
Faculty of Computer Science Institute of Artificial Intelligence Knowledge Representation and Reasoning

Polynomial Reduction from PESP to SAT

Peter Großmann

KRR Report 11-05

Mail to Bulk mail to Office Internet

Technische Universität Dresden Technische Universität Dresden Room 2006 http://www.wv.inf.tu-dresden.de

01062 Dresden Helmholtzstr. 10 Nöthnitzer Straße 46

01069 Dresden 01187 Dresden

Großer Beleg

Polynomial Reduction from PESP to
SAT

Peter Großmann

October 21, 2011

Supervised by:

Prof. Dr. rer. nat. habil. Steffen Hölldobler

Dipl-Inf. Peter Steinke

Abstract

SAT solvers have been already successfully applied in several industrial fields, which are
not directly related to propositional logic. In this work, the periodic event scheduling
problem (PESP) will be presented and, furthermore, the order encoding from a PESP
instance to a SAT instance. The N P-complete PESP is particularly important in several
traffic scenarios with periodic properties. Most native domain solvers cannot solve large
instances within a given time frame. This will be omitted by a rather short time con-
suming conversion from PESP to SAT and a fast state-of-the-art SAT solver, in order
to achieve a fast calculated solution of a PESP instance.

Contents

Contents

1. Introduction 6

2. Preliminaries 7
2.1. Propositional Logic . 7

2.1.1. Syntax . 7
2.1.2. Semantic . 8
2.1.3. SAT Problem . 10

2.2. Periodic Event Networks . 11
2.2.1. Periodic Event Network . 11
2.2.2. Periodic Event Scheduling Problem 17
2.2.3. A State-of-the-Art PESP Solver 18

3. Polynomial Reduction from PESP to SAT 19
3.1. Encoding Variables of Finite Domains 19
3.2. Direct Encoding for Variables of Finite Domains 20
3.3. Reducing PESP to SAT Using Direct Encoding 22

3.3.1. Encoding of Event Variables (Potentials) 23
3.3.2. Encoding Constraints of Periodic Event Networks 23
3.3.3. Direct Encoding of Constraints 23
3.3.4. Encoding of the PESP . 25

3.4. Order Encoding for Variables of Finite Ordered Domains 29
3.5. Reducing PESP to SAT Using Order Encoding 31

3.5.1. Encoding of Event Variables (Potentials) 31
3.5.2. Encoding of Time Consuming Constraints 31
3.5.3. Encoding of Symmetry Constraints 41
3.5.4. Encoding of the PESP . 42

3.6. Comparison between Direct Encoding and Order Encoding 45
3.6.1. Number of Variables . 46
3.6.2. Estimation of Clause Count . 46

4. Computational Results 48
4.1. Modeling Railway Networks as PESP 48
4.2. Railway Network Instances . 48
4.3. Evaluation and Comparison . 49

5. Conclusion 51

A. CD 53

B. List of Figures 55

References 56

4

1. Introduction

Modelling and automatic solving of large periodic event networks, like a timetable for
the railway network of Germany, is still an open scientific field. The model, the so called
periodic event scheduling problem (PESP), is well defined, but lacks in efficient runtime
behaviour for all state-of-the-art PESP solvers, if the instances become very large. Since
the PESP is a N P-complete problem [Odi94], there will always be instances, which
cannot be solved in any reasonably given time frame, unless P = N P . However, for a
lot of N P-hard problems, there exist efficient algorithms to solve very hard and huge
instances in an acceptable solving time.

One example is the solving of propositional formulas – the so called SAT solving.
Several industrial problems have already been reformulated as propositional formulas
and been solved by SAT solvers [CDE08, CBRZ01, MZ06]. Hence, these are generic
solvers to solve different domains.

This work tries to follow this approach: reformulating a model of the periodic event
network domain to a propositional formula and solving this instance with a state-of-the-
art SAT solver. The transition, or reduction, to this formula is called encoding. In this
work two different encodings will be presented to reduce a PESP instance into a SAT
instance.

First of all, the two domains, periodic event networks and propositional logic, will be
introduced, in order to get a good understanding of the core of this work itself. Having
a good knowledge about these fields, the two encodings itself will be presented. On the
one hand, the direct encoding approach will be introduced, which will yield a rather large
propositional formula in contrast to the second approach. On the other hand, knowing
the disadvantages of the previous method, the order encoding tries to keep the structure
and behaviour of the periodic event network and being rather small.

The core idea of the order encoding, with respect to the PESP domain, is the utilization
of the constraint’s definition, which is strictly linear – even the identity function. This
information can be greatly used for a domain like the propositional formulas, which just
have true and false as domain of its variables.

Another effort in this work will be done by proofing both methods being sound and
correct. Consequently, the use of these methods is valid and can replace a traditional
PESP solver.

After comparing the two encodings itself, with respect to different size types, all
approaches will be applied, evaluated and compared to real industrial examples with
respect to creating valid timetables for railway networks. The instances range from
rather small instances to very large instances. Thus, it gives an interesting perspective
for the usage of the presented new methods.

In the end, the work will be concluded by remaining questions and open scientific
areas, which could result in even better runtime behaviours than evaluated in the used
examples.

5

2 Preliminaries

2. Preliminaries

In this section will be introduced both propositional logic and periodic event networks.
Because both themes are important for this work, it is essential to introduce them
elementarily. This section ends in a short overview about one state-of-the-art PESP
solver.

2.1. Propositional Logic

Propositional logic is a fundamental topic in computer science and other areas. More and
more industrial problems are encoded into propositional logic [CDE08, CBRZ01, MZ06].
Hence, the need of fast solvers, which can solve these problems in short time, increases.
In this work, propositional logic will be introduced as binary logic, which values true and
false are very well known. An in depth overview of this topic can be found in [Höl09].
The definitions in the next sections are following the definitions as of [Höl09].

2.1.1. Syntax

Definition 2.1 (Alphabet of Propositional Logic). The alphabet of propositional logic
ΣSAT consists of an countably infinite set of propositional variables R = {p1, p2, . . .},
the brackets “(” and “)”, as well as the set of connectives {∧,∨,¬}. Both the ∧ and ∨
connectives are binary, whereas the ¬ connective is unary.

These connectives are called conjunction, disjunction and negation respectively.

Definition 2.2 (Propositional formula). A string F , that consists only letters of the
alphabet ΣSAT is called propositional formula, if and only if it fulfills one of the properties

1. if F = p, then p ∈ R or

2. if F = ¬G, then G is a propositional formula or

3. if ◦ is a binary connective and F = (G ◦ H), then G and H are propositional
formulas.

Let L(ΣSAT) be the smallest set, that contains each propositional formula under the
alphabet ΣSAT.

Because ΣSAT is an alphabet, L(ΣSAT) is also called the language (syntax) of the
propositional logic.

Example 2.1. Let p, q, r ∈ R. The propositional formula

F = ((((p ∨ q) ∨ r) ∧ (¬p ∨ ¬r)) ∧ (¬p ∨ ¬q)) ∈ L(ΣSAT)

is constructed as conjunction of disjunctions of variables or negated variables. This
special form will be precisely defined in the following.

This example will be used throughout this section.

6

2.1 Propositional Logic

Definition 2.3 (Literal). A propositional formula L ∈ L(ΣSAT) is called literal, if and
only if L = p or L = ¬p, with p ∈ R.

Definition 2.4 (Clause). A propositional formula C ∈ L(ΣSAT) is called a clause, if it
is a disjunction of literals. Hence, with n ≥ 0

C = (. . . (L1 ∨ L2) ∨ . . .) ∨ Ln),

where Li (i ∈ {1, . . . , n}) are literals. For convenience the clause C can be written as

C = [L1, . . . , Ln].

Definition 2.5 (Conjunctive Normal Form). A propositional formula F ∈ L(ΣSAT) is in
conjunctive normal form (denoted as CNF), if it is a conjunction of clauses. Thus, with
m ≥ 0

F = (. . . (C1 ∧ C2) ∧ . . .) ∧ Cm),

where Ci (i ∈ {1, . . . ,m}) are clauses. For convenience the formula F is denoted as

F = 〈C1, . . . , Cm〉

= 〈[L1,1, . . . , L1,n1
], . . . , [Lm,1, . . . , Lm,nm

]〉, (1)

with literals Li,j ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , ni}, ni ≥ 0.

Example 2.2. Let F be the propositional formula from Example 2.1. Since it is in
conjunctive normal form, it can be written as

F = 〈[p, q, r], [¬p,¬r], [¬p,¬q]〉

2.1.2. Semantic

In order to decide, whether a propositional formula is true or false under a certain
variable assignment, the formula must be evaluated by a so called interpretation. Since
this work contains only propositional formulas in conjunctive normal form, it is sufficient
to regard only this subset of L(ΣSAT).

Definition 2.6 (Interpretation). Let F ∈ L(ΣSAT) a propositional formula. Then the
mapping

I : L(ΣSAT) → {true, false}

F I = w

is called Interpretation with w ∈ {true, false}.

It is sufficient to assign each propositional variable p ∈ R a truth value [Höl09], such
that pI = w, since all evaluations of the connectives {∧,∨,¬} under I are known in
beforehand. Thus, we can easily evaluate F under I with

F I =







¬(GI) if F = ¬G

(GI ◦HI) if F = G ◦H

with G,H ∈ L(ΣSAT) and ◦ ∈ {∧,∨}.
The evaluation of an interpretation will be shown in the following definitions.

7

2 Preliminaries

Definition 2.7. A propositional formula F is satisfiable, if and only if there exists an
interpretation I, such that F I = true.

A propositional formula F is unsatisfiable, if and only if F I = false for all interpre-
tations I.

Definition 2.8. A literal L is satisfied under an interpretation I, if

1. L = p ∈ R and pI = true or

2. L = ¬p, p ∈ R and pI = false.

Definition 2.9. A clause C = [L1, . . . , Ln] is satisfied under an interpretation I, if at
least one literal Li (i ∈ {1, . . . , n}) is satisfied under I.

Definition 2.10. A propositional formula F = 〈C1, . . . , Cm〉 in CNF is satisfied under
an interpretation I, if all clauses Ci (i ∈ {1, . . . ,m}) are satisfied under I.

Definition 2.11 (Model). Let F ∈ L(ΣSAT) be a propositional formula and I an
interpretation. I is called model, if and only if F I = true. F is then satisfied with
model I.

If I is a model for F , it can be denoted as

I |= F.

Example 2.3. Let F be the propositional formula in CNF from Example 2.2 with

F = 〈[p, q, r], [¬p,¬r], [¬p,¬q]〉.

Given the interpretation I with pI = true, rI = false, qI = false, F can be evaluated
under I:

pI = true, p is a literal, p occurs in [p, q, r]
Def 2.8,2.9

=⇒ [p, q, r]I = true (2)

rI = false, ¬r is a literal, ¬r occurs in [¬p,¬r]
Def 2.8,2.9

=⇒ [¬p,¬r]I = true (3)

qI = false, ¬q is a literal, ¬q occurs in [¬p,¬q]
Def 2.8,2.9

=⇒ [¬p,¬q]I = true (4)

With (2), (3), (4) and Definition 2.10 it follows, that F I = true.
Thus, I is a model for F , which can be denoted as well with I |= F .

Definition 2.12 (Semantic Equivalence). Let F and G be propositional formulas. F
and G are semantically equivalent, denoted as

F ≡ G,

if and only if for all interpretations I

F I = GI .

8

2.1 Propositional Logic

Since the propositional logic is introduced as binary (true and false) logic in this work,
semantically equivalence holds as well for F and G, if and only if for all interpretations
I

I |= F ⇔ I |= G

Example 2.4 (without proofs). Let F , G and H be propositional formulas. Then

¬¬F ≡ F

¬(F ∧G) ≡ (¬F ∨ ¬G) (de Morgan)

¬(F ∨G) ≡ (¬F ∧ ¬G) (de Morgan)

((F ∨G) ∨H) ≡ (F ∨ (G ∨H)) (associativity)

((F ∧G) ∧H) ≡ (F ∧ (G ∧H)) (associativity)

(F ∨G) ≡ (G ∨ F) (commutativity)

(F ∧G) ≡ (G ∧ F) (commutativity)

The presented examples will be widely used in Section 3. Since associativity holds for
propositional formulas, the parentheses will often be skipped in the remaining work.

2.1.3. SAT Problem

There exist several classifications of the SAT problem [Höl09]. This work will concentrate
on SAT being a decision problem, which either says, that the given formula is satisfiable
under a certain interpretation or that the formula is unsatisfiable. This decision can be
computationally calculated by so called SAT solvers.

