Technische Universität Dresden

Prof. Dr. Sebastian Rudolph

Formal Concept Analysis Exercise Sheet 5, Winter Semester 2014/15

Exercise 1 (closure system)

Definition (closure system and closure operator).

- (a) A set $\mathfrak{A} \subseteq \mathfrak{P}(G)$ is a closure system on the set G, iff $G \in \mathfrak{A}$ and $\mathfrak{X} \subseteq \mathfrak{A} \implies \bigcap \mathfrak{X} \in \mathfrak{A}$.
- (b) A closure operator φ on G is a map φ which maps each subset $X \subseteq G$ onto the corresponding closure $\varphi X \subseteq G$ such that
 - 1) $X \subseteq Y \implies \varphi X \subseteq \varphi Y$ (monotone)2) $X \subseteq \varphi X$ (extensive)3) $\varphi \varphi X = \varphi X$ (idempotent)holds.(idempotent)

Regard the "family context" $\mathbb{K} := (\{\text{father, mother, daughter, son}\}, \{\text{old, young, male, female}\}, \{(\text{father, old}), (\text{father, male}), (\text{mother, old}), (\text{mother, female}), (\text{daughter, young}), (\text{daughter, female}), (\text{son, young}), (\text{son, male})\}).$

- **a)** Explicitly list the elements of the map $\varphi \colon \mathfrak{P}(M) \to \mathfrak{P}(M)$ with $\varphi \colon B \mapsto B''$ and verify that φ is a closure operator.
- b) Verify that the set of all concept intents of the family context is a closure system.
- c) Draw a line diagram of the powerset of {father, mother, daughter, son} and highlight the sets that have the same closure. Compare the diagram with the diagram of the concept lattice of the family context.

Exercise 2 (Next-Closure)

	old (1)	young (2)	male (3)	female (4)
father	×		×	
mother	×			×
son		×	×	
daughter		\times		×

Compute all concept intents of the above "family context" using the Next-Closure algorithm. Compare your result with the concept intents from Exercise 1.

А	i	$\stackrel{(A\cap\{1,2,\ldots,i-1\})\cup\{i\}}{A+i}$	$egin{array}{c} (A+i)^{\prime\prime}\ A\oplus i \end{array}$	$A <_i A \oplus i?$	new intent