
Computational
Logic ∴ Group

Hannes Strass (based on slides by Michael Thielscher)
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Soundness and Restricted Completeness of
SLDNF Resolution
Lecture 8, 5th Dec 2022 // Foundations of Logic Programming, WS 2022/23

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2022)
https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2022)

Previously . . .
• Normal logic programs allow for “negation” in queries (clause bodies).• The negation as failure rule treats negated atoms ∼A in queries byasking the query A in a subsidiary tree and inverting the answer.• A proof theory for normal logic programs is given by SLDNF resolution.• Care must be taken not to let non-ground negative literals get selected.

zero(0) ←
positive(x) ← ∼zero(x)

positive(y)

∼zero(y)
{x/y} zero(y)

□

{ y/0}

success
failure

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 2 of 33 Computational
Logic ∴ Group

Previously . . .
• Normal logic programs allow for “negation” in queries (clause bodies).• The negation as failure rule treats negated atoms ∼A in queries byasking the query A in a subsidiary tree and inverting the answer.• A proof theory for normal logic programs is given by SLDNF resolution.• Care must be taken not to let non-ground negative literals get selected.

zero(0) ←
positive(x) ← ∼zero(x)

∃y(positive(y))

∃y(∼zero(y))
{x/y} ∃y(zero(y))

□

{ y/0}

success
failure

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 2 of 33 Computational
Logic ∴ Group

Overview

First-Order Formulas and Logical Truth

Completion of Programs

Soundness and Restricted Completeness of SLDNF Resolution

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 3 of 33 Computational
Logic ∴ Group

First-Order Formulas and Logical Truth

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 4 of 33 Computational
Logic ∴ Group

First-Order Formulas
Definition
Let Π and F be ranked alphabets of predicate symbols and function symbols,respectively, and V be a set of variables.
The set of (first-order) formulas (over Π, F , and V) is inductively defined asfollows:
• if atom A ∈ TBΠ,F ,V , then A is a formula;
• if G1 and G2 are formulas, then ¬G1, G1 ∧G2 (also written G1,G2), G1 ∨G2,

G1 ← G2, and G1 ↔ G2 are formulas;
• if G is a formula and x ∈ V , then ∀xG and ∃xG are formulas.
Note
Whenever we interpret normal queries/clauses as first-order formulas, we(for now) take ∼ to be ¬.

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 5 of 33 Computational
Logic ∴ Group

Extended Notion of Logical Truth (1)
Definition
Let G be a formula, I be an interpretation with domain D, and σ : V → D be astate.Formula G is true in I under σ, written I |=σ G, based on the structure of G:
• I |=σ p(t1, . . . , tn) :⇐⇒ (σ(t1), . . . ,σ(tn)) ∈ pI• I |=σ ¬G :⇐⇒ I ̸|=σ G

• I |=σ G1 ∧G2 :⇐⇒ I |=σ G1 and I |=σ G2• I |=σ G1 ∨G2 :⇐⇒ I |=σ G1 or I |=σ G2• I |=σ G1 ← G2 :⇐⇒ if I |=σ G2 then I |=σ G1• I |=σ G1 ↔ G2 :⇐⇒ I |=σ G1 iff I |=σ G2• I |=σ ∀x G :⇐⇒ for every d ∈ D: I |=σ′ G

• I |=σ ∃x G :⇐⇒ for some d ∈ D: I |=σ′ G

where σ′ : V → D with σ′(x) = d and σ′(y) = σ(y) for each y ∈ V \ {x}.
Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 6 of 33 Computational

Logic ∴ Group

Extended Notion of Logical Truth (2)

Definition
Let G be a formula, S and T be sets of formulas, and I be an interpretation.Furthermore, let x1, . . . , xk be the variables occurring in G.• ∀x1, . . . ,∀xkG is the universal closure of G (abbreviated ∀G).
• I |= ∀G :⇐⇒ I |=σ G for every state σ
• G is true in I (or: I is a model of G), written: I |= G :⇐⇒ I |= ∀G
• I is a model of S, written: I |= S :⇐⇒ I |= G for every G ∈ S

• T is a semantic (or: logical) consequence of S, written: S |= T:⇐⇒ every model of S is a model of T

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 7 of 33 Computational
Logic ∴ Group

Negative Consequences of Logic Programs (1)
Consider program Pmem:

member(x, [x|y]) ←
member(x, [y|z]) ← member(x, z)

Then, e.g. Pmem |= member(a, [a,b]) and Pmem ̸|= member(a, []).