Definition 2.13 (SAT Problem). Let F ∈ L(ΣSAT) be a propositional formula in CNF.
It shall be decided, whether

1. F is unsatisfiable or

2. F is satisfiable, if ∃I : I |= F , return I.

Example 2.5. Let F be the propositional formula in CNF from Example 2.2. Since
there exists an interpretation I, such that I is a model for F (Example 2.3), the solution
of the SAT problem would return this evaluation.

Because it is well known, that the SAT problem is N P-complete [Coo71], it is not
tractable to solve this decision problem. Unless there does exist an algorithm with
polynomial complexity that solves a N P-complete problem, it will stay hard to solve
such a SAT instance, which is a common open problem in computer science, that is

known as P
?
= N P .

9

2 Preliminaries

0−8 −6 2 4 12 14 22 24

2 3 6 14 15

Figure 2.1: Visualization of Example 2.6

2.2. Periodic Event Networks

Several time scheduling problems have periodic properties, like the one presented in
Section 4. Hence, a time event does not only happen once in time, but periodically
often modulo a time bound. In order to restrict these events in some way, there will
be introduced two different kind of constraints. Connecting events with constraints will
result in a graph of a so called periodic event network. If all constraints hold for a certain
assignment of all the events’ potentials, then this assignment is called valid schedule.
More in depth information can be found in [Opi09].

2.2.1. Periodic Event Network

Definition 2.14 (Interval). Let a, b ∈ Z with a ≤ b.

[a, b] := {a, a+ 1, . . . , b− 1, b}

is the interval from a, the lower bound, to b, the upper bound.

Further knowledge of interval arithmetic and linear subspaces can be gained in [Lau07].

Definition 2.15 (Modulo Interval). Let a, b ∈ Z and t ∈ N+. With a and b being the
lower and upper bound, respectively,

[a, b]t :=
⋃

z∈Z

[a+ z · t, b+ z · t] ⊆ Z

is called interval modulo t.

Example 2.6. Let

I = [2, 4]10

= . . . ∪ [−8,−6] ∪ [2, 4] ∪ [12, 14] ∪ [22, 24] ∪ . . .

= {. . . ,−8,−7,−6, 2, 3, 4, 12, 13, 14, 22, 23, 24, . . .} ⊂ Z

be an interval modulo 10. Then

2 ∈ [2, 4] ⊂ I

3 ∈ [2, 4] ⊂ I

6 /∈ I

14 ∈ [12, 14] ⊂ I

15 /∈ I.

This can be seen visualized in Figure 2.1.

10

2.2 Periodic Event Networks

A

B

C

[3, 5]10 [2, 2]10

[2, 4]10

Figure 2.2: Periodic event network of Example 2.7

Definition 2.16 (Periodic Event Network). A periodic event network N = (V ,A, tT)
with respect to period tT ∈ N consists of periodic events V (nodes) and a set of
constraints A (edges). Each constraint a ∈ A connects two periodic events, which is
denoted as

a = ((i, j), [la, ua]tT
) ∈ (V × V) × 2Z,

with la, ua ∈ Z being the lower and upper bound, respectively, tT the period and 2Z the
power set of Z.

A is a union of S and C with S ∩ C = ∅, where S and C are the sets of symmetry
constraints and time consuming constraints, respectively.

Note that each a ∈ A is contained exactly once in one of the sets C and S, since
both are disjoint.

Definition 2.17. V+ denotes the countably infinite set, which contains all possible
nodes, a periodic event network could have.

Likewise A+
tT

denotes the countably infinite set set, which contains all possible con-
straints with respect to period tT .

This technical definition will be needed in some function definitions.
The following example demonstrates a periodic event network.

Example 2.7. Let N = ({A,B,C},A, 10) be a periodic event network. With

A = C = {((A,B), [3, 5]10),

((B,C), [2, 2]10),

((C,A), [2, 4]10)}.

This can be displayed as graph, which is shown in Figure 2.2

The exact definition of both constraint types will be clarified in Definition 2.20 and
2.21. Beforehand, there will be introduced the semantic part of the periodic event
networks. In order to receive a schedule, it is needed to assign each event a point in
time, when it happens.

11

2 Preliminaries

πA

πB

0

3

5

9

5 7 9

(5, 5)

(3, 8)

(6, 1)

Figure 2.3: Feasible regions of the time consuming constraint for Example 2.8

Definition 2.18 (Event’s Potential). Let N = (V ,A, tT) be a periodic event network.
πn ∈ Z is called potential of event n ∈ V.

Definition 2.19 (Schedule). Let N = (V ,A, tT) be a periodic event network. The
mapping

ΠV : V → Z

n 7→ πn

is called schedule of N .

The values πn = ΠV(n) are the potentials of Definition 2.18.
Note, that for convenience, it is often only used πn instead of introducing the schedule

itself, since the exact schedule is not known beforehand, thus πn can be used as variable.

Definition 2.20 (Time Consuming Constraint). Let N = (V ,A, tT) be a periodic
event network with A = S ∪ C (see Definition 2.16) and a = ((i, j), [la, ua]tT

) ∈ C with
i, j ∈ V. For two potentials πi, πj the time consuming constraint a holds, if and only if

πj − πi ∈ [la, ua]tT
.

This constraint describes a time consuming process, which describes, how much time
within [la, ua] modulo tT is needed from an event i to another event j, in order to hold
with respect to a.

Definition 2.21 (Symmetry Constraint). Let N = (V ,A, tT) be a periodic event net-
work with A = S ∪ C (see Definition 2.16) and a = ((i, j), [la, ua]tT

) ∈ S with i, j ∈ V.
For two potentials πi, πj the symmetry constraint a holds, if and only if

πj + πi ∈ [la, ua]tT
.

12

2.2 Periodic Event Networks

πA = 1

πB = 5

πC = 7

5 − 1 = 4 ∈ [3, 5]10 7 − 5 = 2 ∈ [2, 2]10

1 − 7 = −6 ∈ [2, 4]10

Figure 2.4: Valid schedule for periodic event network of Example 2.9

Example 2.8. Let A, B be events and a = ((A,B), [3, 5]10) be a time consuming
constraint (Definition 2.20).
If πA = 3 and πB = 8, then a holds, because 8 − 3 = 5 ∈ [3, 5]10.
If πA = 5 and πB = 5, then a does not hold, because 5 − 5 = 0 /∈ [3, 5]10.
If πA = 6 and πB = 1, then a holds, because 1 − 6 = −5 ∈ [3, 5]10.
In Figure 2.3 there are all feasible assignments with respect to πA and πB marked as
blue circles, if a holds. The reason, why each domain of πA and πB are finitely displayed
({0, . . . , 9}) will be clarified in Corollary 2.2.

Definition 2.22. Let N = (V ,A, tT) be a periodic event network and ΠV be a schedule
of N . A constraint a ∈ A holds under ΠV , if and only if a = (i, j, I) holds for πi = ΠV(i)
and πj = ΠV(j).

Definition 2.23 (Valid Schedule). Let N = (V ,A, tT) be a periodic event network and
ΠV be a schedule of N . ΠV is valid with respect to A, if and only if all constraints
a ∈ A hold under ΠV .

Because it is only interesting to look for valid schedules, it will be often called “sched-
ule” in the remaining work.

Example 2.9. Let N = (V ,A, 10) be the periodic event network of Example 2.7 and
ΠV a schedule of N with πA = 1, πB = 5, πC = 7. . Then ΠV is valid, because

πB − πA = 5 − 1 = 4 ∈ [3, 5]10

πC − πB = 7 − 5 = 2 ∈ [2, 2]10

πA − πC = 1 − 7 = −6 ∈ [2, 4]10.

This is visualized in Figure 2.4.

Definition 2.24 (Equivalent Schedules). Let N = (V ,A, tT) be a periodic event net-
work and ΠV , ΦV be schedules of N . ΠV and ΦV are called equivalent, denoted as

ΠV ≡ ΦV ,

13

2 Preliminaries

if and only if

∀n ∈ V : ΠV(n) mod tT = ΦV(n) mod tT .

Example 2.10. Let N = (V ,A, 10) be the periodic event network with V = {A,B,C}.
The schedules ΠV and ΦV with

πn = ΠV(n), ϕn = ΦV(n) ∀n ∈ V

and

πA = 2, πB = 16, πC = −3,

ϕA = 12, ϕB = 6, ϕC = 7

are equivalent, because

πA mod 10 = 2 = ϕA mod 10,

πB mod 10 = 6 = ϕB mod 10,

πC mod 10 = 7 = ϕC mod 10.

Proposition 2.1 (Validity of Equivalent Schedules). Let N = (V ,A, tT) be a periodic
event network and ΠV , ΦV be schedules of N with ΠV ≡ ΦV . Then

ΠV is valid ⇔ ΦV is valid

with respect to A.

Proof. Without loss of generality it is sufficient to show “⇒”.

ΠV is valid with respect to A ⇒ ∀a ∈ A:

a holds under ΠV . (5)

Let A = S ∪ C. To show:

1. ∀a ∈ C : a holds under ΦV

2. ∀a ∈ S : a holds under ΦV

1. Let a = ((i, j), [la, ua]tT
) ∈ C be an arbitrary but fixed time consuming constraint

14

2.2 Periodic Event Networks

with i, j ∈ V, πi = ΠV(i), πj = ΠV(j) and ϕi = ΦV(i), ϕj = ΦV(j)

(5)
=⇒ πj − πi ∈ [la, ua]tT

Def 2.15
=⇒ πj − πi ∈ {[la + z · tT , ua + z · tT] | z ∈ Z}

z∈Z
=⇒ ∀w ∈ Z : πj − πi + w · tT ∈ {[la + z · tT , ua + z · tT] | z ∈ Z}
z∈Z
=⇒ ∀w, v ∈ Z : πj − πi + w · tT − v · tT

∈ {[la + z · tT , ua + z · tT] | z ∈ Z}

=⇒ ∀w, v ∈ Z : (πj + w · tT) − (πi + v · tT)

∈ {[la + z · tT , ua + z · tT] | z ∈ Z}

=⇒ (πj mod tT) − (πi mod tT) ∈ {[la + z · tT , ua + z · tT] | z ∈ Z}
Def 2.15

=⇒ (πj mod tT) − (πi mod tT) ∈ [la, ua]tT

Def 2.24, ΠV ≡ΦV=⇒ (ϕj mod tT) − (ϕi mod tT) ∈ [la, ua]tT

analog. πj−πi
=⇒ ϕj − ϕi ∈ [la, ua]tT

Def 2.20
=⇒ a holds under ΦV

Since a is arbitrary, it holds for all a ∈ C.
2. analogous.

The following corollary has been already introduced, allthough slightly different, in
[LM07].

Corollary 2.1. It can be easily shown, that ≡ forms an equivalence relation. Then

ΠV is valid ⇒ ∀ΦV ∈ [ΠV]≡ : ΦV is valid

with [ΠV]≡ := {ΦV | ΦV ≡ ΠV} being the equivalence class of ΠV with respect to ≡.

Proof. Follows directly by Proposition 2.1.

Corollary 2.2 (Periodicity of Potentials). Let N = (V ,A, tT) be a periodic event
network and ΠV be a valid schedule with respect to A. Then there exists a valid
schedule ΦV ∈ [ΠV]≡ with

∀n ∈ V : ΦV(n) ∈ [0, tT − 1]

Proof. Follows directly by Proposition 2.1 and Corollary 2.1.

With Corollary 2.2 the finite domain’s choice of Example 2.8 has been clarified. In the
remaining work it will always be tried to find the equivalence class’ member presented
in Corollary 2.2. Of course, it is not known beforehand, which equivalence classes
represent valid schedules for its members. The sufficiency of only searching for the
member presented in Corollary 2.2 is shown in the following theorem.

15

2 Preliminaries

Theorem 2.1. Let N = (V ,A, tT) be a periodic event network and

Ω := {ΦV | ΦV valid schedule with respect to A}

the set of all valid schedules for N . Then it is sufficient to search for a valid schedule
ΠV ∈ Ω with

∀n ∈ V : ΠV(n) ∈ [0, tT − 1]

with respect to not cutting the solution space Ω.

Proof.

Ω = {ΦV | ΦV valid schedule with respect to A}

=
⋃

ΦV valid

[ΦV]≡ (6)

With Corollary 2.1 and Corollary 2.2 it follows that

∃ΠV : ∀n ∈ V : ΠV(n) ∈ [0, tT − 1] (7)

in each [ΦV]≡ of (6). Hence,

Ω =
⋃

ΠV valid

[ΠV]≡ with ΠV of form (7)

Thus, it is sufficient to look for valid schedules of form (7).

In this section it has been shown, that if a valid schedule exists for a periodic event
network N = (V ,A, tT), an event’s potential πn, with n ∈ V, happens periodically often
modulo tT in time, since they are all in the same equivalence class.

2.2.2. Periodic Event Scheduling Problem

Like the SAT problem has been introduced in Definition 2.13 the periodic event schedul-
ing problem (PESP) will be introduced as decision problem, which either says, that there
does no valid schedule exist, or returns any valid schedule, if one exists.

