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Exercise 1
Exercise. Decide if the following conjunctive queries are tree queries by applying (one version of) the GYO algorithm.

1. ∃x , y , z, v . r(x , y) ∧ r(y , z) ∧ r(z, v) ∧ s(x , y , z) ∧ s(y , z, v)

2. ∃x , y , z, u, v ,w . r(x , y) ∧ s(x , z, v) ∧ r(u, z) ∧ t(x , v , u,w)

Definition (Lecture 6, Slides 24)
A GYO-reduction is a procedure to check acyclicity:
I Input: hypergraph H = 〈V ,E〉 (we do not need relation labels here)
I Output: GYO-reduct of H

Apply the following simplification rules as long as possible:

(1) Delete all hyperedges that are empty or that are contained in other hyperedges.

(2) Delete all vertices that occur in at most one hyperedge.

The input query is a tree query if the GYO-reduct of its hypergraph is the empty hypergraph.

Solution.
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x y z

v

(1) delete 〈x , y〉
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(2) delete y , z, v

 query is acyclic.

5 / 55



Exercise 1
Exercise. Decide if the following conjunctive queries are tree queries by applying (one version of) the GYO algorithm.

1. ∃x , y , z, v . r(x , y) ∧ r(y , z) ∧ r(z, v) ∧ s(x , y , z) ∧ s(y , z, v)

2. ∃x , y , z, u, v ,w . r(x , y) ∧ s(x , z, v) ∧ r(u, z) ∧ t(x , v , u,w)

Definition (Lecture 6, Slides 24)
A GYO-reduction is a procedure to check acyclicity:
I Input: hypergraph H = 〈V ,E〉 (we do not need relation labels here)
I Output: GYO-reduct of H

Apply the following simplification rules as long as possible:

(1) Delete all hyperedges that are empty or that are contained in other hyperedges.

(2) Delete all vertices that occur in at most one hyperedge.

The input query is a tree query if the GYO-reduct of its hypergraph is the empty hypergraph.

Solution.

x y z

v

(1) delete 〈x , y〉

(1) delete 〈y , z〉

(1) delete 〈z, v〉

(2) delete x

(2) delete y , z, v

 query is acyclic.

6 / 55



Exercise 1
Exercise. Decide if the following conjunctive queries are tree queries by applying (one version of) the GYO algorithm.

1. ∃x , y , z, v . r(x , y) ∧ r(y , z) ∧ r(z, v) ∧ s(x , y , z) ∧ s(y , z, v)

2. ∃x , y , z, u, v ,w . r(x , y) ∧ s(x , z, v) ∧ r(u, z) ∧ t(x , v , u,w)

Definition (Lecture 6, Slides 24)
A GYO-reduction is a procedure to check acyclicity:
I Input: hypergraph H = 〈V ,E〉 (we do not need relation labels here)
I Output: GYO-reduct of H

Apply the following simplification rules as long as possible:

(1) Delete all hyperedges that are empty or that are contained in other hyperedges.

(2) Delete all vertices that occur in at most one hyperedge.

The input query is a tree query if the GYO-reduct of its hypergraph is the empty hypergraph.

Solution.

x y z

v

(1) delete 〈x , y〉

(1) delete 〈y , z〉

(1) delete 〈z, v〉

(2) delete x

(2) delete y , z, v

 query is acyclic.

7 / 55



Exercise 1
Exercise. Decide if the following conjunctive queries are tree queries by applying (one version of) the GYO algorithm.

1. ∃x , y , z, v . r(x , y) ∧ r(y , z) ∧ r(z, v) ∧ s(x , y , z) ∧ s(y , z, v)

2. ∃x , y , z, u, v ,w . r(x , y) ∧ s(x , z, v) ∧ r(u, z) ∧ t(x , v , u,w)

Definition (Lecture 6, Slides 24)
A GYO-reduction is a procedure to check acyclicity:
I Input: hypergraph H = 〈V ,E〉 (we do not need relation labels here)
I Output: GYO-reduct of H

Apply the following simplification rules as long as possible:

(1) Delete all hyperedges that are empty or that are contained in other hyperedges.