But also Pmem ̸|= ¬member(a, []), since HB{member},{|,[],a} |=Pmem and
HB{member},{|,[],a} ̸|=¬member(a, []).
Nevertheless the SLDNF tree of Pmem ∪ {∼member(a, [])} is successful:

∼member(a, [])
member(a, [])

failure
success

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 8 of 33 Computational
Logic ∴ Group

Negative Consequences of Logic Programs (1)
Consider program Pmem:

member(x, [x|y]) ←
member(x, [y|z]) ← member(x, z)

Then, e.g. Pmem |= member(a, [a,b]) and Pmem ̸|= member(a, []).
But also Pmem ̸|= ¬member(a, []), since HB{member},{|,[],a} |=Pmem and
HB{member},{|,[],a} ̸|=¬member(a, []).

Nevertheless the SLDNF tree of Pmem ∪ {∼member(a, [])} is successful:
∼member(a, [])

member(a, [])
failure

success

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 8 of 33 Computational
Logic ∴ Group

Negative Consequences of Logic Programs (1)
Consider program Pmem:

member(x, [x|y]) ←
member(x, [y|z]) ← member(x, z)

Then, e.g. Pmem |= member(a, [a,b]) and Pmem ̸|= member(a, []).
But also Pmem ̸|= ¬member(a, []), since HB{member},{|,[],a} |=Pmem and
HB{member},{|,[],a} ̸|=¬member(a, []).
Nevertheless the SLDNF tree of Pmem ∪ {∼member(a, [])} is successful:

∼member(a, [])
member(a, [])

failure
success

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 8 of 33 Computational
Logic ∴ Group

Negative Consequences of Logic Programs (2)
Observation
For every normal logic program P over vocabulary Π, F , the Herbrand base
HBΠ,F is a model of P. (All implications are satisfied.)
Corollary
There is no negative ground literal ¬A that is a logical consequence of P.
But: The SLDNF tree of P∪ {∼A}may be successful!

⇝ Taking ∼ to be ¬, SLDNF resolution is not sound w.r.t. |=.
Solution:

Avoid Herbrand models that are “too large”.
⇝ Formalise “the information in the program is all there is”.
⇝ Strengthen P to its completion comp(P).

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 9 of 33 Computational
Logic ∴ Group

Completion of Programs

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 10 of 33 Computational
Logic ∴ Group

Completed Definitions (Example 1)

P:
happy ← sun,holidays
happy ← snow,holidays
snow ← cold,precipitation
cold ← winter

precipitation ← holidays

winter ←
holidays ←

comp(P):
happy ↔ (sun∧ holidays)∨ (snow ∧ holidays)
snow ↔ cold ∧ precipitation
cold ↔ winter

precipitation ↔ holidays

winter ↔ true

holidays ↔ true

sun ↔ false

Then, comp(P) |= happy, snow, cold,precipitation,winter,holidays,¬sun.
Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 11 of 33 Computational

Logic ∴ Group

Completed Definitions (Example 2)

P:
member(x, [x|y]) ←
member(x, [y|z]) ← member(x, z)
disjoint([], x) ←
disjoint([x|y], z) ← ∼member(x, z), disjoint(y, z)

comp(P):
∀x1, x2(

member(x1, x2) ↔ (∃x, y (x1 = x ∧ x2 = [x|y]) ∨
∃x, y, z (x1 = x ∧ x2 = [y|z]∧member(x, z))))

∀x1, x2(
disjoint(x1, x2) ↔ (∃x (x1 = []∧ x2 = x) ∨

∃x, y, z (x1 = [x|y]∧ x2 = z ∧
¬member(x, z)∧ disjoint(y, z))))

plus standard equality and inequality axioms
Then, e.g. comp(P) |= member(a, [a,b]),¬member(a, []),¬disjoint([a], [a]).

