Answer Set Programming: Basics

Sebastian Rudolph

Computational Logic Group Technische Universität Dresden

Slides based on a lecture by Martin Gebser and Torsten Schaub.

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0

Unported License.

Answer Set Programming – Basics: Overview

- 1 Motivation: ASP vs. Prolog and SAT
- 2 ASP Syntax
- 3 Semantics
- 4 Examples
- 5 Variables
- 6 Reasoning modes

Outline

- 1 Motivation: ASP vs. Prolog and SAT
- 2 ASP Syntax
- 3 Semantics
- 4 Examples
- 5 Variables
- 6 Reasoning modes

KR's shift of paradigm

- Theorem Proving based approach (eg. Prolog)
 - 1 Provide a representation of the problem
 - **2** A solution is given by a derivation of a query
- Model Generation based approach (eg. SATisfiability testing)
 - 1 Provide a representation of the problem
 - 2 A solution is given by a model of the representation

KR's shift of paradigm

- Theorem Proving based approach (eg. Prolog)
 - Provide a representation of the problem
 - 2 A solution is given by a derivation of a query
- Model Generation based approach (eg. SATisfiability testing)
 - Provide a representation of the problem
 - 2 A solution is given by a model of the representation

Prolog program

```
on(a,b). on(b,c).
```

```
above(X,Y) := on(X,Y). above(X,Y) := on(X,Z), above(Z,Y).
```

```
?- above(a,c). true. ?- above(c,a). no.
```

Prolog program

```
on(a,b). on(b,c).

above(X,Y) := on(X,Y). above(X,Y) := on(X,Z), above(Z,Y).
```

```
?- above(a,c). true. ?- above(c,a). no.
```

Prolog program

```
on(a,b). on(b,c).
```

```
above(X,Y) := on(X,Y). above(X,Y) := on(X,Z), above(Z,Y).
```

```
?- above(a,c). true. ?- above(c,a). no.
```

Prolog program

```
on(a,b). on(b,c).
```

```
above(X,Y) := on(X,Y). above(X,Y) := on(X,Z), above(Z,Y).
```

Prolog queries (testing entailment)

```
?- above(a,c). true. ?- above(c,a). no.
```

Shuffled Prolog program

```
on(a,b). on(b,c).
```

```
above(X,Y) := above(X,Z), on(Z,Y). above(X,Y) := on(X,Y).
```

Prolog queries

?- above(a.c). Fatal Error: local stack overflow.

Shuffled Prolog program

```
on(a,b). on(b,c).
```

```
above(X,Y) := above(X,Z), on(Z,Y). above(X,Y) := on(X,Y).
```

```
?- above(a,c). Fatal Error: local stack overflow.
```

Shuffled Prolog program

```
on(a,b). on(b,c).
```

```
above(X,Y) := above(X,Z), on(Z,Y). above(X,Y) := on(X,Y).
```

Prolog queries (answered via fixed execution)

```
?- above(a,c). Fatal Error: local stack overflow.
```

KR's shift of paradigm

- Theorem Proving based approach (eg. Prolog)
 - 1 Provide a representation of the problem
 - **2** A solution is given by a derivation of a query
- Model Generation based approach (eg. SATisfiability testing)
 - 1 Provide a representation of the problem
 - 2 A solution is given by a model of the representation

KR's shift of paradigm

- Theorem Proving based approach (eg. Prolog)
 - Provide a representation of the problem
 - 2 A solution is given by a derivation of a query
- Model Generation based approach (eg. SATisfiability testing)
 - Provide a representation of the problem
 - 2 A solution is given by a model of the representation

Formula

```
on(a,b)

\land on(b,c)

\land (on(X,Y) \rightarrow above(X,Y))

\land (on(X,Z) \land above(Z,Y) \rightarrow above(X,Y))
```

Herbrand mode

Formula

```
on(a,b)

\land on(b,c)

\land (on(X,Y) \rightarrow above(X,Y))

\land (on(X,Z) \land above(Z,Y) \rightarrow above(X,Y))
```