(2) Delete all vertices that occur in at most one hyperedge.

The input query is a tree query if the GYO-reduct of its hypergraph is the empty hypergraph.

Solution.

x y z

v

(1) delete 〈x , y〉

(1) delete 〈y , z〉

(1) delete 〈z, v〉

(2) delete x

(2) delete y , z, v

 query is acyclic.

8 / 55



Exercise 1
Exercise. Decide if the following conjunctive queries are tree queries by applying (one version of) the GYO algorithm.

1. ∃x , y , z, v . r(x , y) ∧ r(y , z) ∧ r(z, v) ∧ s(x , y , z) ∧ s(y , z, v)

2. ∃x , y , z, u, v ,w . r(x , y) ∧ s(x , z, v) ∧ r(u, z) ∧ t(x , v , u,w)

Definition (Lecture 6, Slides 24)
A GYO-reduction is a procedure to check acyclicity:
I Input: hypergraph H = 〈V ,E〉 (we do not need relation labels here)
I Output: GYO-reduct of H

Apply the following simplification rules as long as possible:

(1) Delete all hyperedges that are empty or that are contained in other hyperedges.

(2) Delete all vertices that occur in at most one hyperedge.

The input query is a tree query if the GYO-reduct of its hypergraph is the empty hypergraph.

Solution.

x y z

v

(1) delete 〈x , y〉

(1) delete 〈y , z〉

(1) delete 〈z, v〉

(2) delete x

(2) delete y , z, v

 query is acyclic.

9 / 55



Exercise 1
Exercise. Decide if the following conjunctive queries are tree queries by applying (one version of) the GYO algorithm.

1. ∃x , y , z, v . r(x , y) ∧ r(y , z) ∧ r(z, v) ∧ s(x , y , z) ∧ s(y , z, v)

2. ∃x , y , z, u, v ,w . r(x , y) ∧ s(x , z, v) ∧ r(u, z) ∧ t(x , v , u,w)

Definition (Lecture 6, Slides 24)
A GYO-reduction is a procedure to check acyclicity:
I Input: hypergraph H = 〈V ,E〉 (we do not need relation labels here)
I Output: GYO-reduct of H

Apply the following simplification rules as long as possible:

(1) Delete all hyperedges that are empty or that are contained in other hyperedges.

(2) Delete all vertices that occur in at most one hyperedge.

The input query is a tree query if the GYO-reduct of its hypergraph is the empty hypergraph.

Solution.

y z

v

(1) delete 〈x , y〉

(1) delete 〈y , z〉

(1) delete 〈z, v〉

(2) delete x

(2) delete y , z, v

 query is acyclic.

10 / 55



Exercise 1
Exercise. Decide if the following conjunctive queries are tree queries by applying (one version of) the GYO algorithm.

1. ∃x , y , z, v . r(x , y) ∧ r(y , z) ∧ r(z, v) ∧ s(x , y , z) ∧ s(y , z, v)

2. ∃x , y , z, u, v ,w . r(x , y) ∧ s(x , z, v) ∧ r(u, z) ∧ t(x , v , u,w)

Definition (Lecture 6, Slides 24)
A GYO-reduction is a procedure to check acyclicity:
I Input: hypergraph H = 〈V ,E〉 (we do not need relation labels here)
I Output: GYO-reduct of H

Apply the following simplification rules as long as possible:

(1) Delete all hyperedges that are empty or that are contained in other hyperedges.

(2) Delete all vertices that occur in at most one hyperedge.

The input query is a tree query if the GYO-reduct of its hypergraph is the empty hypergraph.

Solution.

(1) delete 〈x , y〉

(1) delete 〈y , z〉

(1) delete 〈z, v〉

(2) delete x

(2) delete y , z, v

 query is acyclic.