Definition 2.25 (PESP). Let N = (V ,A, tT) be a periodic event network. It shall be
decided, whether

1. ∄ schedule ΠV : ΠV valid for N or

2. ∃ schedule ΠV : ΠV valid for N , return ΠV .

Solving such a PESP can be done in several ways. One way is to solve it with a PESP
solver presented in the next section or with the method described in section 3. It has
been shown in [Odi94], that PESP is N P-complete.

16

2.2 Periodic Event Networks

2.2.3. A State-of-the-Art PESP Solver

As supposed and described in [Opi09] and [Nac96], it seems that the current best way to
solve a PESP is using a constraint propagation technique. It basically propagates current
probably valid assignments of events across the network. Once it finds out, that the valid
domain of a potential is empty, there is no need to investigate further assignments for
other events’ potentials. Combining this with a decision tree method with respect to
the events’ potentials, it will be called in the remaining work as “the” PESP solver.

17

3 Polynomial Reduction from PESP to SAT

3. Polynomial Reduction from PESP to SAT

In this chapter, it will be shown, how a PESP instance can be encoded as a SAT instance.
This means, given a periodic event network N , we need to find a valid schedule or a
proof, that there does not exist such a solution. These properties have to be encoded
as SAT instance, meaning a propositional formula in conjunctive normal form, and then
be proofed by a SAT solver.

If the SAT solver returns the SAT instance’ unsatisfiability, we know, that there does
not exist a valid schedule for the encoded periodic event network N . On the other
hand, getting a model for the propositional formula, it is ensured, that there exists a
valid schedule for N . The questions, how we can correctly encode such a periodic event
network into a propositional formula in conjunctive normal form and how we can extract
the schedule from the interpretation, computed by the SAT solver, will be answered in
the following sections.

There will be two different kinds of encodings introduced for a PESP instance reduced
into a SAT instance. Firstly, the direct encoding for variables of finite domains will
be shown in Section 3.2 and the specific implementation for a PESP in Section 3.3.
Secondly, the order encoding for variables with finite ordered domains will be defined in
Section 3.4 and how it is used to encode a PESP as a SAT instance in Section 3.5.

In the end of this chapter, the two approaches will be compared, in order to get an
indication and impression, how much faster an order encoded PESP can be solved, than
a direct encoded one and how much smaller it is.

In the next chapter, these approaches will be tested in real world examples, compared
to a traditional PESP solver.

3.1. Encoding Variables of Finite Domains

In order to encode problems like PESP, it is necessary to encode variables with finite
domains.

The conditions to such an encoding are

1. the value of the variable must be within the given domain and

2. the value of the variable is arbitrary, but fixed.

This will be emphasized in the following examples.

Example 3.1. Let x ∈ D be a variable and D = {a, b}. The domain D has two
elements. Hence, it is sufficient to use a single propositional variable p ∈ R, thus the
propositional formula p, for x, in order to fulfill the conditions.

But it is important to note, that there must be a convention, like:

pI = true ⇒ x = a

pI = false ⇒ x = b

for an interpretation I.

18

3.2 Direct Encoding for Variables of Finite Domains

Example 3.2. Let x ∈ D be a variable and D = {a, b, c, d}. The domain D has four
elements. It is obvious, that a single propositional variable is not sufficient to encode
the variable x as propositional formula, because a propositional variable can only have
two different values under an interpretation.

The previous example has shown, that we need to introduce more variables and connect
them somehow in order to encode a variable x correctly as a propositional formula.

In the following sections the semantic and the syntax of a variable will be sometimes
mixed, but finally clear by using them: A variable can be assigned to some special value
of its domain, but it is as well element of a certain variable space. For example a
propositional variable p is element of the variable space of the propositional variables R,
but it can be assigned two values of the set {true, false} under a certain interpretation.
The distinction in the following sections will always be clearly given by its embedded
context.

Definition 3.1. Let x be a variable. Then dom(x) is the variable’s domain and x is as
well element in a variable space X .

3.2. Direct Encoding for Variables of Finite Domains

In this section, there will be introduced a special encoding for variables of finite domains,
which does not assume, that the domain is ordered. It is called direct encoding. A more
in depth view for this encoding can be read in [TTB11].

Definition 3.2 (Direct Encoding Function for Variables of Finite Domains). Let x ∈ X
be a variable with dom(x) = D, |D| < ∞ and X be the variable space. Then the
function

encode_direct : X → L(ΣSAT)

is the direct encoding function for a variable of the variable space X with

encode_direct : x 7→ (





∨

a∈dom(x)

px,a



 ∧





∧

a∈dom(x)

∧

b∈dom(x),b6=a

(¬px,a ∨ ¬px,b)



)

with ∀a ∈ D : px,a ∈ R.

This encoding forces each except one propositional variable px,a to be false under a
certain interpretation. This means with interpretation I and a ∈ dom(x)

pI
x,a = true ⇒ x = a,

which is the previous announced convention for this encoding. This will be ensured by
the following lemma.

Lemma 3.1. Let x ∈ X be a variable with dom(x) = D, |D| < ∞ and X be the
variable space. Then with

S := {px,k | ∀k ∈ D : pI
x,k = true}

19

3 Polynomial Reduction from PESP to SAT

being the set of propositional variables, that are true under an interpretation I:

|S| = 1 ⇔ encode_direct(x)I = true,

Proof. “⇒”:

|{px,k | ∀k ∈ D : pI
x,k = true}| = 1 (8)

⇒ ∃!k ∈ D : I |= px,k (9)

To show:

encode_direct(x)I Def 3.2
= ((

∨

a∈D

px,a) ∧ (
∧

a∈D

∧

b∈D,b6=a

(¬px,a ∨ ¬px,b)))
I = true

1. With (9) it follows directly
(
∨

a∈D

px,a)I = true

2. Proof by contradiction: assume

(
∧

a∈D

∧

b∈D,b6=a

(¬px,a ∨ ¬px,b)))
I = false

⇒ ∃i, j ∈ D, i 6= j : (¬px,i ∨ ¬px,j)
I = false

⇒ ∃i, j ∈ D, i 6= j : pI
x,i = true ∧ pI

x,j = true

Contradiction to (8)

⇒ (
∧

a∈D

∧

b∈D,b6=a

(¬px,a ∨ ¬px,b)))
I = true

1.
⇒ ((

∨

a∈D

px,a) ∧ (
∧

a∈D

∧

b∈D,b6=a

(¬px,a ∨ ¬px,b)))
I = true

Def 3.2
⇒ encode_direct(x)I = true

“⇐”:

encode_direct(x)I = true
Def 3.2

⇒ ((
∨

a∈D

px,a) ∧ (
∧

a∈D

∧

b∈D,b6=a

(¬px,a ∨ ¬px,b)))
I = true

⇒ (
∨

a∈D

px,a)I = true ⇒ |S| ≥ 1, (10)

(
∧

a∈D

∧

b∈D,b6=a

(¬px,a ∨ ¬px,b))
I = true (11)

To show: S ≤ 1.
Proof by contradiction: assume |S| ≥ 2

⇒ ∃i, j ∈ D, i 6= j : pI
x,i = true ∧ pI

x,j = true

⇒ ∃i, j ∈ D, i 6= j : (¬px,i ∨ ¬px,j)
I = false

⇒ (
∧

a∈D

∧

b∈D,b6=a

(¬px,a ∨ ¬px,b))
I = false

20

3.3 Reducing PESP to SAT Using Direct Encoding

Contradiction to (11)

⇒ |S| ≤ 1

(10)
⇒ |S| = 1

The large disjunction, which represents the first part of the formula, ensures, that at
least one value of the domain will be assigned to x. Consequently, it fulfills the first
condition of 3.1. The second part ensures, that the second condition holds, which will
be emphasized in the following example.

Because the propositional formula, that will be yielded by encode_direct, is a con-
junction of disjunctions of literals, it is already in conjunctive normal form and can be
directly used for SAT solvers, since most SAT solvers need the formula in CNF.

Example 3.3. Let x be a variable with dom(x) = {1, 2, 3}. Then

F := encode_direct(x) = ((px,1 ∨ px,2 ∨ px,3) ∧ (¬px,1 ∨ ¬px,2)

∧ (¬px,1 ∨ ¬px,3) ∧ (¬px,2 ∨ ¬px,3))

= 〈[px,1, px,2, px,3], [¬px,1,¬px,2],

[¬px,1,¬px,3], [¬px,2,¬px,3]〉.

Since we are opting for interpretations, which are models for F , let us see some examples:

I = {px,1, px,2} ⇒ F I = false,

because [¬px,1,¬px,2]
I = false.

J = {px,1} ⇒ F J = true ⇒ x = 1,

because in each clause contains an propositional variable, which is not in J and at least
one propositional variable is true under J , which validates the first clause.

Now, we are able to encode variables with finite domains and this will be used in the
following section.

3.3. Reducing PESP to SAT Using Direct Encoding

Given a periodic event network N = (V ,A, tT) and Theorem 2.1 it is sufficient to
search for potentials within the interval [0, tT −1]. This leads to a finite domain for each
node’s potential, which implies, that it can be encoded with the function encode_direct
introduced in Definition 3.2.

After the encoding for each potential has been introduced, it will be followed by the
encoding for the constraints. This can be concluded to encode a PESP instance.

21

3 Polynomial Reduction from PESP to SAT

3.3.1. Encoding of Event Variables (Potentials)

As stated above, we know, that we can encode each potential πn with n ∈ V of a
schedule of the form (7) for N . The variable space X of Definition 3.2 is

X := {πn | ∀n ∈ V}.

Hence, we can apply for each n ∈ V the encoding function encode_direct, because we
know, that dom(πn) ∈ [0, tT − 1].

This yields to the encoding of the potentials

ΩV
direct :=

∧

n∈V

encode_direct(πn), (12)

which is a conjunction of each node’s potential, since every potential must obey the
conditions of 3.1.

Because encode_direct returns a propositional formula in CNF and ΩV
direct is a con-

junction of these, it remains in CNF.
In order to extract the schedule ΠV from an interpretation I, which satisfies the given

propositional formula, we do the following

∀n ∈ V : ΠV(n) = i, if and only if pI
πn,i = true.

Furthermore, with Lemma 3.1 we know, that there exists exactly one i ∈ dom(πn) for
all n ∈ V. Thus, the schedule is well-defined and bijective to I.

3.3.2. Encoding Constraints of Periodic Event Networks

There are several ways of encoding constraints of Definition 2.20 and Definition 2.21.
The presented way in this work is to exclude the not feasible region of each constraint
of the periodic event network.

The sufficiency and possibility in order to get valid schedules can be easily shown:
since the search space X := {ΠV | ΠV of form (7)} and the solution space S := {ΠV ∈
X | ΠV is valid} are finite, because dom(πn) ∈ [0, tT − 1], ∀n ∈ V , the not feasible
region X \ S is finite. Thus, the encoding of a constraint a ∈ A can be defined in a
finite manner.

3.3.3. Direct Encoding of Constraints

As proposed in 3.3.2, we will encode each constraint by excluding the not feasible region
with the following function.

Definition 3.3 (Direct Encoding Function for Constraints). Let A be a set of con-
straints. Then the function

encode_direct_con : A → L(ΣSAT)

22

3.3 Reducing PESP to SAT Using Direct Encoding

is the direct encoding function of a constraint a = ((n1, n2), [la, ua]tT
) ∈ A with

encode_direct_con : a 7→
∧

(i,j)∈Pa

(¬pn1,i ∨ ¬pn2,j)

with {pn,i | i ∈ [0, tT − 1], n ∈ {n1, n2}} being the set direct encoding propositional
variables of the potentials πn1

, πn2
and Pa := {(πn1

, πn2
) | a does not hold for πn1

, πn2
}

be the set of pairs, which are part of the not feasible region of a.

Now, we are able to encode each constraint a ∈ A and can add it to the resulting
propositional formula. The following example demonstrates, how such an encoding works

Example 3.4. Let A, B be events and a = ((A,B), [3, 5]10) be a time consuming
constraint of Example 2.8.

As seen in Figure 2.3 we need to exclude each pair (πA, πB), such that a is not valid
under these potentials, which means not part of the feasible region.

E.g., the example’s pair (5, 5) must be excluded. Which means, by having the variables
πA and πB direct encoded with the propositional variables pA,i and pB,i, respectively,
i ∈ [0, 9], the assignments πA = 5 and πB = 5 must not happen, in order to receive a
valid schedule. Hence,

∄(πA, πB) : πA = 5 and πB = 5

⇔ ¬(πA = 5 ∧ πB = 5) must hold

⇔ ¬(pA,5 ∧ pB,5)
I = true

Example 2.4
⇔ (¬pA,5 ∨ ¬pB,5)

I = true
Defition 2.5

⇔ [¬pA,5,¬pB,5]
I = true,

with I being the interpretation, such that πA, πB can be extracted from I, because they
are direct encoded.