Herbrand model

```
\left\{\begin{array}{ll} \textit{on}(\mathsf{a}, \mathsf{b}), & \textit{on}(\mathsf{b}, \mathsf{c}), & \textit{on}(\mathsf{a}, \mathsf{c}), & \textit{on}(\mathsf{b}, \mathsf{b}), \\ \textit{above}(\mathsf{a}, \mathsf{b}), & \textit{above}(\mathsf{b}, \mathsf{c}), & \textit{above}(\mathsf{a}, \mathsf{c}), & \textit{above}(\mathsf{b}, \mathsf{b}), & \textit{above}(\mathsf{c}, \mathsf{b}) \end{array}\right\}
```

Formula

```
on(a,b)

\land on(b,c)

\land (on(X,Y) \rightarrow above(X,Y))

\land (on(X,Z) \land above(Z,Y) \rightarrow above(X,Y))
```

Herbrand model (among 426!)

```
\left\{ \begin{array}{ll} on(a,b), & on(b,c), & on(a,c), & on(b,b), \\ above(a,b), & above(b,c), & above(a,c), & above(b,b), & above(c,b) \end{array} \right\}
```

Formula

```
on(a, b)
\land on(b, c)
\land (on(X, Y) \rightarrow above(X, Y))
\land (on(X, Z) \land above(Z, Y) \rightarrow above(X, Y))

Herbrand model (among 426!)
\begin{cases} on(a, b), & on(b, c), & on(a, c), & on(b, b), \\ above(a, b), & above(b, c), & above(a, c), & above(b, b), & above(c, b) \end{cases}
```

Formula

on(a,b)

KR's shift of paradigm

- Theorem Proving based approach (eg. Prolog)
 - 1 Provide a representation of the problem
 - 2 A solution is given by a derivation of a query
- Model Generation based approach (eg. SATisfiability testing)
 - 1 Provide a representation of the problem
 - 2 A solution is given by a model of the representation

KR's shift of paradigm

- Theorem Proving based approach (eg. Prolog)
 - Provide a representation of the problem
 - 2 A solution is given by a derivation of a query
- Model Generation based approach (eg. SATisfiability testing)
 - 1 Provide a representation of the problem
 - 2 A solution is given by a model of the representation
 - → Answer Set Programming (ASP)

Logic program

```
on(a,b). on(b,c).

above(X,Y) := on(X,Y). above(X,Y) := on(X,Z), above(Z,Y).
```

Stable Herbrand model

```
on(a,b), on(b,c), above(b,c), above(a,b), above(a,c)
```

Logic program

```
on(a,b). on(b,c). above(X,Y) := on(X,Y). above(X,Y) := on(X,Z), above(Z,Y).
```

Stable Herbrand model

```
\{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) \}
```

Logic program

```
on(a,b). on(b,c).
above(X,Y) := on(X,Y). above(X,Y) := on(X,Z), above(Z,Y).
```

Stable Herbrand model (and no others)

```
\{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) \}
```

Logic program

```
on(a,b). on(b,c).
above(X,Y) := above(Z,Y), on(X,Z). above(X,Y) := on(X,Y).
```

Stable Herbrand model (and no others)

```
\{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) \}
```

ASP versus LP

ASP	Prolog					
Model generation	Query orientation					
Bottom-up	Top-down					
Modeling language	Programming language					
Rule-based format						
Instantiation	Unification					
Flat terms	Nested terms					
$\overline{\text{(Turing +) } NP(^{NP})}$	Turing					

ASP versus SAT

ASP	SAT					
Model generation						
Bottom-up						
Constructive Logic	Classical Logic					
Closed (and open) world reasoning	Open world reasoning					
Modeling language	_					
Complex reasoning modes	Satisfiability testing					
Satisfiability Enumeration/Projection Intersection/Union Optimization	Satisfiability — — —					
$(Turing +) NP(^{NP})$	NP					

What is ASP good for?

- Combinatorial search problems in the realm of P, NP, and NP^{NP} (some with substantial amount of data), like
 - Automated Planning
 - Code Optimization
 - Composition of Renaissance Music
 - Database Integration
 - Decision Support for NASA shuttle controllers
 - Model Checking
 - Product Configuration
 - Robotics
 - Systems Biology
 - System Synthesis
 - (industrial) Team-building
 - and many many more

What is ASP good for?