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 12 of 33 Computational
Logic ∴ Group

Completion (1)
Definition (Clark, 1978)
Let P be a normal logic program. The completion of P (denoted by comp(P))is the set of formulas constructed from P by the following 6 steps:
1. Associate with every n-ary predicate symbol p a sequence ofpairwise distinct variables x1, . . . , xn that do not occur in P.

2. Transform each clause c = p(t1, . . . , tn) ← B1, . . . ,Bk into
p(x1, . . . , xn) ← x1 = t1 ∧ . . .∧ xn = tn ∧ B1 ∧ . . .∧ BkAny empty conjunction (for n = 0 or k = 0) is replaced by true.

3. Transform each resulting formula p(x1, . . . , xn) ← G into
p(x1, . . . , xn) ← ∃z⃗ Gwhere z⃗ is a sequence of the elements of Var(c).

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 13 of 33 Computational
Logic ∴ Group

Completion (2)
Definition (Clark, 1978, continued)

4.

For every n-ary predicate symbol p, let
p(x1, . . . , xn) ← ∃z⃗1 G1, . . . , p(x1, . . . , xn) ← ∃z⃗m Gm

be all implications obtained in Step 3 (m ≥ 0).
If m > 0, then replace these by the formula

∀x1, . . . , xn(
p(x1, . . . , xn) ↔ (∃z⃗1 G1 ∨ . . . ∨∃z⃗m Gm)

)
If m = 0, then add the formula

∀x1, . . . , xn(p(x1, . . . , xn) ↔ false)

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 14 of 33 Computational
Logic ∴ Group

Completion (3)
Definition (Clark, 1978, continued)

5.
Add the standard axioms of equality:

∀ [x = x]
∀ [x = y → y = x]
∀ [x = y ∧ y = z → x = z]
∀ [xi = y → f (x1, . . . , xi, . . . , xn) = f (x1, . . . , y, . . . , xn)]
∀ [xi = y → (p(x1, . . . , xi, . . . , xn) ↔ p(x1, . . . , y, . . . , xn))]

6.
Add the standard axioms of inequality:

∀ [x1 ̸= y1 ∨ . . .∨ xn ̸= yn → f (x1, . . . , xn) ̸= f (y1, . . . , yn)]
∀ [f (x1, . . . , xm) ̸= g(y1, . . . , yn)] (whenever f ̸= g)
∀ [x ̸= t] (whenever x is a proper subterm of t)

Steps 5. and 6. ensure that “=” must be interpreted as equality.
Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 15 of 33 Computational

Logic ∴ Group

Quiz: Completion

Quiz
Consider the following logic program P: . . .

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 16 of 33 Computational
Logic ∴ Group

Soundness and Restricted Completeness of
SLDNF Resolution

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 17 of 33 Computational
Logic ∴ Group

Soundness of SLDNF Resolution
Definition
Let P be a normal logic program, Q be a normal query, and θ be asubstitution.
• θ|Var(Q) is a correct answer substitution of Q :⇐⇒ comp(P) |= Qθ

• Qθ is a correct instance of Q :⇐⇒ comp(P) |= Qθ

Theorem (Lloyd, 1987)
If there exists a successful SLDNF derivation of P∪ {Q} with computedanswer substitution θ, then comp(P) |= Qθ.
Corollary
If there exists a successful SLDNF derivation of P∪ {Q}, then comp(P) |= ∃Q.
We assume here that ∼ in queries has been replaced by ¬ for entailment.