Since the last expression is in conjunctive normal form, we can add it to the resulting
formula, which shall encode the constraint a.

Since encode_direct_con yields a large conjunction of a disjunction of two literals,
it maps to a propositional formula in conjunctive normal form.

Applying encode_direct_con to every constraint a ∈ A of a periodic event network
N = (V ,A, tT) and requiring, that each constraint must hold, we can formulate this as

ΨA
direct :=

∧

a∈A

encode_direct_con(a). (13)

However, it is necessary, that a node n ∈ V for two constraints a1, a2 ∈ A is encoded
with the same propositional variables pn,i in order to get valid schedules for N .

23

3 Polynomial Reduction from PESP to SAT

3.3.4. Encoding of the PESP

Having encode_direct and encode_direct_con, respectively ΩV
direct and ΨA

direct, we are
able to encode a periodic event network respectively a PESP. This means, that we need
to encode the potentials as well as the constraints in a single propositional formula,
which is done in the following definition.

Definition 3.4 (Direct Encoding of PESP). The function

encode_direct_pesp : 2V+

× 2A+

tT × 2N → L(ΣSAT)

is the direct encoding function of a PESP with respect to an periodic event network
N = (V ,A, tT) with

encode_direct_pesp : (V ,A, tT) 7→ (ΩV
direct ∧ ΨA

direct),

2V+

and 2A+

tT being the power sets of all possible events and edges, respectively (see
Definition 2.17). ΩV

direct and ΨA
direct are of the form of (12) and (13), respectively.

ΩV
direct is said to be in CNF. Likewise, this can be said about ΨA

direct, because the en-
coding function direct_encode_con yields a propositional formula in CNF and ΨA

direct is
a conjunction of these. As the previous defined encoding functions, encode_direct_pesp
is a conjunction of two propositional formulas, which are in CNF. Hence, the mapping
encode_direct_pesp yields a propositional formula in CNF, which can be handled by
most modern SAT solvers. With encode_direct_pesp we are now able to encode a
whole PESP with respect to its periodic event network. The following example shows a
brief overview of executing this function.

Example 3.5. Let N = (V ,A, 10) be the periodic event network of Example 2.7, which
means

V = {A,B,C}

A = C = {a1, a2, a3},

with

a1 := ((A,B), [3, 5]10)

a2 := ((B,C), [2, 2]10)

a3 := ((C,A), [2, 4]10).

In order to encode this periodic event network, respectively the PESP, we need to apply

24

3.3 Reducing PESP to SAT Using Direct Encoding

the function encode_direct_pesp. This yields

encode_direct_pesp(N) = (ΩV
direct ∧ ΨA

direct)

=

(

∧

n∈V

encode_direct(πn)

)

∧

(

∧

a∈A

encode_direct_con(a)

)

= (encode_direct(πA)

∧ encode_direct(πB) ∧ encode_direct(πC)

∧ encode_direct_con(a1) ∧ encode_direct_con(a2)

∧ encode_direct_con(a3))

Applying function encode_direct, we get for event’s potential πA

encode_direct(πA) = 〈[pπA,0, pπA,1, . . . , pπA,9],

[¬pπA,0,¬pπA,1], [¬pπA,0,¬pπA,2], . . . , [¬pπA,8,¬pπA,9]〉.

Likewise, we use this function for πB and πC .
In order to evaluate the constraints ai (i ∈ {1, 2, 3}), we first need to calculate the sets

Pai
(i ∈ {1, 2, 3}) of Definition 3.3. This will be demonstrated for the time consuming

constraint a1:

Pa1
= {(πA, πB) | ∀πA, πB ∈ {0, . . . , 9} : a1 does not hold for πA, πB}

= {(0, 0), (0, 1), (0, 2), . . .}

Afterwards, applying encode_direct_con yields

encode_direct_con(a1) =
∧

(i,j)∈Pa1

(¬pπA,i ∨ ¬pπB ,j)

= 〈[¬pπA,0,¬pπB ,0], [¬pπA,0,¬pπB ,1], [¬pπA,0,¬pπB ,2], . . .〉.

The whole encoding can be found as SAT instance, with the respective PESP instance,
on CD as of Section A, which can be used for most state of the art SAT solvers.

Furthermore, we can show soundness and completeness of the direct encoding method
in the following theorem, in order to ensure the correct possibility to use the given
approach.

Theorem 3.1 (Soundness and Completeness Direct Encoding). Let N = (V ,A, tT) be
a periodic event network and

F := encode_direct_pesp(N) ∈ L(ΣSAT)

be the direct encoded propositional formula of N . Then

∃I : I |= F ⇔ ∃ΠV : ΠV is valid

with I being an interpretation and ΠV a schedule of N .

25

3 Polynomial Reduction from PESP to SAT

Proof. “⇒”:
∃I : I |= F

We extract ΠV from I as stated in 3.3.1.
Proof by contradiction: assume an arbitrary, but fixed a = ((n1, n2), [la, ua]tT

) ∈ A,
without loss of generality a time consuming constraint, such that a does not hold under
ΠV with i := ΠV(n1), j := ΠV(n2).

⇒ j − i /∈ [la, ua]tT
(14)

pI
πn1

,i = true ∧ pI
πn2

,j = true

⇒ [¬pπn1
,i,¬pπn2

,j] /∈ F (15)

but with (14) and Definition 3.3 we know

(i, j) ∈ Pa
Def 3.3
=⇒ [¬pπn1

,i,¬pπn2
,j] ∈ F

contradiction to (15)
⇒ a must hold under ΠV .

Since a is arbitrary, it holds for all a ∈ A.

Def 2.23
⇒ ∃ΠV : ΠV is valid

“⇐”:

∃ΠV : ΠV is valid
Def 2.23

⇒ ∀a ∈ A : a holds under ΠV

Def 2.22
⇒ ∀a = ((n1, n2), [la, ua]tT

) ∈ A : a holds for πn1
, πn2

Def 3.3
⇒ ∀a = ((n1, n2), [la, ua]tT

) ∈ A, i := ΠV(n1), j := ΠV(n2) : (i, j) /∈ Pa. (16)

Construct interpretation I, such that

∀n ∈ V ∀k ∈ {0, . . . , tT − 1} : pI
n,k =







true if k = ΠV(n)

false if k 6= ΠV(n)

⇒ ∀n ∈ V : |{pn,k | ∀k ∈ {0, . . . , tT − 1} : pI
n,k = true}| = 1

Lem 3.1
⇒ ∀n ∈ V : encode_direct(πn)I = true

(12)
⇒ I |= ΩV

direct. (17)

Let a = ((n1, n2), [la, ua]tT
) ∈ A be an arbitrary, but fixed constraint.

To show: encode_direct_con(a)I = true.
Proof by contradiction: assume encode_direct_con(a)I = false

Def 3.3
⇒ ∃(k, l) ∈ Pa : [¬pπn1

,k,¬pπn2
,l]

I = false

26

3.3 Reducing PESP to SAT Using Direct Encoding

contradiction to (16), because ∀(k, l) ∈ Pa : pI
πn1

,k = false ∨ pI
πn2

,l = false

⇒ encode_direct_con(a)I = true

Because a is arbitrary, it holds for all a ∈ A.

⇒ ∀a ∈ A : encode_direct_con(a)I = true

(13)
⇒ I |= ΨA

direct

(17)
⇒ (ΩV

direct ∧ ΨA
direct)

I = true
Def 3.3

⇒ F I = true

⇒ ∃I : I |= F

We can directly conclude the following corollary.

Corollary 3.1 (Soundness and Completeness Direct Encoding). Let N = (V ,A, tT) be
a periodic event network and

F := encode_direct_pesp(N) ∈ L(ΣSAT)

be the direct encoded propositional formula of N . Then

∄I : I |= F ⇔ ∄ΠV : ΠV is valid

with I being an interpretation and ΠV a schedule of N .

Proof. “⇒”:
∄I : I |= F

Proof by contradiction: assume

∃ΠV : ΠV is valid for N
T hrm 3.1

⇒ ∃I : I |= F, (18)

but

∄I : I |= F ⇒ ∀I : I 6|= F.

contradiction to (18).
⇒ ∄ΠV : ΠV is valid

“⇐”: analogous

This method will be applied in Section 4 and compared to the order encoding approach,
which will be presented in the following section.

27

3 Polynomial Reduction from PESP to SAT

3.4. Order Encoding for Variables of Finite Ordered Domains

In contrast to 3.2, this section assumes an ordered finite domain. The best example is
a proper subset of the natural numbers N. These are always ordered with respect to <.
In the following, it will be discussed how this property can be efficiently encoded into a
propositional formula. Enhancing knowledge about this topic can be found in [TTB11].

Because in this work we only regard variables having the domain as a subset, especially
an interval, of the natural numbers, we know, how to apply its order relation “<”. In
general, it could be assumed, that it is any set, which can be related to an specific order
relation.

Example 3.6. Let x be a variable with dom(x) = {1, 2, 3, 4, 5} = [1, 5] ⊂ N. Then we
know

x ≥ 1 ⇒ x 6≤ 0 ⇒ ¬(x ≤ 0) (19)

x ≤ 5 (20)

∀i ∈ {1, . . . , 5} : (x ≤ i− 1) → (x ≤ i)

⇔ ∀i ∈ {1, . . . , 5} : ¬(x ≤ i− 1) ∨ (x ≤ i). (21)

With facts (19) and (20), we can conclude

(21)
(19),(20)

⇒ ∀i ∈ {2, . . . , 4} : ¬(x ≤ i− 1) ∨ (x ≤ i).

The previous example shows the intension of the order encoding and results in the
following definition.

Definition 3.5 (Order Encoding Function for Variables of Finite Domains). Let x ∈ X
be a variable with dom(x) = D = [l, u] ⊂ N and X be the variable space. Then the
function

encode_ordered : X → L(ΣSAT)

is the order encoding function for a variable of the variable space X with

encode_ordered : x 7→
∧

i∈[l+1,u−1]

(¬qx,i−1, qx,i)

with ∀i ∈ [l, u− 1] : qx,i ∈ R.

Since encode_ordered maps to a propositional formula, which is a conjunction of
disjunctions of literals, it is in conjunctive normal form. Unlike in the direct encoding
approach, qx,i has the meaning

qx,i ⇔ x ≤ i.

This results in two different cases for a given interpretation I:

qI
x,i = true ⇔ x ≤ i, (22)

qI
x,i = false ⇔ x 6≤ i. (23)

Extracting the value x = i of the given interpretation is not that obvious, as in the direct
encoding method. Before giving the definition for extracting the value for x, we need
the following lemma to show the interpretation’s structure.

28

3.4 Order Encoding for Variables of Finite Ordered Domains

Lemma 3.2. Let x be a variable with dom(x) = D = [l, u] ⊂ N and I an interpretation.
Then

I |= encode_ordered(x) ⇔ ∃!k ∈ [l, u] : ∀i ∈ [l, k − 1] : I 6|= qx,i,

∀j ∈ [k, u− 1] : I |= qx,j

Proof (sketch). “⇒”: Let I |= encode_ordered(x). To show:

1. ∃k ∈ [l, u] : ∀i ∈ [l, k − 1] : I 6|= qx,i,∀j ∈ [k, u− 1] : I |= qx,j ∧

2. ∄h ∈ [l, u], h 6= k : ∀i ∈ [l, h− 1] : I 6|= qx,i,∀j ∈ [h, u− 1] : I |= qx,j

1. is simply shown with mathematical induction.
2. is simply shown without loss of generality h > k ⇒ qI

x,k = false, which is a
contradiction to 1.
“⇐”: can be simply shown with mathematical induction as in “⇒”.

The previous lemma shows the interpretation’s structure. It can be concluded for an
interpretation I, which satisfies the propositional formula encode_ordered(x):

∃k ∈ [l, u− 1] : qI
x,k−1 = false, qI

x,k = true

(22),(23)
⇒ ∃k ∈ [l, u] : x 6≤ k − 1, x ≤ k

dom(x)⊂N
⇒ ∃k ∈ [l, u] : x ≥ k, x ≤ k

⇒ ∃k ∈ [l, u] : x = k

This will be summarized in the following definition.

Definition 3.6 (Extracting Value of Intepretation of Order Encoded Variable). Let x
be a variable with dom(x) = D = [l, u] ⊂ N and I an interpretation, such that
I |= encode_ordered(x). Then there exists a k ∈ [l, u] with

x = ξx(I) =







k k ∈ [l, u− 1] : qI
x,k−1 = false ∧ qI

x,k = true

u k = u : qI
x,u−1 = false

We are now able to extract the value of x of an satisfying interpretation I, with respect
to encode_ordered(x). The following example demonstrates this behaviour.