- Combinatorial search problems in the realm of P, NP, and NP^{NP} (some with substantial amount of data), like
 - Automated Planning
 - Code Optimization
 - Composition of Renaissance Music
 - Database Integration
 - Decision Support for NASA shuttle controllers
 - Model Checking
 - Product Configuration
 - Robotics
 - Systems Biology
 - System Synthesis
 - (industrial) Team-building
 - and many many more

Outline

- 1 Motivation: ASP vs. Prolog and SAT
- 2 ASP Syntax
- 3 Semantics
- 4 Examples
- 5 Variables
- 6 Reasoning modes

Normal logic programs

- lacksquare A logic program, P, over a set A of atoms is a finite set of rules
- \blacksquare A (normal) rule, r, is of the form

$$a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$$

where $0 \le m \le n$ and each $a_i \in A$ is an atom for $0 \le i \le n$

 $body(r) = \{a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n\}$

$$body(r)' = \{a_1, \dots, a_m\}$$

$$body(r)^{-} = \{a_{m+1}, \ldots, a_n\}$$

$$atom(P) = \bigcup_{r \in P} \left(\{ head(r) \} \cup body(r)^{\top} \cup body(r)^{\top} \right)$$

A program P is positive if $bodv(r)^- = \emptyset$ for all $r \in P$

Normal logic programs

- \blacksquare A logic program, P, over a set A of atoms is a finite set of rules
- \blacksquare A (normal) rule, r, is of the form

$$a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$$

where $0 \le m \le n$ and each $a_i \in \mathcal{A}$ is an atom for $0 \le i \le n$

Notation

$$\begin{array}{lll} head(r) & = & a_0 \\ body(r) & = & \{a_1,\ldots,a_m,\sim a_{m+1},\ldots,\sim a_n\} \\ body(r)^+ & = & \{a_1,\ldots,a_m\} \\ body(r)^- & = & \{a_{m+1},\ldots,a_n\} \\ atom(P) & = & \bigcup_{r\in P} \left(\{head(r)\}\cup body(r)^+\cup body(r)^-\right) \\ body(P) & = & \{body(r)\mid r\in P\} \end{array}$$

A program P is positive if $body(r)^- = \emptyset$ for all $r \in P$

Normal logic programs

- lacksquare A logic program, P, over a set A of atoms is a finite set of rules
- \blacksquare A (normal) rule, r, is of the form

$$a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$$

where $0 \le m \le n$ and each $a_i \in \mathcal{A}$ is an atom for $0 \le i \le n$

Notation

$$head(r) = a_0$$

$$body(r) = \{a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n\}$$

$$body(r)^+ = \{a_1, \dots, a_m\}$$

$$body(r)^- = \{a_{m+1}, \dots, a_n\}$$

$$atom(P) = \bigcup_{r \in P} (\{head(r)\} \cup body(r)^+ \cup body(r)^-)$$

$$body(P) = \{body(r) \mid r \in P\}$$

■ A program P is positive if $body(r)^- = \emptyset$ for all $r \in P$

Rough notational convention

We sometimes use the following notation interchangeably in order to stress the respective view:

	true, false	if	and	or	iff	default negation	classical negation
source code		:-	,			not	_
logic program		\leftarrow	,	;		\sim	\neg
formula	\top, \bot	\rightarrow	\wedge	\vee	\leftrightarrow	\sim	\neg

Outline

- 1 Motivation: ASP vs. Prolog and SAT
- 2 ASP Syntax
- 3 Semantics
- 4 Examples
- 5 Variables
- 6 Reasoning modes

Formal Definition

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any $r \in P$, $head(r) \in X$ whenever $body(r)^+ \subseteq X$
 - lacksquare X corresponds to a model of P (seen as a formula)
- The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)
 - \blacksquare Cn(P) corresponds to the \subseteq -smallest model of P (ditto)
- The set Cn(P) of atoms is the stable model of a positive program P

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any $r \in P$, $head(r) \in X$ whenever $body(r)^+ \subseteq X$
 - X corresponds to a model of P (seen as a formula)
- The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)
 - Arr Cn(P) corresponds to the \subseteq -smallest model of P (ditto)
- The set Cn(P) of atoms is the stable model of a positive program P

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any $r \in P$, $head(r) \in X$ whenever $body(r)^+ \subseteq X$
 - X corresponds to a model of P (seen as a formula)
- The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)
 - Cn(P) corresponds to the \subseteq -smallest model of P (ditto)
- The set Cn(P) of atoms is the stable model of a positive program P

