COMPLEXITY THEORY

Lecture 7: NP Completeness

Markus Krötzsch
Knowledge-Based Systems

TU Dresden, 8th Nov 2021

> More recent versions of this slide deck might be available.
> For the most current version of this course, see
> https://iccl.inf.tu-dresden. de/web/Complexity_Theory/en

Are NP Problems Hard?

The Structure of NP

Idea: polynomial many-one reductions define an order on problems

NP-Hardness and NP-Completeness

Definition 7.1:

(1) A language \mathbf{H} is NP-hard, if $\mathbf{L} \leq_{p} \mathbf{H}$ for every language $\mathbf{L} \in N P$.
(2) A language \mathbf{C} is NP-complete, if \mathbf{C} is NP-hard and $\mathbf{C} \in N P$.

NP-Completeness

- NP-complete problems are the hardest problems in NP.
- They constitute the maximal class $\left(w r t . \leq_{p}\right)$ of problems within NP.
- They are all equally difficult - an efficient solution to one would solve them all.

Theorem 7.2: If \mathbf{L} is $N P$-hard and $\mathbf{L} \leq_{p} \mathbf{L}^{\prime}$, then \mathbf{L}^{\prime} is NP-hard as well.

Proving NP-Completeness

How to show NP-completeness

To show that \mathbf{L} is NP-complete, we must show that every language in NP can be reduced to \mathbf{L} in polynomial time.

Alternative approach

Given an NP-complete language \mathbf{C}, we can show that another language \mathbf{L} is NP-complete just by showing that

- $\mathbf{C} \leq_{p} \mathbf{L}$
- L \in NP

However: Is there any NP-complete problem at all?
Yes, thousands of them!

The Cook-Levin Theorem

The Cook-Levin Theorem

Theorem 7.3 (Cook 1970, Levin 1973): SAT is NP-complete.

Proof:

(1) $\mathrm{Sat}_{\mathrm{at}} \in \mathrm{NP}$

Take satisfying assignments as polynomial certificates for the satisfiability of a formula.
(2) $\mathrm{Sat}_{\mathrm{At}}$ is hard for NP

Proof by reduction from any word problem of some polynomially time-bounded NTM.

Proving the Cook-Levin Theorem: Main Objective

Given:

- a polynomial p
- a p-time bounded 1-tape NTM $\mathcal{M}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}\right)$
- a word w

Intended reduction: Define a propositional logic formula $\varphi_{p, \mathcal{M}, w}$ such that

1. $\varphi_{p, \mathcal{M}, w}$ is satisfiable if and only if \mathcal{M} accepts w in time $p(|w|)$
2. $\varphi_{p, \mathcal{M}, w}$ is polynomial with respect to $|w|$

Proving the Cook-Levin Theorem: Rationale

Given: polynomial p, NTM \mathcal{M}, word w
Intended reduction: Define a propositional logic formula $\varphi_{p, \mathcal{M}, w}$ such that

1. $\varphi_{p, \mathcal{M}, w}$ is satisfiable if and only if \mathcal{M} accepts w in time $p(|w|)$
2. $\varphi_{p, \mathcal{M}, w}$ is polynomial with respect to $|w|$

Why does this proof NP-hardness of Sat?
Because it leads to a reduction $\mathbf{L} \leq_{p} \mathbf{S A T}_{\text {AT }}$ for every language $\mathbf{L} \in N P$:

- If $\mathbf{L} \in \mathrm{NP}$, then there is an NTM \mathcal{M} that is time-bounded by some polynomial p, such that $\mathbf{L}(\mathcal{M})=\mathbf{L}$.
- The the function $f_{\mathcal{M}, p}: w \mapsto \varphi_{p, \mathcal{M}, w}$ shows $\mathbf{L} \leq_{p}$ Sat:
$-f$ is a many-one reduction due to item (1) above
- f is polynomial due to item (2) above

Note: We do not claim the transformation $\langle p, \mathcal{M}, w\rangle \mapsto \varphi_{p, \mathcal{M}, w}$ to be polynomial in the size of p, \mathcal{M}, and w. Indeed, this would not hold true under reasonable encodings of p. But being (multi-)exponential in p is not a concern since the many-one reductions $f_{\mathcal{M}, p}$ each use a fixed p and only care about the asymptotic complexity as w grows.