Example 3.7. Let x be the variable with dom(x) = [1, 5] ⊂ N of Example 3.6. Applying
encode_ordered yields

encode_ordered(x) = (¬qx,1 ∨ qx,2) ∧ (¬qx,2 ∨ qx,3) ∧ (¬qx,3 ∨ qx,4)

= 〈[¬qx,1, qx,2], [¬qx,2, qx,3], [¬qx,3, qx,4]〉

Let I be an interpretation with

qI
x,1 = false

qI
x,2 = false

qI
x,3 = false

qI
x,4 = true.

29

3 Polynomial Reduction from PESP to SAT

Then we can extract the value for x by applying Definition 3.6, which yields

x = 4,

because x 6≤ 3 (qI
x,3 = false) and x ≤ 4 (qI

x,4 = true).

3.5. Reducing PESP to SAT Using Order Encoding

The procedure of order encoding a PESP instance into a SAT instance will be equivalent
to the direct encoding approach. First of all, it will be shown, how the set of the
potentials can be encoded. Followed by that, both constraint type encoding functions
will be defined. In the end, it will be summarized to the encoding of the whole PESP
with respect to a certain periodic event network N .

3.5.1. Encoding of Event Variables (Potentials)

As proposed and applied in Section 3.3.1, the node’s potential domain will be within
[0, tT − 1] in order to receive schedules of the form (7). Thus, encode_ordered will be
appled to each node’s potential πn of all nodes in the periodic event network.

Given a periodic event network N = (V ,A, tT)

ΩV
ordered :=

∧

n∈V

encode_ordered(πn), (24)

is the propositional formula in conjunctive normal form, which encodes all node’s poten-
tials of V .

Extracting a schedule ΠV from an interpretation I, which satisfies ΩV
ordered is given on

a per-element basis by
∀n ∈ V : ΠV(n) = ξπn

(I), (25)

with ξπn
being the mapping given in Definition 3.6. The bijective and well-defined

behavior as proposed in Section 3.3.1 is given in this approach as well with Lemma 3.2.

3.5.2. Encoding of Time Consuming Constraints

This section will thoroughly deal with the order encoding of time consuming constraints
by a given periodic event network N . In the direct encoding approach in Section 3.3.3
the goal is effectively achieved by excluding all not feasible regions for each constraint.
Likewise, this method will be applied in this context as well.

With two potentials being order encoded, we are able to not just exclude not feasible
pairs, as used in the direct encoding method, but exclude larger regions, which must be
rectangles. The base idea is shown in the following example.

Example 3.8. Let A, B be two events and a = ((A,B), [3, 5]10) be a time consuming
constraint of Example 2.8 with πA and πB the potential of A and B, respectively.

An not feasible region would be for example

r = ([4, 7] × [3, 6])

30

3.5 Reducing PESP to SAT Using Order Encoding

πA

πB

4 7

3

6

0

3

5

9

5 7 9

Figure 3.1: Not feasible rectangle r of the time consuming constraint for Example 3.8

with (πA, πB) /∈ r. The to be excluded rectangle r is visualized in Figure 3.1.
Thus, all pairs, which are not feasible is the set

{(i, j) | i ∈ [4, 7], j ∈ [3, 6]} = r.

Then, we know, that for each pair (πA, πB) /∈ r, such that a holds for πA, πB. With
qA,i, i ∈ [0, 8] and qB,j, j ∈ [0, 8] being the propositional variables of Definition 3.5, it
follows

∄(πA, πB) : πA ≤ 7, πA ≥ 4, πB ≤ 6, πB ≥ 3

⇔ ¬((πA ≤ 7) ∧ (πA ≥ 4) ∧ (πB ≤ 6) ∧ (πB ≥ 3))

⇔ ¬((πA ≤ 7) ∧ ¬(πA ≤ 3) ∧ (πB ≤ 6) ∧ ¬(πB ≤ 2))

⇔ ¬(qπA,7 ∧ ¬qπA,3 ∧ qπB ,6 ∧ ¬qπB ,2)

⇔ (¬qπA,7 ∨ qπA,3 ∨ ¬qπB ,6 ∨ qπB ,2)

= [¬qπA,7, qπA,3,¬qπB ,6, qπB ,2] =: F

Since F is a clause, we can directly add this to the resulting formula.

The previous example shows, how we can exclude a single rectangle. Before giving the
function, which maps each constraint to a propositional formula in conjunctive normal
form, we need some preliminary definitions, in order to give the concrete mapping itself.

First of all, we need some helper functions. These helper functions will be concluded
in a function, which calculates as few rectangles as possible to cover the whole not
feasible region of a constraint. This results in the lowest possible number of clauses,
which should help a SAT solver to find a solution faster having less redundancy.

Reconsidering Figure 3.1 displays the two feasible regions. Each of which has a lower
and an upper bound. In order to describe the not feasible region in between, we need
the next lower bound, which represents the upper feasible region and the previous lower
bound, which represents the lower feasible region with respect to πB. With respect to

31

3 Polynomial Reduction from PESP to SAT

Figure 3.1 and the displayed not feasible region, we would have an upper bound u = −5
and a lower bound l = 3. It can be directly concluded, that u < l.

Definition 3.7. Let u, l ∈ Z be two integers with u < l. Then

δ : Z × Z → Z

(l, u) 7→ l − u− 1

describes the interior distance between u and l.

Definition 3.8. Let u, l ∈ Z two integers with u < l. Then

δy : Z × Z → Z

(l, u) 7→

⌊

δ(l, u)

2

⌋

is the height for an rectangle between u and l, with ⌊·⌋ being the round down function.

Definition 3.9. Let u, l ∈ Z be two integers with u < l. Then

δx : Z × Z → Z

(l, u) 7→

⌈

δ(l, u)

2

⌉

− 1

is the width for an rectangle between u and l, with ⌈·⌉ being the round up function.

With these definitions, we are able to determine a rectangle between u and l, such
that it has maximum area having minimum perimeter. These functions are demonstrated
in the following example.

Example 3.9. Let A, B be two events and a = ((A,B), [3, 5]10) be a time consuming
constraint of Example 2.8 with πA and πB the potential of A and B, respectively.
For example, we choose l = 3, u = −5. Then

δ(3,−5) = 3 − (−5) − 1 = 7

δy(3,−5) =

⌊

δ(3,−5)

2

⌋

=
⌊

7

2

⌋

= 3

δx(3,−5) =

⌈

δ(3,−5)

2

⌉

− 1 =
⌈

7

2

⌉

− 1 = 3

The evaluated values are displayed in Figure 3.2.

32

3.5 Reducing PESP to SAT Using Order Encoding

πA

πB

δx(3,−5)

δy(3,−5)

0

3

5

9

5 7 9

Figure 3.2: Evaluated function values δy(3,−5), δx(3,−5) of Example 3.9

The previous example shows the meaning of the helper functions δx and δy. Basically
each rectangle will have a width of δx(l, u) and a height of δy(l, u).

In order to cover each not feasible pair in the area between u and l, we need ap-
proximately tT rectangles. The rectangle’s shape does not influence the count tT of the
needed rectangles. The δx, δy approach seems to be the best, since most conflicts can
be faster detected by a SAT solver, because we have each not feasible pair more often
encoded, without having more clauses in the resulting propositional formula. The worse
runtime behaviour of other shapes will not be verified in this work.

Definition 3.10. Let u, l ∈ Z two integers with u < l and tT ∈ N. Then

Rl,u,tT
:= {(a, b) ∈ [0, tT − 1] × [0, tT − 1] | b− a ∈ [u+ 1, l − 1]}

is the set of not feasible pairs between u and l.

Definition 3.11. Let u, l ∈ Z be two integers with u < l and tT ∈ N. Then

ϕtT
: Z × Z → 2(2Z×2Z)

(l, u) 7→ {([x1, x1 + δx(l, u)] × [x2, x2 + δy(l, u)])

| ∀x2 ∈ {−δy(l, u), . . . , tT − 1} :

x1 + δx(l, u) ≥ 0 ∧ x1 ≤ tT − 1 :

x1 = x2 − u− 1 − δx(l, u)}

maps (l, u) to the set of rectangles between u and l.

In order to get all not feasible pairs, we need several regions between different u and
l as exposed in the following example.

Example 3.10. Let A, B be two events and a = ((A,B), [3, 5]10) be a time consuming
constraint of Example 2.8 with πA and πB the potential of A and B, respectively.

33

3 Polynomial Reduction from PESP to SAT

πA

πB

0

3

5

9

5 7 9 πA

πB

0

3

5

9

5 7 9

Figure 3.3: Evaluation of subset of ϕ10(3,−5) (left) and R3,−5,10 (right) of Example 3.10

Then, as evaluated in Example 3.9

δ(3,−5) = 7

δy(3,−5) = 3

δx(3,−5) = 3.

Applying ϕtT
of Definition 3.11 for l = 3, u = −5 and tT = 10, we get

ϕ10(3,−5) = {([x1, x1 + δx(l, u)] × [x2, x2 + δy(l, u)])

| ∀x2 ∈ [−3, 9] : x1 ≥ −3 ∧ x1 ≤ 9 : x1 = x2 + 1}

= {([−2, 1] × [−3, 0]), ([−1, 2] × [−2, 1]), ([0, 3] × [−1, 2]),

([1, 4] × [0, 3]), ([2, 5] × [1, 4]), ([3, 6] × [2, 5]),

([4, 7] × [3, 6]), ([5, 8] × [4, 7]), ([6, 9] × [5, 8]),

([7, 10] × [6, 9]), ([8, 11] × [7, 10])}

K := {([3, 6] × [2, 5]), ([4, 7] × [3, 6]),

([5, 8] × [4, 7])} ⊂ ϕ10(3,−5)

To get all not feasible pairs, we calculate Rl,u,tT
of Definition 3.10:

R3,−5,10 = {(a, b) ∈ [0, 9] × [0, 9] | b− a ∈ [−4, 2]}

= {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), . . .}

K and R3,−5,10 are displayed in Figure 3.3.

In the previous example, it can be visually seen, that ϕtT
covers all not feasible pairs

of Rl,u,tT
, but does not influence any feasible pair. This will be verified by the following

lemma.

34

3.5 Reducing PESP to SAT Using Order Encoding

Definition 3.12. Let a be a constraint with period tT ∈ N and Pa be the set of not
feasible pairs of Definition 3.3. Then

Sa := [0, tT − 1] × [0, tT − 1] \ Pa

is the set of feasible pairs of a.

Lemma 3.3. Let u, l ∈ Z with u+ 1 < l and tT ∈ N and a time consuming constraint
a = ((n1, n2), [la, ua]tT

), such that (l, u) ∈ {(la + i · tT , ua +(i−1) · tT) | i ∈ Z}. Then,
it holds

(i) Rl,u,tT
⊆

⋃

A∈ϕtt (l,u)

A

(ii) Sa ∩
⋃

A∈ϕtt (l,u)

A = ∅

Proof. (i): (a, b) ∈ Rl,u,tT
. To show:

(a, b) ∈
⋃

A∈ϕtt (l,u)

A

⇔ ∃A ∈ ϕtT
(l, u) : (a, b) ∈ A

With Definition 3.10, it follows

(a, b) ∈ Rl,u,tT

⇒ a, b ∈ [0, tT − 1] ∧ b− a ∈ [u+ 1, l − 1]

⇔ a, b ∈ [0, tT − 1] ∧ a ∈ [−l + 1 − b,−u− 1 − b]

⇔ a, b ∈ [0, tT − 1] ∧ a ∈ [−l + 1,−u− 1] − b

To show:

∀b ∈ [−, tT − 1] : ∀a ∈ ([−l + 1,−u− 1] − b) ∧ a ∈ [0, tT − 1] :

∃x2 ∈ [−δy(l, u), tT − 1], x1 = x2 − u− 1 − δx(l, u) : (a, b) ∈ I × J (26)

with

I := [x1, x1 + δx(l, u)]

J := [x2, x2 + δy(l, u)],

which is basically Definition 3.11.

∀b ∈ [0, tT − 1] : b ∈ J,

because [0, tT − 1] ⊆ J , since δy(l.u) ≥ 0 and x2 ∈ [−δy(l, u), tT − 1].