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any $r \in P$, $head(r) \in X$ whenever $body(r)^+ \subseteq X$
 - X corresponds to a model of P (seen as a formula)
- The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)
 - Cn(P) corresponds to the \subseteq -smallest model of P (ditto)
- The set Cn(P) of atoms is the stable model of a positive program P

Consider the logical formula Φ and its three (classical) models:

$$\{p,q\},\{q,r\}, \text{ and } \{p,q,r\}$$

if X is a (classical) model of P and

= if all atoms in X are justified by some rule in P

Consider the logical formula Φ and its three (classical) models:

$$\{p,q\},\{q,r\}, \text{ and } \{p,q,r\}$$

Informally, a set X of atoms is a stable model of a logic program P

- \blacksquare if X is a (classical) model of P and
- \blacksquare if all atoms in X are justified by some rule in P

Consider the logical formula Φ and its three (classical) models:

$$\Phi \ \boxed{q \land (q \land \neg r \rightarrow p)}$$

$$\begin{array}{ccc}
\widehat{p}^* \mapsto & 1 \\
q & \mapsto & 1 \\
r & \mapsto & 0
\end{array}$$

 $\{p,q\},\{q,r\}, \text{ and } \{p,q,r\}$

nformally, a set X of atoms is a stable model of a logic program P

- \blacksquare if X is a (classical) model of P and
- \blacksquare if all atoms in X are justified by some rule in P

Consider the logical formula Φ and its three (classical) models:

$$\{p, q\}, \{q, r\}, \text{ and } \{p, q, r\}$$

Formula Φ has one stable model, often called answer set:

Informally, a set X of atoms is a stable model of a logic program P

- \blacksquare if X is a (classical) model of P and
- \blacksquare if all atoms in X are justified by some rule in P

Consider the logical formula Φ and its three (classical) models:

$$\Phi \ \boxed{q \land (q \land \neg r \rightarrow p)}$$

$$\{p, q\}, \{q, r\}, \text{ and } \{p, q, r\}$$

$$\begin{array}{cccc}
P_{\Phi} & q & \leftarrow \\
p & \leftarrow & q, \sim r
\end{array}$$

$$\{p,q\}$$

Informally, a set X of atoms is a stable model of a logic program P

- if X is a (classical) model of P and
 - \blacksquare if all atoms in X are justified by some rule in P

Consider the logical formula Φ and its three (classical) models:

$$\Phi \left[q \wedge (q \wedge \neg r \rightarrow p) \right]$$

$$\{p,q\},\{q,r\}, \text{ and } \{p,q,r\}$$

Formula Φ has one stable model, often called answer set:

$$\{p,q\}$$

Informally, a set X of atoms is a stable model of a logic program P

- if X is a (classical) model of P and
 - if all atoms in X are justified by some rule in P

 ooted in intuitionistic logics HT (Heyting, 1930) and G3 (Göde

Consider the logical formula Φ and its three (classical) models:

$$\Phi \ \boxed{q \land (q \land \neg r \rightarrow p)}$$

$$\{p, q\}, \{q, r\}, \text{ and } \{p, q, r\}$$

Formula Φ has one stable model. often called answer set:

$$P_{\Phi} \mid q$$

$$\{p,q\}$$

Informally, a set X of atoms is a stable model of a logic program P

- if X is a (classical) model of P and
- if all atoms in X are justified by some rule in P

Consider the logical formula Φ and its three (classical) models:

$$\Phi \left[q \wedge (q \wedge \neg r \rightarrow p) \right]$$

$$\{p,q\},\{q,r\}, \text{ and } \{p,q,r\}$$

Formula Φ has one stable model, often called answer set:

$$\begin{array}{cccc} P_{\Phi} & q & \leftarrow & \\ p & \leftarrow & q, \ \sim r \end{array}$$

$$\{p,q\}$$

Informally, a set X of atoms is a stable model of a logic program P

- if X is a (classical) model of P and
- if all atoms in X are justified by some rule in P

Stable model of normal programs

■ The reduct, P^X , of a program P relative to a set X of atoms is defined by

$$P^X = \{ head(r) \leftarrow body(r)^+ \mid r \in P \text{ and } body(r)^- \cap X = \emptyset \}$$

- A set X of atoms is a stable model of a program P, if $Cn(P^X) = X$
- Note $Cn(P^X)$ is the \subseteq -smallest (classical) model of P^X
- Note Every atom in X is justified by an "applying rule from P"

