined inductively:

• There exists a resolution path from � to �;
• If � = Res(p,¬p, p), then there is a resolution path from p to �

and a resolution path from ¬p to � in ReSeq(�);
• If C = Res(C1, C2, p) and there exists a path from C to �, then

there exists a resolution path from Ci to � for i = 1, 2.

By noticing thatU is an MUS, we have that all clausesC inU should
have a resolution path to �. For each clause C ∈ U , since there is a
path from C to�, w.l.o.g, suppose the resolved atoms along this path
are pathC = {p1, ..., pm}. The conclusion holds by induction on pi
(1 ≤ i ≤ m). �

Lemma 11 Let U be an MUS, then U has only one Q-model which
assigns B to all of its variables. Hence IDQ(U) = 1.

Proof (sketch). By Proposition 10 and the fact that a resolution se-
quence defined above is also a valid resolution sequence under Q-
semantics, we have U |=Q p, U |=Q ¬p, for all p ∈ Var(U), that is,
for any Q-model I of U , pI = B. �

Proposition 12 Let K be a KB and I ∈ PMQ(K), then
Conflict(I,K) ⊇ Var(MUSes(K)).

Corollary 13 Let K be a KB, then IDQ(K) ≥ IDMUS(K).

Example 8 Let K = {p,¬p, p ∨ r,¬p ∨ ¬r}. By Definition 4, we
have IDQ(K) = 1. However, K has only one MUS: MUSes(K) =
{{p,¬p}}. So IDMUS(K) = 1/2 < IDQ(K).

4 Computational Complexities
Given a KB K, the IDMUS related computational problems can in-
clude:
- Var-in-MUSes: Given a variable x, deciding x∈Var(MUSes(K)).
- Size-Vars-in-MUSes≥k (resp. ≤k, =k): Given an integer k,

deciding |Var(MUSes(K))| ≥ k (resp. |Var(MUSes(K))| ≤ k,
|Var(MUSes(K))| = k).

- Size-Vars-in-MUSes: Computing |Var(MUSes(K))|,
- ID-MUS≥k (resp. ID-MUS≤k, ID-MUS=k): Given a number k,

deciding IDMUS(K) ≥ k (resp. IDMUS(K) ≤ k, IDMUS(K) = k).
- ID-MUS: Computing IDMUS(K).

Theorem 14 Var-in-MUSes is Σp
2-complete.

Proof (sketch). This is immediate from the proof of Theorem 5
in [15], where the result is proved for a clause belonging to an MUS,
but the query clause is a variable w. �

Theorem 15 Size-Vars-in-MUSes≥k is Σp
2-complete.

Proof (sketch). Membership is trivial by guess and check. For hard-
ness, we use the same reduction as in theorem 14. There w ∈
Var(MUSes(K)) is equivalent to |Var(MUSes(K))| ≥ n+ 1. �

By Theorem 15, the following result is straightforward.

Corollary 16 Size-Vars-in-MUSes≤k is Πp
2-complete; Size-Vars-in-

MUSes=k is Dp
2 -complete. 5

Theorem 17 Size-Vars-in-MUSes is in FPΣ
p
2 [log]. 6

Proof (sketch). We can easily develop an algorithm accessing loga-
rithmly many times to an oracle solving Size-Vars-in-MUSes≤k via
binary search. �

Corollary 18 ID-MUS≥k (resp. ID-MUS≤k, ID-MUS=k) is Σp
2

(resp. Πp
2 , Dp

2)-complete. ID-MUS is in FPΣ
p
2 [log].

The tight complexity bound of problems Size-Vars-in-MUSes and
ID-MUS are still open. We conjuncture that they are FPΣ

p
2 [log]-

complete. There is a reduction of a generalization of a problem
that is FPNP[log] complete, viz. computing given Boolean formulas
F1, ..., Fn, the number of satisfiable formulas among them [13]. That
proof might be lifted to ∃∀ QBFs.

It turns out that all of these problems are in the second layer of
polynomial hierarchy as given below. Recall that the complexity of
multi-valued based inconsistency degrees are in the first layer [19,
24]. Therefore IDMUS is theoretically harder than ID4 and IDQ.

5 Algorithm
To solve the high computational complexity of IDMUS, in this sec-
tion, we present an anytime algorithm based on existing MUS finder.
The state-of-the-art MUS finders usually take two steps: first finding
MCSes, then using a hitting set algorithm to find MUSes [16, 7]. For
computing IDMUS, we only need MCSes generated in the first step,
as IDMCS(K) = IDMUS(K).

MCS finders generate MCSes one by one. These intermediate re-
sults can be used to approximate the value of IDMUS. Every time we
get a new MCS, we can update the lower bound of IDMUS(K). The
pseudo code is described in Algorithm 1.
5 Dp

2 is, similar to Dp, the “conjunction” of Σp
2 and Πp

2 ; e.g. solve a pair
(Φ,Ψ) of QBFs Φ = ∃∀E and Ψ = ∀∃E′).