35

3 Polynomial Reduction from PESP to SAT

We can conclude, that for an arbitrary, but fixed b ∈ [0, tT − 1]

x2 ∈ [b− δy(l, u), b]. (27)

It remains to show:
a ∈ I

We know, that

a ∈ ([−l + 1,−u− 1] + b) ∩ [0, tT − 1]

= ([−l + 1,−u− 1] + b) ∩ ([−b, tT − 1 − b] + b)

= b+ ([−l + 1,−u− 1] ∩ [−b, tT − 1 − b])

=: L

and further

I = [x1, x1 + δx(l, u)]

(26)
= [x2 − u− 1 − δx(l, u), x2 − u− 1 − δx(l, u) + δx(l, u)]

= [x2 − u− 1 − δx(l, u), x2 − u− 1]

= x2 − u− 1 + [−δx(l, u), 0]

(27)

⊆ [b− δy(l, u), b] − u− 1 + [−δx(l, u), 0]

= b+ [−δy(l, u), 0] − u− 1 + [δx(l, u), 0]

= b− u− 1 + [−δx(l, u) − δy(l, u), 0]

=: Z

To show:

L ⊆ Z

⇔ b+ ([−l + 1,−u− 1] ∩ [−b, tT − 1 − b]) ⊆ b− u− 1 + [−δx(l, u) − δy(l, u), 0]

⇔ [−l + 1,−u− 1] ∩ [−b, tT − 1 − b] ⊆ −u− 1 + [−δx(l, u) − δy(l, u), 0]

Because [−l + 1,−u− 1] ∩ [−b, tT − 1 − b] ⊆ [−l + 1,−u− 1], it is sufficient to show

[−l + 1,−u− 1] ⊆ −u− 1 + [−δx(l, u) − δy(l, u), 0]

⇔ [−l + 1,−u− 1] + u+ 1 ⊆ [−δx(l, u) − δy(l, u), 0]

⇔ [−l + 1 + u+ 1, 0] ⊆ [−δx(l, u) − δy(l, u), 0]

⇔ −[0, l − u− 2] ⊆ −[0, δx(l, u) + δy(l, u)]

⇔ [0, l − u− 2] ⊆ [0, δx(l, u) + δy(l, u)]

To show:
l − u− 2 ≤ δx(l, u) + δy(l, u)

36

3.5 Reducing PESP to SAT Using Order Encoding

δx(l, u) + δy(l, u) =

⌈

δ(l, u)

2

⌉

− 1 +

⌊

δ(l, u)

2

⌋

= δ(l, u) − 1 = l − u− 1 − 1 = l − u− 2 ≥ l − u− 2

(ii): Let (a, b) ∈ Sa. With the assumption (l, u) ∈ {(la + i · tT , ua + (i− 1) · tT) | i ∈ Z}
we know, that

Rl,u,tT
⊆ Pa, (28)

because Rl,u.tT
is the complement set between u, l with respect to Definition 2.20 with

arbitrary potentials.
With

Sa ∩ Pa

(28)

⊆ Sa ∩Rl,u,tT
= ∅

and (i) it follows, that
(a, b) /∈

⋃

A∈ϕtt (l,u)

A

As seen in Figure 3.3, we need to cover as well the not feasible regions in the upper
left and lower right corners. To identify all not feasible regions, the following definition
is needed. In order to proof the sufficiency, that all not feasible pairs of a constraint are
excluded, it will be followed by an appropriate lemma.

Definition 3.13. Let a = ((n1, n2), [l, u]tT
) be a time consuming constraint. Then with

k :=







−1 0 /∈ [l, u]tT

0 0 ∈ [l, u]tT

ζtT
: Z × Z → 2(Z×Z)×(Z×Z)

(l, u) 7→
⋃

i∈[k,1]

ϕtT
(l + i · tT , u+ (i− 1) · tT)

maps to the set of all not feasible rectangles of a.

Lemma 3.4. Let a = ((n1, n2), [l, u]tT
) be a time consuming constraint. Then, it holds

(i) Pa ⊆
⋃

A∈ζtt (l,u)

A

(ii) Sa ∩
⋃

A∈ζtt (l,u)

A = ∅

Proof. (i): Two cases

1. 0 /∈ [l, u]tT

2. 0 ∈ [l, u]tT

37

3 Polynomial Reduction from PESP to SAT

1. Without loss of generality

l ∈ [1, tT − 1], u ∈ [l, tT − 1] (29)

0 /∈ [l, u]tT
⇒ k = −1 with k of Definition 3.13. Hence,

ζtt
(l, u) = ϕtT

(l − tT , u− 2 · tT) ∪ ϕtT
(l, u− tT) ∪ ϕtT

(l + tT , u)

It is sufficient to show, that

Pa ⊆ Rl−tT ,u−2·tT ,tT
∪Rl,u−tT ,tT

∪Rl+tT ,u,tT
=: Z, (30)

because, with Lemma 3.3, we know

Rl−tT ,u−2·tT ,tT
⊆

⋃

A∈ϕtT
(l−tT ,u−2·tT)

A

∧ Rl,u−tT ,tT
⊆

⋃

A∈ϕtT
(l,u−tT)

A

∧ Rl+tT ,u,tT
⊆

⋃

A∈ϕtT
(l+tT ,u)

A

⇒ Z ⊆
⋃

A∈ζtt (l,u)

A

(30)
⇒ Pa ⊆

⋃

A∈ζtt (l,u)

A

It remains to show (30):

(30) ⇔ ∀(x, y) ∈ Pa : (x, y) ∈ Z

⇔ ∀(x, y) ∈ {(x, y) | (x, y) does not hold for a} : (x, y) ∈ Z

Let (x, y) ∈ Pa arbitrary, but fixed. We know

(x, y) ∈ [0, tT − 1] × [0, tT − 1] =: H (31)

∧ y − x /∈ [l, u]tT

⇔ (x, y) ∈ H ∧ y − x ∈ Z \ [l, u]tT

⇔ (x, y) ∈ H ∧ y − x ∈ [u+ 1, l − 1]tT

(29),(30)
⇔ (x, y) ∈ H ∧ y − x ∈ [u+ 1 − 2 · tT , l − tT − 1]

∪ [u+ 1 − tT , l − 1] ∪ [u+ 1, l + tT − 1]
Def 3.10

⇒ (x, y) ∈ Rl−tT ,u−2·tT ,tT
∨ (x, y) ∈ Rl,u−tT ,tT

∨ (x, y) ∈ Rl+tT ,u,tT

⇒ (x, y) ∈ Z

2. analogous to 1.
(ii): follows directly by (i) and Lemma 3.3, because ζtT

is constructed by a union of
ϕtT

.

38

3.5 Reducing PESP to SAT Using Order Encoding

Now, we are able to collect all not feasible rectangles via ζtT
for a time consuming

constraint. This leads to the remaining question, how a rectangle can be encoded, such
that it uses only the propositional variables given in Definition 3.5. The strategy will
basically the same as in Example 3.8.

Definition 3.14. Let A = ([x1, x2]× [y1, y2]) ∈ 2Z ×2Z be a rectangle with (x, y) ∈ A.
Then

encode_ordered_rec : 2Z × 2Z → L(ΣSAT)

[x1, x2] × [y1, y2] 7→ (¬qx,x2
∨ qx,x1−1 ∨ ¬qy,y2

∨ qy,y1−1)

is the order encoding function for the to be excluded rectangle A with ql,k (l ∈ {x, y},
k ∈ dom(l)) being the propositional variables of Definition 3.5.

Since encode_ordered_rec maps to a disjunction of literals, it is a clause. The
following lemma ensures, that all pairs within an encoded rectangle are really not feasible.

Lemma 3.5. Let A = ([x1, x2] × [y1, y2]) ∈ 2Z × 2Z be a rectangle with (x, y) ∈ A and
ql,k ∈ R (l ∈ {x, y}, k ∈ dom(l)) being the propositional variables of Definition 3.5.
Then

I |= encode_ordered_rec(A) ⇔ (ξx(I), ξy(I)) /∈ A

with I being an interpretation and ξn(I) being the extracted potential of Definition 3.6.

Proof. “⇒”:

I |= encode_ordered_rec(A) ⇒ [¬qx,x2
, qx,x1−1,¬qy,y2

, qy,y1−1]
I = true (32)

Proof by contradiction: assume (ξx(I), ξy(I)) ∈ A = ([x1, x2] × [y1, y2]). Then

x1 ≤ ξx(I) ∧ x2 ≥ ξx(I) ∧ y1 ≤ ξy(I) ∧ y2 ≥ ξy(I)

which results in

qI
x,x2

= true ∧ qI
x,x1−1 = false ∧ ¬qI

y,y2
= true ∧ qI

y,y1−1 = false

⇒ [¬qx,x2
, qx,x1−1,¬qy,y2

, qy,y1−1]
I = false

This is a contradiction to (32). Hence,

(ξx(I), ξy(I)) /∈ A

“⇐”: analogous to “⇒”.

Definition 3.15. Let a = ((n1, n2), [l, u]tT
) ∈ C be a time consuming constraint. Then

encode_ordered_time_con : C → L(ΣSAT)

((n1, n2), [l, u]tT
) →

∧

A∈ζtT
(l,u)

encode_ordered_rec(A)

is the order encoding function of a time consuming constraint.

Because encode_ordered_time_con is a conjunction of clauses, it is in conjunctive
normal form.

39

3 Polynomial Reduction from PESP to SAT

3.5.3. Encoding of Symmetry Constraints

The order encoding of symmetry constraints follows exactly the same strategy as for
time consuming constraints. A lot of functions and definitions can be directly used of
Section 3.5.2.

Definition 3.16. Let u, l ∈ Z be two integers with u < l and tT ∈ N. Then

Kl,u,tT
:= {(a, b) ∈ [0, tT − 1] × [0, tT − 1] | b+ a ∈ [u+ 1, l − 1]}

is the set of not feasible pairs between u and l.

Definition 3.17. Let u, l ∈ Z be two integers with u < l and tT ∈ N. Then

ψtT
: Z × Z → 2(2Z×2Z)

(l, u) 7→ {([x1, x1 + δx(l, u)] × [x2, x2 + δy(l, u)])

| ∀x2 ∈ {−δy(l, u), . . . , tT − 1} :

x1 + δx(l, u) ≥ 0 ∧ x1 ≤ tT − 1 :

x1 = −x2 + l − 1 − δx(l, u)}

maps (l, u) to the set of rectangles between u and l.

ζtT
mapped to all not feasible rectangles for a time consuming constraint. Likewise,

we need such a function for a symmetry constraint.

Definition 3.18. Let a = ((n1, n2), [l, u]tT
) be a symmetry constraint. Then with

k :=







2 0 /∈ [l, u]tT

1 0 ∈ [l, u]tT

ΛtT
: Z × Z → 2(Z×Z)×(Z×Z)

(l, u) 7→
⋃

i∈[0,k]

ψtT
(l + i · tT , u+ (i− 1) · tT)

maps to the set of all not feasible rectangles of a.

Furthermore, all lemmas of the previous sections can be applied here as well. This
leads to the following needed lemma.

Lemma 3.6. Let a = ((n1, n2), [l, u]tT
) be a symmetry constraint. Then, it holds

(i) (x, y) ∈ Pa ⇒ (x, y) ∈
⋃

A∈Λtt (l,u)

A

(ii) (x, y) ∈ Sa ⇒ (x, y) /∈
⋃

A∈Λtt (l,u)

A

with Pa and Sa of Definition 3.12

40

3.5 Reducing PESP to SAT Using Order Encoding

Proof. Analogous to proof of Lemma 3.4.

In order to encode a single rectangle, we use the function encode_ordered_rec of
Definition 3.14. Finally, we need the following definition to encode a symmetry con-
straint.

Definition 3.19. Let a = ((n1, n2), [l, u]tT
) ∈ S be a symmetry constraint. Then

encode_ordered_sym_con : S → L(ΣSAT)

((n1, n2), [l, u]tT
) 7→

∧

A∈ΛtT
(l,u)

encode_ordered_rec(A)

is the order encoding function of a symmetry constraint.

Since encode_ordered_sym_con is a conjunction of clauses, it is in conjunctive
normal form.

3.5.4. Encoding of the PESP

Having the gathered information of the previous sections, we are able to order encode a
whole PESP with respect to a periodic event network. Besides the defined ΩV

ordered, we
need the conjunction for the constraints.

Definition 3.20. Let a ∈ A be a constraint and A = C∪S according to Definition 2.16.
Then

encode_ordered_con : A → L(ΣSAT)

a 7→







encode_ordered_time_con(a) a ∈ C

encode_ordered_sym_con(a) a ∈ S

maps a to its corresponding order encoding.

Definition 3.21. Let A be a set of constraints. Then

ΨA
ordered :=

∧

a∈A

encode_ordered_con(a).

is the propositional formula in conjunctive normal form of all constraints a ∈ A.

Furthermore, because we know, that both ΨA
ordered and ΩA

ordered must hold, we simply
conjunct them. This results in the following definition.

Definition 3.22. Let N = (V ,A, tT) be periodic event network. Then the function

encode_direct_pesp : 2V+

× 2A+

tT × 2N → L(ΣSAT)

(V ,A, tT) 7→ (ΩV
ordered ∧ ΨA

ordered)

is the order encoding function of a PESP with respect to N .