Stable model of normal programs

■ The reduct, P^X , of a program P relative to a set X of atoms is defined by

$$P^X = \{ head(r) \leftarrow body(r)^+ \mid r \in P \text{ and } body(r)^- \cap X = \emptyset \}$$

- A set X of atoms is a stable model of a program P, if $Cn(P^X) = X$
- Note $Cn(P^X)$ is the ⊆-smallest (classical) model of P^X
- \blacksquare Note Every atom in X is justified by an "applying rule from P"

Stable model of normal programs

■ The reduct, P^X , of a program P relative to a set X of atoms is defined by

$$P^X = \{ head(r) \leftarrow body(r)^+ \mid r \in P \text{ and } body(r)^- \cap X = \emptyset \}$$

- A set X of atoms is a stable model of a program P, if $Cn(P^X) = X$
- Note $Cn(P^X)$ is the \subseteq -smallest (classical) model of P^X
- Note Every atom in X is justified by an "applying rule from P"

A closer look at P^X

- In other words, given a set X of atoms from P,
 - P^X is obtained from P by deleting
 - **1** each rule having $\sim a$ in its body with $a \in X$ and then
 - 2 all negative atoms of the form $\sim a$ in the bodies of the remaining rules
- Note Only negative body literals are evaluated wrt X

A closer look at P^X

- In other words, given a set X of atoms from P,
 - P^X is obtained from P by deleting
 - 1 each rule having $\sim a$ in its body with $a \in X$ and then
 - 2 all negative atoms of the form ∼a in the bodies of the remaining rules
- Note Only negative body literals are evaluated wrt X

Outline

- 1 Motivation: ASP vs. Prolog and SAT
- 2 ASP Syntax
- 3 Semantics
- 4 Examples
- 5 Variables
- 6 Reasoning modes

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ← <i>p q</i> ←	{q} X
{p }	<i>p</i> ← <i>p</i>	Ø X
{ q}	p ← p q ←	{q} V
$\{p,q\}$	<i>p</i> ← <i>p</i>	Ø X

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow p$	{q} ×
	$q \leftarrow$	
{p }	<i>p</i> ← <i>p</i>	Ø ×
{ q}	<i>p</i> ← <i>p q</i> ←	{q}
$\{p,q\}$	$p \leftarrow p$	Ø

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow p$	{q} ✗
	$q \leftarrow$	
{p }	<i>p</i> ← <i>p</i>	Ø ×
{ q}	<i>p</i> ← <i>p q</i> ←	{q}
$\{p,q\}$	$p \leftarrow p$	Ø

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

Χ	P^X	$Cn(P^X)$
{ }	$p \leftarrow p$	{q} ✗
	$q \leftarrow$	
{p }	<i>p</i> ← <i>p</i>	Ø x
{ q}	$p \leftarrow p$ $q \leftarrow$	{q}
$\{p,q\}$	<i>p</i> ← <i>p</i>	Ø×

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow p$	{q} ×
	$q \leftarrow$	
{p }	<i>p</i> ← <i>p</i>	Ø x
{ q}	$p \leftarrow p$ $q \leftarrow$	{q} ✓
$\{p,q\}$	<i>p</i> ← <i>p</i>	Ø ×

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow p$	{q} ✗
	$q \leftarrow$	
{p }	$p \leftarrow p$	Ø x
{ q}	$p \leftarrow p$ $q \leftarrow$	{q} ✓
$\{p,q\}$	<i>p</i> ← <i>p</i>	Ø x

$$P = \{ p \leftarrow \sim q, \ q \leftarrow \sim p \}$$

$$P = \{ p \leftarrow \sim q, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ←	{ <i>p</i> , <i>q</i> } ×
	$q \leftarrow$	
{p }	<i>p</i> ←	{p}
{ q}		{q}
	$q \leftarrow$	
$\{p,q\}$		Ø

$$P = \{ p \leftarrow \sim q, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ←	{p, q} ✗
	$q \leftarrow$	
{p }	<i>p</i> ←	{ <i>p</i> }
{ q}		{q}
	$q \leftarrow$	
$\{p,q\}$		Ø

$$P = \{ p \leftarrow \sim q, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ←	{p, q} ✗
	$q \leftarrow$	
{p }	<i>p</i> ←	{p} ✓
{ q}	a /	{q}
$\{p,q\}$	$q \leftarrow$	Ø