11 / 55



Exercise 1
Exercise. Decide if the following conjunctive queries are tree queries by applying (one version of) the GYO algorithm.

1. ∃x , y , z, v . r(x , y) ∧ r(y , z) ∧ r(z, v) ∧ s(x , y , z) ∧ s(y , z, v)

2. ∃x , y , z, u, v ,w . r(x , y) ∧ s(x , z, v) ∧ r(u, z) ∧ t(x , v , u,w)

Definition (Lecture 6, Slides 24)
A GYO-reduction is a procedure to check acyclicity:
I Input: hypergraph H = 〈V ,E〉 (we do not need relation labels here)
I Output: GYO-reduct of H

Apply the following simplification rules as long as possible:

(1) Delete all hyperedges that are empty or that are contained in other hyperedges.

(2) Delete all vertices that occur in at most one hyperedge.

The input query is a tree query if the GYO-reduct of its hypergraph is the empty hypergraph.

Solution.

(1) delete 〈x , y〉

(1) delete 〈y , z〉

(1) delete 〈z, v〉

(2) delete x

(2) delete y , z, v

 query is acyclic.

12 / 55



Exercise 1
Exercise. Decide if the following conjunctive queries are tree queries by applying (one version of) the GYO algorithm.

1. ∃x , y , z, v . r(x , y) ∧ r(y , z) ∧ r(z, v) ∧ s(x , y , z) ∧ s(y , z, v)

2. ∃x , y , z, u, v ,w . r(x , y) ∧ s(x , z, v) ∧ r(u, z) ∧ t(x , v , u,w)

Definition (Lecture 6, Slides 24)
A GYO-reduction is a procedure to check acyclicity:
I Input: hypergraph H = 〈V ,E〉 (we do not need relation labels here)
I Output: GYO-reduct of H

Apply the following simplification rules as long as possible:

(1) Delete all hyperedges that are empty or that are contained in other hyperedges.

(2) Delete all vertices that occur in at most one hyperedge.

The input query is a tree query if the GYO-reduct of its hypergraph is the empty hypergraph.

Solution.

x yvz

u w

 query is not
acyclic.

13 / 55



Exercise 1
Exercise. Decide if the following conjunctive queries are tree queries by applying (one version of) the GYO algorithm.

1. ∃x , y , z, v . r(x , y) ∧ r(y , z) ∧ r(z, v) ∧ s(x , y , z) ∧ s(y , z, v)

2. ∃x , y , z, u, v ,w . r(x , y) ∧ s(x , z, v) ∧ r(u, z) ∧ t(x , v , u,w)

Definition (Lecture 6, Slides 24)
A GYO-reduction is a procedure to check acyclicity:
I Input: hypergraph H = 〈V ,E〉 (we do not need relation labels here)
I Output: GYO-reduct of H

Apply the following simplification rules as long as possible:

(1) Delete all hyperedges that are empty or that are contained in other hyperedges.

(2) Delete all vertices that occur in at most one hyperedge.

The input query is a tree query if the GYO-reduct of its hypergraph is the empty hypergraph.

Solution.

x yvz

u w
 query is not

acyclic.

14 / 55



Exercise 2
Exercise.
It was outlined in the lecture how to eliminate constants from CQs to transform them to graphs. Apply this
transformation to the following query:

∃x , y , z. mother(x , y) ∧ father(x , z) ∧ bornIn(y , "Dresden") ∧ bornIn(z, "Dresden").

Is the transformed query a tree query? Imagine we would keep constants in the hypergraph, so that each hypergraph
would contain two kinds of vertices (variables and constants). How could we modify the GYO algorithm to handle such
hypergraphs directly?

Solution.
I ∃x , y , z

, v

,w

. mother(x , y) ∧ father(x , z) ∧ bornIn(y , v) ∧ R"Dresden"(v)
I The query is acyclic.
I Add rule: “Delete all vertices labelled with constants.”
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Exercise 3
Exercise. Solve the following combinatorial crossword puzzle using Yannakakis’ algorithm (in spirit). Specify the join
tree that you are using.