41

3 Polynomial Reduction from PESP to SAT

The usage of this function will be demonstrated in the following example.

Example 3.11. Let N = (V ,A, 10) be the periodic event network of Example 2.7.
That is

V = {A,B,C}

A = C = {a1, a2, a3},

with

a1 := ((A,B), [3, 5]10)

a2 := ((B,C), [2, 2]10)

a3 := ((C,A), [2, 4]10).

Order encoding this function means to apply encode_direct_pesp. This yields

encode_ordered_pesp(N) = (ΩV
ordered ∧ ΨA

ordered)

=

(

∧

n∈V

encode_ordered(πn)

)

∧

(

∧

a∈A

encode_ordered_con(a)

)

= (encode_ordered(πA) ∧ encode_ordered(πB)

∧ encode_ordered(πC) ∧ encode_ordered_con(a1)

∧ encode_ordered_con(a2)

∧ encode_ordered_con(a3))

Applying function encode_ordered, we get for event’s potential πA

encode_ordered(πA) = 〈[¬qπA,0, qπA,1], [¬qπA,1, qπA,2], [¬qπA,2, qπA,3], [¬qπA,3, qπA,4],

[¬qπA,4, qπA,5], [¬qπA,5, qπA,6], [¬qπA,6, qπA,7], [¬qπA,7, qπA,8]〉.

Likewise, we use this function for πB and πC .
In order to encode the constraints ai (i ∈ {1, 2, 3}), we first need to calculate the

sets ζ10(ai) (i ∈ {1, 2, 3}) of Definition 3.13. This will be demonstrated for the time
consuming constraint a1:

ζ10(a1)
0/∈[3,5]10

= ϕ10(3 − 10, 5 − 20) ∪ ϕ10(3, 5 − 10) ∪ ϕ10(3 + 10, 5)

= ϕ10(−7,−15) ∪ ϕ10(3,−5) ∪ ϕ10(13, 5)
Ex 3.10

= ϕ10(−7,−15) ∪ ϕ10(13, 5)

∪ {([−2, 1] × [−3, 0]), ([−1, 2] × [−2, 1]), ([0, 3] × [−1, 2]),

([1, 4] × [0, 3]), ([2, 5] × [1, 4]), ([3, 6] × [2, 5]),

([4, 7] × [3, 6]), ([5, 8] × [4, 7]), ([6, 9] × [5, 8]),

([7, 10] × [6, 9]), ([8, 11] × [7, 10])}

42

3.5 Reducing PESP to SAT Using Order Encoding

Afterwards, applying encode_ordered_con yields

encode_ordered_con(a1) = encode_ordered_time_con(a1)

= encode_ordered_time_con(((A,B), [3, 5]10))

=
∧

R∈ζ10(3,−5)

encode_ordered_rec(R)

= (. . . ∧ encode_ordered_rec([3, 6] × [2, 5])

∧ encode_ordered_rec([4, 7] × [3, 6]) ∧ . . .)

= (. . . ∧ (¬qπA,6 ∨ qπA,2 ∨ ¬qπB ,5 ∨ qπB ,1)

∧ (¬qπA,7 ∨ qπA,3 ∨ ¬qπB ,6 ∨ qπB ,2) ∧ . . .)

= 〈. . . , [¬qπA,6, qπA,2,¬qπB ,5, qπB ,1],

[¬qπA,7, qπA,3,¬qπB ,6, qπB ,2], . . .〉

The whole encoding can be found as SAT instance on CD as of Section A.

The following theorem and corollary ensures the correct possibility to use the order
encoding method of a PESP with respect to a given periodic event network N . The
fundamentals of this proof are already given, because we can extract exactly one value
for a potential (Lemma 3.2), we can exclude all pairs within an encoded rectangle
(Lemma 3.5) and we can cover each not feasible pair of a constraint with a set of
rectangles (Lemma 3.4, Lemma 3.6). We have to generalize this for a set of potentials
and a set of constraints.

Theorem 3.2 (Soundness and Completeness Order Encoding). Let N = (V ,A, tT) be
a periodic event network and

F := encode_ordered_pesp(N) ∈ L(ΣSAT)

be the order encoded propositional formula of N . Then

∃I : I |= F ⇔ ∃ΠV : ΠV is valid

with I being an interpretation and ΠV a schedule of N .

43

3 Polynomial Reduction from PESP to SAT

Proof.

∃I : I |= F
Def 3.22

⇔ ∃I : I |= (ΩV
ordered ∧ ΨA

ordered)

⇔ ∃I : I |= ΩV
ordered ∧ I |= ΨA

ordered

(24)
⇔ ∃I : I |=

∧

n∈V

encode_ordered(πn) ∧ I |= ΨA
ordered

Lem 3.2, (25)
⇔ ∃I : ∀n ∈ V : ΠV(n) := ξπn

(I) ∧ I |= ΨA
ordered

Def 3.21
⇔ ∃I : ∀n ∈ V : ΠV(n) := ξπn

(I)

∧ I |=
∧

a∈A

encode_ordered_con(a)

⇔ ∃I : ∀n ∈ V : ΠV(n) := ξπn
(I)

∧ ∀a ∈ A : I |= encode_ordered_con(a)
Lem 3.5, Lem 3.4, Lem 3.6

⇔ ∃I : ∀n ∈ V : ΠV(n) := ξπn
(I) ∧ ∀a ∈ A : a holds under ΠV

Def 2.23
⇔ ∃I : ∀n ∈ V : ΠV(n) := ξπn

(I) ∧ ΠV is valid
Lem 3.2, Def 3.6

⇔ ∃ΠV : ΠV is valid

We can directly derive the following corollary.

Corollary 3.2 (Soundness and Completeness Order Encoding). Let N = (V ,A, tT) be
a periodic event network and

F := encode_ordered_pesp(N) ∈ L(ΣSAT)

be the order encoded propositional formula of N . Then

∄I : I |= F ⇔ ∄ΠV : ΠV is valid

with I being an interpretation and ΠV a schedule of N .

Proof. Analogous to proof of Corollary 3.1

3.6. Comparison between Direct Encoding and Order Encoding

In this section, the direct and order encoding approach are compared with respect to
number of clauses and number of variables. The needed time to solve such an instance
will be explored and evaluated in Section 4, as well as the verification of this’ section’s
results.

Since encode_direct_pesp and encode_ordered_pesp are mappings to propositional
formulas in conjunctive normal form, we can handle them as set of clauses, which are
handled as sets of literals. This results in the following definitions. With |x| being the
cardinality of a set x or the number of clauses, if x is a propositional formula in CNF, it
follows

44

3.6 Comparison between Direct Encoding and Order Encoding

Definition 3.23. Let F ∈ L(ΣSAT) a propositional formula in conjunctive normal form.
Then

|F | ∈ N

is the number of clauses of F .

Definition 3.24. Let F ∈ L(ΣSAT) a propositional formula in conjunctive normal form.
Then

vars : L(ΣSAT) → 2R

F 7→ {p ∈ R | C ∈ F : p ∈ C ∨ ¬p ∈ C}

maps to the set of variables, that occur in F with C ∈ F being a clause.

Hence, |vars(F)| is the number of variables, that occur in F . The remaining question
is, how we can estimate or precisely evaluate these values with respect to a given encoding
F .

3.6.1. Number of Variables

With F being a direct encoded propositional formula with respect to a given periodic
event network N = (V ,A, tT), we know with Definition 3.2, that we have for each
potential πn (n ∈ V) tT variables, since πn ∈ [0, tT −1]. Consequently, we can conclude,
that for all periodic event networks N

|vars(encode_direct_pesp(N))| = |vars(F)| = tT · |V| (33)

Consider a propositional formula G, that is the order encoded representation of the
periodic event network N . We know with Definition 3.5, that for each potential, we
have tT − 1 variables. Hence,

|vars(encode_ordered_pesp(N))| = |vars(G)| = (tT − 1) · |V| (34)

Thus, there are |V| less variables, if the network is order encoded than direct encoded.
Typically, the period is tT = 60 or tT = 120. This results in a rather small difference
with respect to variable count. We can conclude

|vars(encode_ordered_pesp(N))| ≈ |vars(encode_direct_pesp(N))| (35)

for a greater period tT under the practical assumption, that |V| is rather large compared
to tT .

3.6.2. Estimation of Clause Count

Estimating the clause count needs to consider the clause counts of ΩV
t and ΨA

t (t ∈
{direct, ordered}), because each encoding results in the propositional formula

ΩV
t ∧ ΨA

t (t ∈ {direct, ordered})

45

3 Polynomial Reduction from PESP to SAT

and, thus, it yields the homomorphism

|ΩV
t ∧ ΨA

t | = |ΩV
t | + |ΨA

t | (t ∈ {direct, ordered}),

since it is in conjunctive normal form. Firstly, the variable encodings will be evaluated.
Because ΩV

t (t ∈ {direct, ordered}) conjuncts |V| times encode_direct respectively
encode_ordered with the same potential’s domain, we know

|ΩV
direct| = |V| · |encode_direct(πn)| (n ∈ V)

|ΩV
ordered| = |V| · |encode_ordered(πn)| (n ∈ V).

(36)

With encode_direct mapping to a nested conjunction of the potential’s domain and
single conjunction over a reduced potenial’s domain for the encode_ordered function,
we get

|encode_direct(πn)|
Def 3.2

= |[0, tT − 1]| · |[0, tT − 1]| + 1

= tT · tT + 1 = t2T + 1 (n ∈ V)

|encode_ordered(πn)|
Def 3.5

= |[1, tT − 2]| = tT − 2 (n ∈ V).

(37)

Combining (36) and (37) and applying the big O notation for tT and |V|, we receive

|ΩV
direct| ∈ O(t2T |V|)

|ΩV
ordered| ∈ O(tT |V|).

(38)

Secondly, we must evaluate the encoding of the constraints ΨA
t (t ∈ {direct, ordered}).

On the one hand, with encode_direct_con is a conjunction over all infeasible pairs
(n,m) ∈ Pa of Definition 3.3, the direct encoding approach yields

|ΨA
direct| =

∑

a∈A

|Pa|

|Pa| is in O(t2T) for tT , because for all (i, j) ∈ Pa, we know (i, j) ∈ [0, tT −1]×[0, tT −1].
Thus, we can conclude as big O notation

|ΨA
direct| ∈ O(t2T |A|). (39)

On the other hand, we know with Definition 3.13, that ϕtT
is evaluated either two or

three times. Hence, we can conclude

|ΨA
ordered| ∈ O(tT |A|). (40)

Finally, we can conclude with (38), (39) and (40)

|encode_direct_pesp(N)| ∈ O(t2T (|V| + |A|))

|encode_ordered_pesp(N)| ∈ O(tT (|V| + |A|))
(41)

We can conclude, that |encode_direct_pesp(N)| should be around tT times greater
than |encode_ordered_pesp(N)| for the same instance. This result will be experimen-
tally verified in Section 4.

46

4. Computational Results

This section will cover the topics, how a PESP can be used to solve an industrial problem
and to compare a state-of-the-art PESP solver with a SAT solver for a corresponding
encoding of the periodic event network with respect to solution time. In this case the
industrial problem will be modeling railway networks with respect to a feasible time table
for all trains within the network.

4.1. Modeling Railway Networks as PESP

As stated above, this section covers the modeling of a restriction system, which leads to
feasible time tables of trains. Since this is a very complex topic in itself, it can only be
discussed shortly in this work. For further investigations, please read [Opi09].

Each train L has in each station s an arrival and departure event Lt,s (t ∈ {dep, arr}).
Each departure and arrival event happens periodically often with period tT . Between
these two events, there is a time consuming constraint ((Larr,s, Ldep,s), [l, u]tT

), which
represents the minimum and maximum holding time in station s with l and u, respec-
tively. The time of travel from station s1 to station s2 for a train L is represented in
the time consuming constraint ((Ldep,s1

, Larr,s2
), [k, k]tT

). k is calculated by the track’s
length between s1 and s2 as well as the driving dynamics of the train L.

In order to omit, that two trains hit on a single-way track, we need to constraint
the respective arrival events. The lower and upper bound is calculated by taking into
account the times of travel for each train, as well as some buffer times. This results in
a time consuming constraint ((Larr,s1

, Jarr,s2
), [l, u]tT

) for trains L and J .
On the other hand, symmetry constraints ((Larr,s, Jarr,s), [l, u]tT

) are defined for two
trains L and J in the same station s, which have the same route and same driving
dynamics in order to get a so called symmetric time table.

A time table is called conflict free, if and only if the schedule of the corresponding
periodic event network is valid.

4.2. Railway Network Instances

The networks for the computations are modeled and converted to a corresponding pe-
riodic event network N at TU Dresden, Faculty of Transportation and Traffic Science,
Chair of Traffic Flow Science. It ranges from rather trivial instances with around 1,000
constraints to hard instances with around 10,000 constraints.