Proving Cook-Levin: Encoding Configurations

Idea: Use logic to describe a run of \mathcal{M} on input w by a formula.
Note: On input w of length $n:=|w|$, every computation path of \mathcal{M} is of length $\leq p(n)$ and uses $\leq p(n)$ tape cells.

Use propositional variables for describing configurations:

Q_{q} for each $q \in Q$ means " \mathcal{M} is in state $q \in Q$ "
P_{i} for each $0 \leq i<p(n)$ means "the head is at Position i "
$S_{a, i}$ for each $a \in \Gamma$ and $0 \leq i<p(n)$ means "tape cell i contains Symbol a "
Represent configuration ($q, p, a_{0} \ldots a_{p(n)}$) by truth assignments to variables from the set

$$
\bar{C}:=\left\{Q_{q}, P_{i}, S_{a, i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \leq i<p(n)\right\}
$$

using the truth assignment β defined as
$\beta\left(Q_{s}\right):=\left\{\begin{array}{ll}1 & s=q \\ 0 & s \neq q\end{array} \quad \beta\left(P_{i}\right):=\left\{\begin{array}{ll}1 & i=p \\ 0 & i \neq p\end{array} \quad \beta\left(S_{a, i}\right):= \begin{cases}1 & a=a_{i} \\ 0 & a \neq a_{i}\end{cases}\right.\right.$

Proving Cook-Levin: Validating Configurations

We define a formula $\operatorname{Conf}(\bar{C})$ for a set of configuration variables

$$
\bar{C}=\left\{Q_{q}, P_{i}, S_{a, i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \leq i<p(n)\right\}
$$

as follows:

$$
\operatorname{Conf}(\bar{C}):=
$$

$$
\bigvee_{q \in Q}\left(Q_{q} \wedge \bigwedge_{q^{\prime} \neq q} \neg Q_{q^{\prime}}\right)
$$

$$
\wedge \bigvee_{p<p(n)}\left(P_{p} \wedge \bigwedge_{p^{\prime} \neq p} \neg P_{p^{\prime}}\right)
$$

$$
\wedge \bigwedge_{0 \leq i<p(n)} \bigvee_{a \in \Gamma}\left(S_{a, i} \wedge \bigwedge_{b \neq a \in \Gamma} \neg S_{b, i}\right)
$$

"the assignment is a valid configuration":
"TM in exactly one state $q \in Q$ "
"head in exactly one position $p \leq p(n)$ "
"exactly one $a \in \Gamma$ in each cell"

Proving Cook-Levin: Validating Configurations

For an assignment β defined on variables in \bar{C} define

$$
\operatorname{conf}(\bar{C}, \beta):=\left\{\begin{array}{ll}
& \beta\left(Q_{q}\right)=1, \\
\left(q, p, w_{0} \ldots w_{p(n)}\right) \mid & \beta\left(P_{p}\right)=1, \\
& \beta\left(S_{w_{i}, i}\right)=1 \text { for all } 0 \leq i<p(n)
\end{array}\right\}
$$

Note: β may be defined on other variables besides those in \bar{C}.
Lemma 7.4: If β satisfies $\operatorname{Conf}(\bar{C})$ then $|\operatorname{conf}(\bar{C}, \beta)|=1$.
We can therefore write $\operatorname{conf}(\bar{C}, \beta)=(q, p, w)$ to simplify notation.

Observations:

- $\operatorname{conf}(\bar{C}, \beta)$ is a potential configuration of \mathcal{M}, but it may not be reachable from the start configuration of \mathcal{M} on input w.
- Conversely, every configuration ($q, p, w_{1} \ldots w_{p(n)}$) induces a satisfying assignment β or which $\operatorname{conf}(\bar{C}, \beta)=\left(q, p, w_{1} \ldots w_{p(n)}\right)$.

Proving Cook-Levin: Transitions Between Configurations

Consider the following formula $\operatorname{Next}\left(\bar{C}, \bar{C}^{\prime}\right)$ defined as
$\operatorname{Conf}(\bar{C}) \wedge \operatorname{Conf}\left(\bar{C}^{\prime}\right) \wedge \operatorname{NoChange}\left(\bar{C}, \bar{C}^{\prime}\right) \wedge \operatorname{Change}\left(\bar{C}, \bar{C}^{\prime}\right)$.