Solution.
Join tree:

1 hor.

1 vert.

3 vert.

7 vert.

13 hor. 21 hor.

S P I N A C H
H N O
A F W I N
R E E
K R W A Y
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Exercise 4
Exercise. It is easy to see that the following is true: For a hypergraph H = 〈V ,E〉, the hypergraph H′ = 〈V ,E ∪ {eV }〉

is acyclic with eV a hyperedge that contains every vertex of V . Therefore, every BCQ can be transformed into a tree
query by adding suitable atoms. Does this imply that every BCQ can be answered in polynomial time? Explain.

Solution. Let us consider a naive strategy:
I Let q = ∃v ,w , x , y , z. P(x , y , z) ∧ Q(z,w) ∧ R(w , v , x) ∧ S(y ,w)

I Let q′ = ∃v ,w , x , y , z. P(x , y , z) ∧ Q(z,w) ∧ R(w , v , x) ∧ S(y ,w) ∧ X(v ,w , x , y , z)
I For a database instance I, let I′ = I ∪ {X(c1, . . . , c5) | c1, . . . , c5 ∈ adom(I)}.
I Then I |= q iff I′ |= q′.
I Query q′ is acyclic and can thus be answered in polynomial time with respect to the size of the database I′.
I But computing I′ from I requires adding | adom(I)|5 new facts.
I Thus answering q′ still takes exponential time with respect to the size of I.
I In general, | adom(I)||V | new facts are necessary.
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Exercise 5.
Exercise.
Sudoku is a one-player puzzle game where one has to fill a grid with numbers. An example 4 × 4-Sudoku is as follows:

The grid has to be filled with numbers {1, 2, 3, 4} such that every
number occurs exactly once in each row, each column, and each 2 ×
2-subgrid bordered in bold. For an arbitrary 4 × 4-Sudoku, specify a
BCQ q and a database instance J such that J |= q if and only if the
given Sudoku has a solution.

Solution.
I We define

J =

 S(c1
1 , . . . , c

4
1 , . . . , c

1
4 , . . . , c

4
4)

∣∣∣∣∣∣∣ c j
i ∈

{ k } if position 〈i , j〉 contains the number k , and
{ 1, 2, 3, 4 } otherwise

.
I We set y = 〈y1

1 , . . . , y
4
1 , . . . , y

1
4 , . . . , y

4
4 〉, and let q be the query

∃y.
(
S(y) ∧

4∧
k=1

4∧
i=1

4∧
j=i+1

(
y i

k 0 y j
k ) ∧

4∧
k=1

4∧
i=1

4∧
j=i+1

(
yk

i 0 yk
j ) ∧

∧
i∈{ 1,3 }

∧
j∈{ 1,3 }

(y j
i 0 y j+1

i+1 ) ∧ (y j
i+1 0 y j+1

i )
)
.

I Then J |= q iff the Sudoku has a solution.
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Exercise 6.
Exercise. It was shown in the lecture that the 3-colourability problem for graphs can be reduced to the homomorphism
problem. Therefore, it can also be expressed as a BCQ answering problem.

1. In which cases is the resulting BCQ a tree query?

2. What is the complexity of solving the 3-colourability problem for these cases?

Reduction. Recall the definition of the two decision problems:

3C = { 〈G〉 | G is three-colourable } QE = { 〈I, q〉 | I |= q }

I Given a graph G = 〈V ,E〉, let I = {E(r , b),E(b, g),E(g, r)} and let q be the BCQ ∃
v∈V

xv .
∧

〈v ,u〉∈E
E(xv , xu)

containing the atom E(xv , xu) if and only if there is an edge between v and u in G.
I Then 〈G〉 ∈ 3C iff 〈I, q〉 ∈ QE.

Solution.

1. q is a tree query when G is acyclic.