$$P = \{ p \leftarrow \sim q, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ←	{p, q} ✗
	$q \leftarrow$	
{p }	<i>p</i> ←	{p} ✓
{ q}	~ /	{q} ✓
	<i>q</i> ←	d
$\{p,q\}$		Ų V

$$P = \{ p \leftarrow \sim q, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ←	{p, q} ✗
	$q \leftarrow$	
{p }	<i>p</i> ←	{p} ✓
{ q}	$q \leftarrow$	{q} ✓
$\{p,q\}$		Ø x

$$P = \{p \leftarrow \sim p\}$$

$$P = \{p \leftarrow \sim p\}$$

X	P^X	$Cn(P^X)$	
{ }	<i>p</i> ←	{ <i>p</i> }	K
$\overline{\{p\}}$		Ø	_

$$P = \{p \leftarrow \sim p\}$$

Χ	P^X	$Cn(P^X)$	
{ }	<i>p</i> ←	{ <i>p</i> }	X
{ <i>p</i> }		Ø	

$$P = \{p \leftarrow \sim p\}$$

Χ	P^X	$Cn(P^X)$	
{ }	<i>p</i> ←	{ <i>p</i> }	X
{ <i>p</i> }		Ø	X

Some properties

- A logic program may have zero, one, or multiple stable models!
- If X is a stable model of a logic program P then X is a model of P (seen as a formula)
- If X and Y are stable models of a *normal* program P, then $X \not\subset Y$

Some properties

- A logic program may have zero, one, or multiple stable models!
- If X is a stable model of a logic program P, then X is a model of P (seen as a formula)
- If X and Y are stable models of a *normal* program P, then $X \not\subset Y$

Outline

- 1 Motivation: ASP vs. Prolog and SAT
- 2 ASP Syntax
- 3 Semantics
- 4 Examples
- 5 Variables
- 6 Reasoning modes

Let P be a logic program

- Let \mathcal{T} be a set of (variable-free) terms
- Let $\mathcal A$ be a set of (variable-free) atoms constructable from $\mathcal T$
- Ground Instances of $r \in P$: Set of variable-free rules obtained by replacing all variables in r by elements from \mathcal{T} :

$$ground(r) = \{r\theta \mid \theta : var(r) \rightarrow \mathcal{T} \text{ and } var(r\theta) = \emptyset\}$$

where var(r) stands for the set of all variables occurring in r θ is a (ground) substitution

■ Ground Instantiation of P: $ground(P) = \bigcup_{r \in P} ground(r)$

Let P be a logic program

- \blacksquare Let $\mathcal T$ be a set of variable-free terms (also called Herbrand universe)
- Let \mathcal{A} be a set of (variable-free) atoms constructable from \mathcal{T} (also called alphabet or Herbrand base)
- Ground Instances of $r \in P$: Set of variable-free rules obtained by replacing all variables in r by elements from \mathcal{T} :

$$ground(r) = \{r\theta \mid \theta : var(r) \rightarrow \mathcal{T} \text{ and } var(r\theta) = \emptyset\}$$

where var(r) stands for the set of all variables occurring in r; θ is a (ground) substitution

Ground Instantiation of P: $ground(P) = \bigcup_{r \in P} ground(r)$

Let P be a logic program

- lacksquare Let ${\mathcal T}$ be a set of (variable-free) terms
- lacksquare Let ${\mathcal A}$ be a set of (variable-free) atoms constructable from ${\mathcal T}$
- Ground Instances of $r \in P$: Set of variable-free rules obtained by replacing all variables in r by elements from \mathcal{T} :

$$ground(r) = \{r\theta \mid \theta : var(r) \rightarrow \mathcal{T} \text{ and } var(r\theta) = \emptyset\}$$

where var(r) stands for the set of all variables occurring in r; θ is a (ground) substitution

Ground Instantiation of P: $ground(P) = \bigcup_{r \in P} ground(r)$

Let P be a logic program

- lacksquare Let ${\mathcal T}$ be a set of (variable-free) terms
- lacksquare Let ${\mathcal A}$ be a set of (variable-free) atoms constructable from ${\mathcal T}$
- Ground Instances of $r \in P$: Set of variable-free rules obtained by replacing all variables in r by elements from \mathcal{T} :

$$ground(r) = \{r\theta \mid \theta : var(r) \rightarrow \mathcal{T} \text{ and } var(r\theta) = \emptyset\}$$

where var(r) stands for the set of all variables occurring in r; θ is a (ground) substitution