6 FPΣ
p
2 [log] is for polynomial time computations with an oracle in Σp

2 , where
the oracle can be accessed only log time often in the size of the input.

Algorithm 1: Anytime Algorithm for IDMUS(K)

Input: K: KB as a set of clauses
Output: IDMUS(K)

1 B ← {} // variable set
2 N ← |Var(K)|
3 foreach M ∈ MCSes(K) // call MCS finder
4 do
5 B ← B ∪ Var(M) // update B
6 id← |B|/N // new idmus lower bound
7 print ‘id mus(K) > ’, id
8 end
9 print ‘id mus(K) = ’, id

10 return id

6 Experimental Evaluation
To demonstrate the feasibility of Algorithm 1, we implemented a pro-
totype, called CAMUS IDMUS, by adapting the source code of CA-
MUS MCS 1.027. All the tests were performed on a machine running
Mac OS X 10.6.6, with 4G memory and 2.4G Intel Core 2 Duo CPU.

Table 1. Evaluation of CAMUS IDMUS on DC Benchmark

Instance #V #C #M #4 #Q #VM T

C168 FW SZ 41 1,698 5,387 >30,104 1 211 > 124 600.00
C168 FW SZ 66 1,698 5,401 >16,068 1 182 > 69 600.00
C168 FW SZ 75 1,698 5,422 >37,317 1 198 > 116 600.00

C168 FW SZ 107 1,698 6,599 >51,597 1 189 > 92 600.00
C168 FW SZ 128 1,698 5,425 >25,397 1 211 > 66 600.00

C168 FW UT 2463 1,909 7,489 >109,271 1 436 > 168 600.00
C168 FW UT 2468 1,909 7,487 >54,845 1 436 > 138 600.00
C168 FW UT 2469 1,909 7,500 >56,166 1 436 > 150 600.00
C168 FW UT 714 1,909 7,487 >84,287 1 436 > 92 600.00
C168 FW UT 851 1,909 7,491 30 1 436 11 0.35
C168 FW UT 852 1,909 7,489 30 1 436 11 0.35
C168 FW UT 854 1,909 7,486 30 1 436 11 0.35
C168 FW UT 855 1,909 7,485 30 1 436 11 0.35
C170 FR SZ 58 1,659 5,001 177 1 157 54 0.46
C170 FR SZ 92 1,659 5,082 131 1 163 46 0.10
C170 FR SZ 95 1,659 4,955 175 1 23 23 0.20
C170 FR SZ 96 1,659 4,955 1,605 1 125 43 0.36

Data Set We use the DC benchmark from an automotive product
configuration domain [23] that has been shown having a wide range
of characteristics with respect to each instance’s MCSes and MUSes.
There are 6 groups of test data in DC benchmark8. Due to space
limitation, we only present results on the following two groups here:
SZ (stability of the order completion process) and UT (superfluous
parts). The results are shown in Table 1 with the following columns:

instance: name of the instance K;
#V (#C): number of variables (clauses);
#M: number of MCSes computed by CAMUS IDMUS;
#4 (#Q): number of contradictory variables in preferred 4-model
(Q-model), i.e., ID4(K)×|Var(K)| (IDQ(K)×|Var(K)|), com-
puted by the reduction to partial Max-SAT [24];
#VM: |Var(MUSes(K))|, i.e., IDMUS(K) × |Var(K)|, computed
by CAMUS IDMUS;

7 http://www.eecs.umich.edu/˜liffiton/camus/
8 http://www-sr.informatik.uni-tuebingen.de/˜sinz/
DC/

 0

 20

 40

 60

 80

 100

 120

 140

 0 60 120 180 240 300 360 420 480 540 600

|V
a

r(
M

C
S

e
s
(K

))
|

Time [sec]

C168_FW_SZ_41
C168_FW_SZ_75

C168_FW_SZ_107
C168_FW_SZ_66

C168_FW_SZ_128

Figure 1. Anytime Property of CAMUS IDMUS

T: running time of CAMUS IDMUS in seconds, with a timeout
600s.

To demonstrate the anytime property of CAMUS IDMUS, we also vi-
sualize some of the computing results in Figure 1. From Table 1 and
Figure 1, we get the following interesting observations:

(a) For all the instances K, we have ID4(K) = 1/|Var(K)| which
only can indicate that some contradiction exists in the knowledge
bases but can not help us distinguish the different amounts of
contradictions in them.

(b) For many instances, IDQ is much larger than IDMUS (e.g.
C168 FW UT 851— C170 FR SZ 92). This indicates that IDQ

often overestimates inconsistency than IDMUS. In particular,
C168 FW UT 2463 and C168 FW UT 851 have same IDQ but
far different IDMUS, that is, IDMUS can distinguish them well but
IDQ cannot.