2. If G is acyclic, then q can be answered in constant time.
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Exercise 7.
Exercise. A propositional formula is in 3CNF if it has the following form:

(L1
1 ∨ L1

2 ∨ L1
3) ∧ (L2

1 ∨ L2
2 ∨ L2

3) ∧ · · · ∧ (Ln
1 ∨ Ln

2 ∨ Ln
3),

where each L is a literal, that is, a propositional variable or the negation of a propositional variable. The 3SAT problem
is the problem of deciding if a given 3CNF formula is satisfiable. It is known to be NP-complete.
Reduce 3SAT to the homomorphism problem: define a suitable hypergraph Iϕ for every 3CNF ϕ and give a template
J , such that there is a homomorphism from Iϕ to J iff ϕ is satisfiable (the template J can be the same for all inputs.)

Remark. This yields an alternative proof of the NP-hardness of the homomorphism problem.
Solution.
I Iϕ is the hypergraph consisting of all edges C(Li

1, L
i
2, L

i
3) with 1 ≤ i ≤ n and all edges V (L,¬L) for every positive

literal L syntactically occurring in ϕ.

I J =
{
C(x , y , z)

∣∣∣ x , y , z ∈ { 0, 1 } with x + y + z > 0
}
∪

{
V (0, 1),V (1, 0)

}
I Then ϕ is satisfiable iff there is a homomorphsim from IϕtoJ .
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Exercise 7.
Exercise. A propositional formula is in 3CNF if it has the following form:

(L1
1 ∨ L1

2 ∨ L1
3) ∧ (L2

1 ∨ L2
2 ∨ L2

3) ∧ · · · ∧ (Ln
1 ∨ Ln

2 ∨ Ln
3),

where each L is a literal, that is, a propositional variable or the negation of a propositional variable. The 3SAT problem
is the problem of deciding if a given 3CNF formula is satisfiable. It is known to be NP-complete.
Reduce 3SAT to the homomorphism problem: define a suitable hypergraph Iϕ for every 3CNF ϕ and give a template
J , such that there is a homomorphism from Iϕ to J iff ϕ is satisfiable (the template J can be the same for all inputs.)
Remark. This yields an alternative proof of the NP-hardness of the homomorphism problem.

Solution.
I Iϕ is the hypergraph consisting of all edges C(Li

1, L
i
2, L

i
3) with 1 ≤ i ≤ n and all edges V (L,¬L) for every positive

literal L syntactically occurring in ϕ.

I J =
{
C(x , y , z)

∣∣∣ x , y , z ∈ { 0, 1 } with x + y + z > 0
}
∪

{
V (0, 1),V (1, 0)

}
I Then ϕ is satisfiable iff there is a homomorphsim from IϕtoJ .
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Exercise 7.
Exercise. A propositional formula is in 3CNF if it has the following form:

(L1
1 ∨ L1

2 ∨ L1
3) ∧ (L2

1 ∨ L2
2 ∨ L2

3) ∧ · · · ∧ (Ln
1 ∨ Ln

2 ∨ Ln
3),

where each L is a literal, that is, a propositional variable or the negation of a propositional variable. The 3SAT problem
is the problem of deciding if a given 3CNF formula is satisfiable. It is known to be NP-complete.
Reduce 3SAT to the homomorphism problem: define a suitable hypergraph Iϕ for every 3CNF ϕ and give a template
J , such that there is a homomorphism from Iϕ to J iff ϕ is satisfiable (the template J can be the same for all inputs.)
Remark. This yields an alternative proof of the NP-hardness of the homomorphism problem.
Solution.

I Iϕ is the hypergraph consisting of all edges C(Li
1, L

i
2, L

i
3) with 1 ≤ i ≤ n and all edges V (L,¬L) for every positive

literal L syntactically occurring in ϕ.