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 18 of 33 Computational
Logic ∴ Group

Incompleteness (1): Inconsistency

P : p ← ∼p

By definition, it follows that comp(P) ⊇ {p↔¬p} ≡ { false}.
Hence, comp(P) |= p and comp(P) |= ¬p because I ̸|= comp(P) for everyinterpretation I, i.e. comp(P) has no model (comp(P) is unsatisfiable).
But there is neither a successful SLDNF derivation of P∪ {p} nor of P∪ {∼p}.

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 19 of 33 Computational
Logic ∴ Group

Incompleteness (2): Non-Strictness

P : p ← q

p ← ∼q
q ← q

Thus comp(P) ⊇ {p↔ (q∨¬q), q↔q} ≡ {p↔ true}.
Hence, comp(P) |= p.
But there is no successful SLDNF derivation of P∪ {p}.

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 20 of 33 Computational
Logic ∴ Group

Incompleteness (3): Floundering

P : p(x) ← ∼q(x)

Thus comp(P) ⊇ {∀x1(p(x1)↔∃x(x1 = x ∧¬q(x))), ∀x1(q(x1)↔ false)}
≡ {∀x1(p(x1)↔ true), ∀x1(q(x1)↔ false)}.

Hence, comp(P) |= ∀x1 p(x1).
But there is no successful SLDNF derivation of P∪ {p(x1)}.

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 21 of 33 Computational
Logic ∴ Group

Incompleteness (4): Unfairness

P : r ← p,q
p ← p

Thus comp(P) ⊇ {r↔ (p∧ q), p↔p, q↔ false}
≡ {r↔ false, q↔ false}.

Hence, comp(P) |= ¬r.
But there is no successful SLDNF derivation of P∪ {∼r} w.r.t. leftmostselection rule.

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 22 of 33 Computational
Logic ∴ Group

Dependency Graphs

Definition
The dependency graph DP of a normal logic program P is a directed graphwith labeled edges, where
• the nodes are the predicate symbols of P
• the edges are either labeled by + (positive edge) or by – (negative edge)
• there is an edge q +−→p in DP:⇐⇒ P contains a clause p(s1, . . . , sm) ← L⃗,q(t1, . . . , tn), N⃗
• there is an edge q –−→p in DP:⇐⇒ P contains a clause p(s1, . . . , sm) ← L⃗,∼q(t1, . . . , tn), N⃗
Note that the direction of the edges is sometimes reversed in other texts.

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 23 of 33 Computational
Logic ∴ Group

Strict, Hierarchical, Stratified Programs

Definition
Let P be a normal program with dependency graph DP,let p,q be predicate symbols, and Q be a normal query.
• p depends evenly (resp. oddly) on q:⇐⇒ there is a path from q to p in DP withan even (resp. odd) number of negative edges
• P is strict w.r.t. Q:⇐⇒ no predicate symbol occurring in Q depends both evenly and oddlyon a predicate symbol in the head of a clause in P
• P is hierarchical :⇐⇒ no cycle exists in DP• P is stratified :⇐⇒ no cycle with a negative edge exists in DP

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 24 of 33 Computational
Logic ∴ Group

“Completeness” of SLDNF Resolution (1)
Theorem (Lloyd, 1987)
Let P be a hierarchical and allowed program and Q be an allowed query.
If comp(P) |= Qθ for some θ such that Qθ is ground, then there exists asuccessful SLDNF derivation of P∪ {Q} with cas θ.
Note
The theorem does not hold if an arbitrary selection rule is fixed in advance.The used selection rule has to be safe.
Recall:
• A query is allowed iff every one of its variables occurs in some of itspositive atoms.
• A selection rule is safe iff it never selects a non-ground negative literal.

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 25 of 33 Computational
Logic ∴ Group

“Completeness” of SLDNF Resolution (2)

Theorem (Cavedon and Lloyd, 1989)
Let P be a stratified and allowed program and Q be an allowed query, suchthat P is strict w.r.t. Q.
If comp(P) |= Qθ for some θ such that Qθ is ground, then there exists asuccessful SLDNF derivation of P∪ {Q} with cas θ.
Note
The theorem does not hold if an arbitrary selection rule is fixed in advance.The used selection rule has to be safe and fair.