(c) About half of the instances (C168 FW UT 851 — 855,
C170 FR SZ 58 — 96) do not have many MCSes (< 2000),
so their IDMUS can be computed very efficiently (< 0.5s). Some-
times it is even much faster than computing ID4 and IDQ, e.g.,
forK = C170 FR SZ 96, ID4(K) took 1.86s and IDQ(K) took
47.1s by the approach in [24], while IDMUS(K) just took 0.35s. 9

(d) For the instances with many MCSes, although CAMUS IDMUS

can not terminate before the timeout, as shown in Figure 1, we
can get the approximated value of IDMUS quickly. Moreover, af-
ter a short time of computation (60s for the example instances),
the ranking of IDMUS for the instances are almost stable.

(e) In particular, our evaluation shows that using the number of vari-
ables rather than the number of MUSes as inconsistency mea-
sure is often more practical, as there may be exponentially many
MUSes, thus very hard to approximate; but the number of vari-
ables in MUSes is often limited or easily to be approximated.

7 Related Work
Inconsistency measurement is an active research field, and many
measurements have been proposed. They can be roughly divided into
syntax based approaches and semantics based ones. The former ap-
proaches are usually based on number of clauses in MUSes [14, 11,

9 Due to space limitation, we did not list the running time for ID4 and IDQ
in Table 1.

22]. Whilst, the latter approaches are usually based on truth values in
the “most classical” models under some multi-valued logics such as
four-valued semantics [9], three-valued semantics [3], LPm seman-
tics [4], and quasi-classical semantics [8]. Our new approaches are
based on the number of variables in the MUSes, and can be seen as
a combination of the two approaches.

Shapley inconsistency measures are another attempt of combing
two approaches, which allow us to see the distribution of the contra-
diction among different formulas in a KB [10]. Our measure IDMUS

is “orthogonal” to them: we can define IDMUS Shapley inconsistency
value to see how contradictions distribute in the KB under IDMUS.

To make the inconsistency measurements practically useful, effi-
cient algorithms are important, but there is not much work on it. Ma
et al. attempted to develop an anytime algorithm for the four-valued
semantics based inconsistency degree ID4 [19]. Later Xiao et al. de-
veloped reductions of ID4 and IDQ to Max-SAT problems [24], so
that existing powerful Max-SAT solvers can be used. To the best of
our knowledge, there is no work concerning and implementing the
computation of syntax based inconsistency measures, even though
efficient MUS finders, e.g. CAMUS [16], and HYCAM [7] are avail-
able. One possible reason is that the number of MUSes for a given
KB can be exponentially large, thus very hard to count or approxi-
mate. In contrast, this is possible for the inconsistency degrees pro-
posed in this paper because the numbers of variables in MUSes are
often limited or easier to be approximated in practice.

Grant and Hunter recently proposed a methodology about step-
wise inconsistency resolution [5, 6]. Since values of semantics based
measures are invariant in the splitting step, syntax based approaches
are more suited in this framework. As our approach is the combina-
tion of syntax and semantics, the splitting operator can be used for
resolving inconsistency under our measurements.

8 Conclusion and Perspectives

We proposed two new inconsistency measurements, named IDMUS

and IDMCS, based on counting variables of MUSes and MCSes. We
proved that they are equivalent to each other and they have preferred
properties than existing multi-valued inconsistency degrees. Take the
example given in the introduction,K andK′ cannot be distinguished
neither by purely syntax based measures (MIVD and MIVC) or se-
mantic based measures (ID4, IDQ). For the comparison of IDMUS

with ID4 and IDQ, we discovered an interesting relationship between
multi-valued logics and MUSes: for a given KB, the set of variables
in its MUSes is the super set of the contradict variables in each pre-
ferred 4-model of KB, and is the subset of the contradict variables in
each preferred Q-model of KB.

Our complexity analysis showed that all the IDMUS and IDMCS re-
lated problems are in the second layer of polynomial hierarchy, and
thus theoretically harder than ID4 and IDQ. However, the evaluation
of our prototype CAMUS IDMUS on the DC benchmark showed that
our anytime algorithm makes IDMUS (IDMCS) or its approximations
practically useful and efficient even for large knowledge bases and
work better to distinguish inconsistent KBs.

In the future, we plan to develop more efficient algorithms for
IDMUS based on the relation between ID4 and IDMUS, and try to
avoid the generation of exponentially many MCSes when computing
IDMUS. Moreover, the relationship between multi-valued logics and
MUSes/MCSes itself is also interesting which could be potentially
useful for boosting MUSes (MCSes) finding algorithms.

Acknowledgments
We thanks Prof. Thomas Eiter for his support, in particular, on the
complexity results. This work was supported by the Austrian Science
Fund (FWF) grants P20840, by the Quaero Programme (funded by
OSEO), and by the DFG under grant BA 1122/16-1.