The PESPs swgi (i ∈ {1, . . . , 4}) and segj (j ∈ {1, 2}) are subnetworks of south
west and south east Germany, respectively. fernsym represents the whole intercity rail
traffic network of Germany. All networks are represented in Table 1 with their respective
number of nodes and total number of constraints.

The last four columns represent the number of variables and the number of clauses
with respect to their corresponding encodings F := encode_direct_pesp(N) and G :=
encode_ordered_pesp(N). The search space for the SAT instances, with respect to
variable count, is similar for each instance with respect to direct and order encoding,

47

4 Computational Results

Table 1: PESP instances and corresponding encodings

PESP N = (V ,A, tT) direct encoding F order encoding G
instance |V| |A| |vars(F)| |F | |vars(G)| |G|

swg2 60 1,145 7,200 2,037,732 7,140 83,740
fernsym 128 3,117 15,360 6,657,955 15,232 353,276
swg4 170 7,107 20,400 6,193,570 20,230 399,191
swg3 180 2,998 21,600 4,874,144 21,420 214,011
swg1 221 7,443 26,520 7,601,906 26,299 462,217
seg2 611 9,863 73,320 25,101,341 72,709 1,115,210
seg1 1,483 10,351 177,960 34,323,942 176,477 1,348,045

Table 2: PESP instances and corresponding times to solve

instance pespsolve /s direct+ riss /s ordered+ riss /s speedup

swg3 66 50 2 33
swg2 512 37 2 256
swg4 912 752 8 114

fernsym 2,035 294 7 290
swg1 >86,400 18 7 >12,342
seg1 >86,400 16 10 >8,640
seg2 >86,400 >86,400 11 >7,854

which empirically verifies the assumption of (35). Hence, the interesting question is, how
the obvious difference in clause count and the structure of the encoding itself influence
the time to solve for the SAT solver.

All instances with their respective encodings can be found on the CD as described in
Section A.

4.3. Evaluation and Comparison

As proposed in Section 2.2.3, we use a state-of-the-art PESP solver pespsolve as domain
specific solver, developed by, TU Dresden, Faculty of Transportation and Traffic Science,
Chair of Traffic Flow Science, especially Prof. Nachtigall [Nac96].

The other two methods are equivalent, despite the encoding method: encoding a
given PESP with encode_direct_pesp respectively encode_ordered_pesp. The result-
ing propositional formula in CNF will be solved by a state-of-the-art SAT solver called
riss, developed by Norbert Manthey, TU Dresden, Faculty of Computer Science, Chair
of Knowledge Representation and Reasoning [Man10], which are called direct + riss
and ordered + riss, respectively. The total time to solve will be the time to encode
the formula plus the time, which riss, the SAT solver, needs to solve the instance. The
precise parameters for the solvers can be found on the CD as of Section A.

All solvers are given a timeout of 24 h respectively 86,400 s. These are represented as

48

4.3 Evaluation and Comparison

“>86,400” in Table 2, otherwise the needed time to solve (in seconds) is displayed in
the respective cell.

It is obvious that the SAT solving approach ordered + riss is a lot faster than the
traditional PESP solver pespsolve. The speedup, last column in the respective table,
ranges from 33 to over 12,000 , which has a huge impact, because from now on, it
is possible to solve a lot larger PESP instances than before. This could have several
reasons: Firstly, modern SAT solvers use a lot of modern implementation methods,
like cache optimizations and variable pre fetching, in order to improve the performance
[Man10]. Secondly, the algorithm of SAT solvers do not trivial backtracking, but back
jumping over several decision levels and learn lemmas in order to not fall into the same
tree, which leads to a conflict. This yields to a tremendous cut in the search tree.

Even within the two different encodings, there is a severe advantage of the order
encoding approach. The differences in time between direct+ riss and ordered+ riss
may have two reasons: Firstly, we know with (41), that encode_direct_pesp maps
to a propositional formula in CNF, which has tT times the number of clauses, than
encode_ordered_pesp for the same periodic event network. Thus, the to be solved
instance is a lot greater, which leads in general to longer times to solve. Secondly,
encode_ordered uses the fact, that the domain is ordered. Consequently, it does not
lose this structure. This seems to help the SAT solver a lot to find a solution in shorter
time.

The claim, that orderes+ riss is time wise exponentially shorter with linear increase
in PESP constraints, will not verified in this work. However, it can be very possibly
assumed.

49

5 Conclusion

5. Conclusion

In this work it has been shown, that we can successfully reduce a PESP instance to a
SAT instance and solve it with a state-of-the-art SAT solver in a very short time frame
compared to a state-of-the-art PESP solver.

After introducing some needed preliminaries, the reductions have been defined. The
correctness and soundness could be proofed for both approaches successfully with respect
to the corresponding PESP. This important proofs ensures the correct ability to use this
method to solve PESP instances.

After comparing the two methods, direct and order encoding, they have been applied
to several industrial instances. It has been shown that especially the order encoding
approach outperforms by far the traditional PESP solver. Thus, this new method can be
applied to a whole new set of larger instances, which could not have been solved before.

There are several interesting remaining fields: Improving the encoding itself, applying
the presented methods to even larger instances, applying optimization techniques to
gain better schedules and improving the PESP solver with the gained knowledge. In the
following, these claims will be described.

Several preprocessing methods could be applied to the periodic event network, in
order to encode more information into the SAT instance, namely, propagating gained
information of constraints to neighboured constraints and cutting search space of the
potentials, which are not part of the solution space. This may help the SAT solver to
find faster a solution. In addition, the instance can be shortened by removing redundant
constraints.

Another encoding, namely “compact order encoding” could be tried. This encoding
has even less variables than the presented approaches, but has more clauses than the
order encoding method. It is a hybrid between the order encoding and the so called
logarithmic encoding. Consequently, the search space could be cut a lot, with the
disadvantage of having more clauses and around a doubled clause size compared to an
order encoded instance.

Furthermore, it should be tried to solve even larger and harder instances. The largest
possible instance for the railway modeling topic would be a union of all subnetworks to
a railway network of whole Germany. If it could be achieved to solve such an instance in
an adequate time frame, a huge goal would be achieved with respect to solving a single
instance for feasibility.

Another interesting part, the optimization of timetables, which has been already dis-
cussed a lot for example in [Opi09], could be supported by a fast feasibility checking
method, like presented in this work. In the process, several constraints of the periodic
network with respect to its bounds and an extracted objective functional will be changed.
This could be achieved by an adapted branch and bound algorithm.

On the one hand, it seems obvious that the current algorithms in a generic solver,
like a SAT solver, seem to be superior to a lot native domain solvers, like a domain
specific PESP solver. On the other hand, the domain specific solvers have often superior
knowledge about the domain, which cannot, or have not yet been found, be encoded
into a SAT instance. Hence, it could be even faster, if the techniques of a SAT solver

50

could be used in a native domain solver. For example, back jumping in the decision tree
and learning lemmas to not fall into the same conflicts and unit propagation [Man10].
Applying these method into a state-of-the-art PESP solver could maybe even outperform
the presented method in this work.

As seen, there remain a lot of scientific questions and fields, which should be worth
investigating in, since it is an area with high industrial need.

51

A CD

A. CD

The CD contains three directories. example_instances/ contains the PESP instance
as well as its corresponding encodings of Examples 2.7,3.5 and 3.11.

The directory results_instances/ contains the three directories pesps/,
order_encodings/ and direct_encodings/ with its respective meanings of Section 4.
The third directory solvers/ contains the parameters and versions of the used solvers
of Section 4.

Since the direct encoding instances of seg1 and seg2 were too large, it has been packed
to the respective *.gz file.

The whole directory structure is listed below:

example_instances/

example_direct.cnf

example_ordered.cnf

example.pesp

results_instances/

direct_encodings/

fernsym_direct.cnf

seg_1_binding_weight_direct.cnf.gz

seg_2_wholeeast_no_g_direct.cnf.gz

swg_1_mannheim_basel_direct.cnf

swg_2_kk_linkerrhein_worms_mannheim_direct.cnf

swg_3_pv_gv_tradeoff_direct.cnf

swg_4_3gv_direct.cnf

order_encodings/

fernsym_ordered.cnf

seg_1_binding_weight_ordered.cnf

seg_2_wholeeast_no_g_ordered.cnf

swg_1_mannheim_basel_ordered.cnf

swg_2_kk_linkerrhein_worms_mannheim_ordered.cnf

swg_3_pv_gv_tradeoff_ordered.cnf

swg_4_3gv_ordered.cnf

pesps/

fernsym.pesp

seg_1_binding_weight.pesp

52

seg_2_wholeeast_no_g.pesp

swg_1_mannheim_basel.pesp

swg_2_kk_linkerrhein_worms_mannheim.pesp

swg_3_pv_gv_tradeoff.pesp

swg_4_3gv.pesp

solvers/

pespsolve

riss

53

B List of Figures

B. List of Figures

2.1. Visualization of Example 2.6 . 11
2.2. Periodic event network of Example 2.7 12
2.3. Feasible regions of the time consuming constraint for Example 2.8 13
2.4. Valid schedule for periodic event network of Example 2.9 14
3.1. Not feasible rectangle r of the time consuming constraint for Example 3.8 32
3.2. Evaluated function values δy(3,−5), δx(3,−5) of Example 3.9 34
3.3. Evaluation of subset of ϕ10(3,−5) (left) and R3,−5,10 (right) of Exam-

ple 3.10 . 35

54

References

[CBRZ01] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded
model checking using satisfiability solving. Form. Methods Syst. Des., 19:7–
34, July 2001.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs.
In Richard Draves and Robbert van Renesse, editors, OSDI, pages 209–224.
USENIX Association, 2008.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing, STOC
’71, pages 151–158, New York, NY, USA, 1971. ACM.

[Höl09] Steffen Hölldobler. Logik und Logikprogrammierung 1: Grundlagen. Synchron
Wissenschaftsverlag der Autoren, 2009.

[Lau07] D. Lau. Algebra und Diskrete Mathematik 1: Grundbegriffe der Mathematik,
Algebraische Strukturen 1, Lineare Algebra und Analytische Geometrie, Nu-
merische Algebra. Springer-Lehrbuch. Springer, 2007.

[LM07] Christian Liebchen and Rolf H. Möhring. The modeling power of the periodic
event scheduling problem: railway timetables-and beyond. In Proceedings
of the 4th international Dagstuhl, ATMOS conference on Algorithmic ap-
proaches for transportation modeling, optimization, and systems, ATMOS’04,
pages 3–40, Berlin, Heidelberg, 2007. Springer-Verlag.

[Man10] Norbert Manthey. Improving sat solvers using state-of-the-art techniques,
2010.

[MZ06] Ilya Mironov and Lintao Zhang. Applications of sat solvers to cryptanalysis of
hash functions. In In Theory and Applications of Satisfiability Testing 2006,
pages 102–115, 2006.

[Nac96] Karl Nachtigall. Periodic network optimization with different arc frequencies.
Discrete Applied Mathematics, 69(1-2):1–17, 1996.

[Odi94] Michiel A. Odijk. Construction of periodic timetables, Part 1: A cutting plane
algorithm. 1994.

[Opi09] Jens Opitz. Automatische Erzeugung und Optimierung von Taktfahrplä-
nen in Schienenverkehrsnetzen. PhD thesis, Technische Universität Dres-
den, Fakultät Verkehrswissenschaften, Professur für Verkehrsströmungslehre,
2009.

[TTB11] Tomoya Tanjo, Naoyuki Tamura, and Mutsunori Banbara. A compact and
efficient sat-encoding of finite domain csp. In SAT, pages 375–376, 2011.

55

	Introduction
	Preliminaries
	Propositional Logic
	Syntax
	Semantic
	SAT Problem

	Periodic Event Networks
	Periodic Event Network
	Periodic Event Scheduling Problem
	A State-of-the-Art PESP Solver

	Polynomial Reduction from PESP to SAT
	Encoding Variables of Finite Domains
	Direct Encoding for Variables of Finite Domains
	Reducing PESP to SAT Using Direct Encoding
	Encoding of Event Variables (Potentials)
	Encoding Constraints of Periodic Event Networks
	Direct Encoding of Constraints
	Encoding of the PESP

	Order Encoding for Variables of Finite Ordered Domains
	Reducing PESP to SAT Using Order Encoding
	Encoding of Event Variables (Potentials)
	Encoding of Time Consuming Constraints
	Encoding of Symmetry Constraints
	Encoding of the PESP

	Comparison between Direct Encoding and Order Encoding
	Number of Variables
	Estimation of Clause Count

	Computational Results
	Modeling Railway Networks as PESP
	Railway Network Instances
	Evaluation and Comparison

	Conclusion
	CD
	List of Figures
	References