I J =
{
C(x , y , z)

∣∣∣ x , y , z ∈ { 0, 1 } with x + y + z > 0
}
∪

{
V (0, 1),V (1, 0)

}
I Then ϕ is satisfiable iff there is a homomorphsim from IϕtoJ .
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Exercise 7.
Exercise. A propositional formula is in 3CNF if it has the following form:

(L1
1 ∨ L1

2 ∨ L1
3) ∧ (L2

1 ∨ L2
2 ∨ L2

3) ∧ · · · ∧ (Ln
1 ∨ Ln

2 ∨ Ln
3),

where each L is a literal, that is, a propositional variable or the negation of a propositional variable. The 3SAT problem
is the problem of deciding if a given 3CNF formula is satisfiable. It is known to be NP-complete.
Reduce 3SAT to the homomorphism problem: define a suitable hypergraph Iϕ for every 3CNF ϕ and give a template
J , such that there is a homomorphism from Iϕ to J iff ϕ is satisfiable (the template J can be the same for all inputs.)
Remark. This yields an alternative proof of the NP-hardness of the homomorphism problem.
Solution.
I Iϕ is the hypergraph consisting of all edges C(Li

1, L
i
2, L

i
3) with 1 ≤ i ≤ n and all edges V (L,¬L) for every positive

literal L syntactically occurring in ϕ.

I J =
{
C(x , y , z)

∣∣∣ x , y , z ∈ { 0, 1 } with x + y + z > 0
}
∪

{
V (0, 1),V (1, 0)

}
I Then ϕ is satisfiable iff there is a homomorphsim from IϕtoJ .
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Exercise 7.
Exercise. A propositional formula is in 3CNF if it has the following form:

(L1
1 ∨ L1

2 ∨ L1
3) ∧ (L2

1 ∨ L2
2 ∨ L2

3) ∧ · · · ∧ (Ln
1 ∨ Ln

2 ∨ Ln
3),

where each L is a literal, that is, a propositional variable or the negation of a propositional variable. The 3SAT problem
is the problem of deciding if a given 3CNF formula is satisfiable. It is known to be NP-complete.
Reduce 3SAT to the homomorphism problem: define a suitable hypergraph Iϕ for every 3CNF ϕ and give a template
J , such that there is a homomorphism from Iϕ to J iff ϕ is satisfiable (the template J can be the same for all inputs.)
Remark. This yields an alternative proof of the NP-hardness of the homomorphism problem.
Solution.
I Iϕ is the hypergraph consisting of all edges C(Li

1, L
i
2, L

i
3) with 1 ≤ i ≤ n and all edges V (L,¬L) for every positive

literal L syntactically occurring in ϕ.

I J =
{
C(x , y , z)

∣∣∣ x , y , z ∈ { 0, 1 } with x + y + z > 0
}
∪

{
V (0, 1),V (1, 0)

}

I Then ϕ is satisfiable iff there is a homomorphsim from IϕtoJ .
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Exercise 7.
Exercise. A propositional formula is in 3CNF if it has the following form:

(L1
1 ∨ L1

2 ∨ L1
3) ∧ (L2

1 ∨ L2
2 ∨ L2

3) ∧ · · · ∧ (Ln
1 ∨ Ln

2 ∨ Ln
3),

where each L is a literal, that is, a propositional variable or the negation of a propositional variable. The 3SAT problem
is the problem of deciding if a given 3CNF formula is satisfiable. It is known to be NP-complete.
Reduce 3SAT to the homomorphism problem: define a suitable hypergraph Iϕ for every 3CNF ϕ and give a template
J , such that there is a homomorphism from Iϕ to J iff ϕ is satisfiable (the template J can be the same for all inputs.)
Remark. This yields an alternative proof of the NP-hardness of the homomorphism problem.
Solution.
I Iϕ is the hypergraph consisting of all edges C(Li

1, L
i
2, L

i
3) with 1 ≤ i ≤ n and all edges V (L,¬L) for every positive

literal L syntactically occurring in ϕ.

I J =
{
C(x , y , z)

∣∣∣ x , y , z ∈ { 0, 1 } with x + y + z > 0
}
∪

{
V (0, 1),V (1, 0)

}
I Then ϕ is satisfiable iff there is a homomorphsim from IϕtoJ .
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