REFERENCES
[1] Ofer Arieli and Arnon Avron, ‘The value of the four values’, Artificial

Intelligence, 102, 97–141, (1998).
[2] Philippe Besnard and Anthony Hunter, ‘Quasi-classical logic: Non-

trivializable classical reasoning from incosistent information’, in Proc.
of ECSQARU’95, pp. 44–51, (1995).

[3] John Grant, ‘Classifications for inconsistent theories’, Notre Dame
Journal of Formal Logic, 19(3), 435–444, (1978).

[4] John Grant and Anthony Hunter, ‘Measuring inconsistency in knowl-
edgebases.’, Journal of Intelligent Information Systems, 27(2), 159–
184, (2006).

[5] John Grant and Anthony Hunter, ‘Measuring consistency gain and in-
formation loss in stepwise inconsistency resolution’, in ECSQARU, vol-
ume 6717 of LNCS, pp. 362–373. Springer, (2011).

[6] John Grant and Anthony Hunter, ‘Measuring the good and the bad in
inconsistent information’, in IJCAI, ed., Toby Walsh, pp. 2632–2637.
IJCAI/AAAI, (2011).

[7] Éric Grégoire, Bertrand Mazure, and Cédric Piette, ‘Boosting a com-
plete technique to find MSS and MUS thanks to a local search oracle’,
in IJCAI, ed., Manuela M. Veloso, pp. 2300–2305, (2007).

[8] Anthony Hunter, ‘Measuring inconsistency in knowledge via quasi-
classical models’, in Proc. of AAAI’02, pp. 68–73, (2002).

[9] Anthony Hunter, ‘How to act on inconsistent news: Ignore, resolve, or
reject.’, Data Knowl. Eng., 57(3), 221–239, (2006).

[10] Anthony Hunter and S. Konieczny, ‘Shapley inconsistency values.’, in
Proc. of KR’06, pp. 249–259, (2006).

[11] Anthony Hunter and S. Konieczny, ‘Measuring inconsistency through
minimal inconsistent sets’, in Proc. of KR’08, pp. 358–366, (2008).

[12] Anthony Hunter and Sébastien Konieczny, ‘Approaches to measuring
inconsistent information.’, in Inconsistency Tolerance, pp. 191–236,
(2005).

[13] Birgit Jenner and Jacobo Torán, ‘Computing functions with parallel
queries to NP’, Theor. Comput. Sci., 141(1&2), 175–193, (1995).

[14] Kevin Knight, ‘Measuring inconsistency’, Journal of Philosophical
Logic, 31(1), 77–98, (2002).

[15] Paolo Liberatore, ‘Redundancy in logic I: CNF propositional formulae’,
Artif. Intell., 163(2), 203–232, (2005).

[16] Mark H. Liffiton and Karem A. Sakallah, ‘Algorithms for comput-
ing minimal unsatisfiable subsets of constraints’, J. Autom. Reasoning,
40(1), 1–33, (2008).

[17] Yue Ma and Laurent Audibert, ‘Détection des contradictions dans les
annotations sémantiques’, in Proc. of TALN’09, pp. 609–618, (2009).

[18] Yue Ma, Guilin Qi, and Pascal Hitzler, ‘Computing inconsistency mea-
sure based on paraconsistent semantics’, J. Log. Comput., 21(6), 1257–
1281, (2011).

[19] Yue Ma, Guilin Qi, Guohui Xiao, Pascal Hitzler, and Zuoquan Lin,
‘Computational complexity and anytime algorithm for inconsistency
measurement’, IJSI, 4(1), 3–21, (2010).

[20] Kedian Mu, Zhi Jin, Ruqian Lu, and Weiru Liu, ‘Measuring inconsis-
tency in requirements specifications.’, in Proc. of ECSQARU’05, pp.
440–451, (2005).

[21] Kedian Mu, Weiru Liu, and Zhi Jin, ‘Measuring the blame of each for-
mula for inconsistent prioritized knowledge bases’, Journal of Logic
and Computation, (February 2011).

[22] Kedian Mu, Weiru Liu, Zhi Jin, and David A. Bell, ‘A syntax-based
approach to measuring the degree of inconsistency for belief bases’,
Int. J. Approx. Reasoning, 52(7), 978–999, (2011).

[23] Carsten Sinz, Andreas Kaiser, and Wolfgang Küchlin, ‘Formal methods
for the validation of automotive product configuration data’, AIEDAM,
17(1), 75–97, (2003).

[24] Guohui Xiao, Zuoquan Lin, Yue Ma, and Guilin Qi, ‘Computing incon-
sistency measurements under multi-valued semantics by partial max-
SAT solvers’, in Proc. of KR’10, pp. 340–349, (2010).