■ Ground Instantiation of P: $ground(P) = \bigcup_{r \in P} ground(r)$

An example

$$P = \{ r(a,b) \leftarrow, r(b,c) \leftarrow, t(X,Y) \leftarrow r(X,Y) \}$$

$$T = \{ a,b,c \}$$

$$A = \{ r(a,a), r(a,b), r(a,c), r(b,a), r(b,b), r(b,c), r(c,a), r(c,b), r(c,c), \\ t(a,a), t(a,b), t(a,c), t(b,a), t(b,b), t(b,c), t(c,a), t(c,b), t(c,c) \}$$

$$r(a,b) \leftarrow, \\ r(b,c) \leftarrow, \\ r(b,c) \leftarrow, \\ r(b,c) \leftarrow, \\ r(b,c) \leftarrow, \\ r(c,a) \leftarrow r(c,a), r(c,b), r(c,c), \\ r(c,a) \leftarrow r(c,a), \\ r(c,a)$$

Intelligent Grounding aims at reducing the ground instantiation

An example

$$P = \{ r(a,b) \leftarrow, r(b,c) \leftarrow, t(X,Y) \leftarrow r(X,Y) \}$$

$$T = \{ a,b,c \}$$

$$A = \begin{cases} r(a,a), r(a,b), r(a,c), r(b,a), r(b,b), r(b,c), r(c,a), r(c,b), r(c,c), \\ t(a,a), t(a,b), t(a,c), t(b,a), t(b,b), t(b,c), t(c,a), t(c,b), t(c,c) \end{cases}$$

$$ground(P) = \begin{cases} r(a,b) \leftarrow, \\ r(b,c) \leftarrow, \\ t(a,a) \leftarrow r(a,a), t(b,a) \leftarrow r(b,a), t(c,a) \leftarrow r(c,a), \\ t(a,b) \leftarrow r(a,b), t(b,b) \leftarrow r(b,b), t(c,b) \leftarrow r(c,b), \\ t(a,c) \leftarrow r(a,c), t(b,c) \leftarrow r(b,c), t(c,c) \leftarrow r(c,c) \end{cases}$$

Intelligent Grounding aims at reducing the ground instantiation

An example

$$P = \{ r(a,b) \leftarrow, r(b,c) \leftarrow, t(X,Y) \leftarrow r(X,Y) \}$$

$$T = \{ a,b,c \}$$

$$A = \begin{cases} r(a,a), r(a,b), r(a,c), r(b,a), r(b,b), r(b,c), r(c,a), r(c,b), r(c,c), \\ t(a,a), t(a,b), t(a,c), t(b,a), t(b,b), t(b,c), t(c,a), t(c,b), t(c,c) \end{cases}$$

$$ground(P) = \begin{cases} r(a,b) \leftarrow, \\ r(b,c) \leftarrow, \\ t(a,a) \leftarrow r(a,a), t(b,a) \leftarrow r(b,a), t(c,a) \leftarrow r(c,a), \\ t(a,b) \leftarrow r(a,b), t(b,b) \leftarrow r(b,b), t(c,b) \leftarrow r(c,b), \\ t(a,c) \leftarrow r(a,c), t(b,c) \leftarrow r(b,c), t(c,c) \leftarrow r(c,c) \end{cases}$$

Intelligent Grounding aims at reducing the ground instantiation

Stable models of programs with Variables

Let P be a normal logic program with variables

■ A set X of (ground) atoms is a stable model of F if $Cn(ground(P)^X) = X$

Stable models of programs with Variables

Let P be a normal logic program with variables

■ A set X of (ground) atoms is a stable model of P, if $Cn(ground(P)^X) = X$

Outline

- 1 Motivation: ASP vs. Prolog and SAT
- 2 ASP Syntax
- 3 Semantics
- 4 Examples
- 5 Variables
- 6 Reasoning modes

Reasoning Modes

- Satisfiability
- Enumeration[†]
- Projection[†]
- Intersection[‡]
- Union[‡]
- Optimization
- and combinations of them

- † without solution recording
- without solution enumeration