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 26 of 33 Computational
Logic ∴ Group

Fair Selection Rules
Definition
An (SLDNF) selection rule R is fair:⇐⇒ for every SLDNF tree F via R and for every branch ξ in F:
• either ξ is failed,
• or for every literal L occurring in a query of ξ, (some further instantiatedversion of) L is selected within a finite number of derivation steps.
Example
• The selection rule “select leftmost literal” is unfair.
• The selection rule “select leftmost literal to the right of the literalsintroduced at the previous derivation step, if it exists, otherwise selectleftmost literal” is fair.

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 27 of 33 Computational
Logic ∴ Group

Specifics of PROLOG

• leftmost selection rule: LDNF -resolution, LDNF -resolvent, LDNF -tree, . . .
• non-ground negative literals are selected
• a program is a sequence of clauses
• unification without occur check
• depth-first search, backtracking

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 28 of 33 Computational
Logic ∴ Group

Extended Prolog Trees

Definition
Let P be a normal program and Q0 be a normal query.
The Extended Prolog Tree for P∪ {Q0} is a forest of finitely branching,ordered trees of queries, possibly marked with “success” or “failure”,produced as follows:
• start with forest ({TQ0}, TQ0 , subs), where TQ0 contains the single node Q0and subs(Q0) is undefined;• repeatedly apply to current forest F = (T, T , subs) and leftmost unmarkedleaf Q in T1, where T1 ∈ T is the leftmost, bottommost (most nestedsubsidiary) tree with an unmarked leaf, the operation expand(F,Q).

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 29 of 33 Computational
Logic ∴ Group

Operation Expand
Definition
The operation expand(F,Q) is defined as follows:
• if Q = □, then

1. mark Q with “success”2. if T1 ̸= T , then remove from T1 all edges to the right of the branch that endswith Q
• if Q has no LDNF-resolvents, then mark Q with “failure”
• else let L be the leftmost literal in Q:

– L is positive: add for each clause that is applicable to L an LDNF-resolvent asdescendant of Q (respecting the order of the clauses in the program)– L = ∼A is negative (not necessarily ground):
∗ if subs(Q) is undefined, then add a new tree T ′ = A and set subs(Q) to T ′;
∗ if subs(Q) is defined and successful, then mark Q with “failure”;
∗ if subs(Q) is defined and finitely failed, then add in T1 the LDNF-resolvent of Q asthe only descendant of Q.

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 30 of 33 Computational
Logic ∴ Group

Floundering is Ignored (1)

even(0).
even(X) :- \+ odd(X).
odd(s(X)) :- even(X).

| ?- even(X).

X = 0 ;

no

| ?- even(s(s(0))).

yes

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 31 of 33 Computational
Logic ∴ Group

Floundering is Ignored (2)

num(0).
num(s(X)) :- num(X).
even(X) :- num(X), \+ odd(X).
odd(s(X)) :- even(X).

| ?- even(X).

X = 0 ;

X = s(s(0)) ;

X = s(s(s(s(0)))) ;

...
Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 32 of 33 Computational

Logic ∴ Group

Conclusion
Summary
• For every normal logic program P, its completion comp(P) replaces thelogical implications of clauses by equivalences.
• SLDNF resolution w.r.t. P is sound for entailment w.r.t. comp(P).
• SLDNF resolution is only complete (for entailment w.r.t. comp(P)) forcertain combinations of classes of programs, queries, and selection rules.
• For a normal program P, its dependency graph DP explicitly showspositive and negative dependencies between predicate symbols.
• A normal program P is stratified iff DP has no cycle with a negative edge.
Suggested action points:
• Construct the completion of the programs on slides 31 and 32.
• Find a program that shows unfairness of the leftmost selection rule.

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 33 of 33 Computational
Logic ∴ Group

	First-Order Formulas and Logical Truth
	Completion of Programs
	Soundness and Restricted Completeness of SLDNF Resolution