$$
\begin{aligned}
\text { NoChange } & :=\bigvee_{0 \leq p<p(n)}\left(P_{p} \wedge \bigwedge_{i \neq p, a \in \Gamma}\left(S_{a, i} \rightarrow S_{a, i}^{\prime}\right)\right) \\
\text { Change } & :=\bigvee_{0 \leq p<p(n)}\left(P_{p} \wedge \bigvee_{\substack{q \in D \\
a \in \Gamma}}\left(Q_{q} \wedge S_{a, p} \wedge \bigvee_{\left(q^{\prime}, b, D\right) \in \delta(q, a)}\left(Q_{q^{\prime}}^{\prime} \wedge S_{b, p}^{\prime} \wedge P_{D(p)}^{\prime}\right)\right)\right)
\end{aligned}
$$

where $D(p)$ is the position reached by moving in direction D from p.
Lemma 7.5: For any assignment β defined on $\bar{C} \cup \bar{C}^{\prime}$:
β satisfies $\operatorname{Next}\left(\bar{C}, \bar{C}^{\prime}\right) \quad$ if and only if $\quad \operatorname{conf}(\bar{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}\left(\bar{C}^{\prime}, \beta\right)$

Proving Cook-Levin: Start and End

Defined so far:

- $\operatorname{Conf}(\bar{C}): \bar{C}$ describes a potential configuration
- $\operatorname{Next}\left(\bar{C}, \bar{C}^{\prime}\right): \operatorname{conf}(\bar{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}\left(\bar{C}^{\prime}, \beta\right)$

Start configuration: For an input word $w=w_{0} \cdots w_{n-1} \in \Sigma^{*}$, we define:

$$
\operatorname{Start}_{\mathcal{M}, w}(\bar{C}):=\operatorname{Conf}(\bar{C}) \wedge Q_{q_{0}} \wedge P_{0} \wedge \bigwedge_{i=0}^{n-1} S_{w_{i}, i} \wedge \bigwedge_{i=n}^{p(n)-1} S_{\llcorner, i}
$$

Then an assignment β satisfies Start ${ }_{\mathcal{M}, w}(\bar{C})$ if and only if \bar{C} represents the start configuration of \mathcal{M} on input w.

Accepting stop configuration:

$$
\operatorname{Acc}-\operatorname{Conf}(\bar{C}):=\operatorname{Conf}(\bar{C}) \wedge Q_{q_{\text {accept }}}
$$

Then an assignment β satisfies $\operatorname{Acc}-\operatorname{Conf}(\bar{C})$ if and only if \bar{C} represents an accepting configuration of \mathcal{M}.

Proving Cook-Levin: Adding Time

Since \mathcal{M} is p-time bounded, each run may contain up to $p(n)$ steps
\leadsto we need one set of configuration variables for each

Propositional variables:

$Q_{q, t}$ for all $q \in Q, 0 \leq t \leq p(n)$ means "at time t, \mathcal{M} is in state $q \in Q$ "
$P_{i, t}$ for all $0 \leq i, t \leq p(n)$ means "at time t, the head is at position i "
$S_{a, i, t}$ for all $a \in \Gamma$ and $0 \leq i, t \leq p(n)$ means "at time t, tape cell i contains symbol a "

Notation:

$$
\bar{C}_{t}:=\left\{Q_{q, t}, P_{i, t}, S_{a, i, t} \mid \quad q \in Q, 0 \leq i \leq p(n), \quad a \in \Gamma\right\}
$$

Proving Cook-Levin: The Formula

Given:

- a polynomial p
- a p-time bounded 1-tape $\mathrm{NTM} \mathcal{M}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}\right)$
- a word w

We define the formula $\varphi_{p, \mathcal{M}, w}$ as follows:

$$
\varphi_{p, \mathcal{M}, w}:=\operatorname{Start}_{\mathcal{M}, w}\left(\bar{C}_{0}\right) \wedge \bigvee_{0 \leq t \leq p(n)}\left(\operatorname{Acc}-\operatorname{Conf}\left(\bar{C}_{t}\right) \wedge \bigwedge_{0 \leq i<t} \operatorname{Next}\left(\bar{C}_{i}, \bar{C}_{i+1}\right)\right)
$$

" C_{0} encodes the start configuration" and, for some polynomial time t :
" \mathcal{M} accepts after t steps" and " $\bar{C}_{0}, \ldots, \bar{C}_{t}$ encode a computation path"
Lemma 7.6: $\varphi_{p, \mathcal{M}, w}$ is satisfiable if and only if \mathcal{M} accepts w in time $p(|w|)$.
Note that an accepting or rejecting stop configuration has no successor.
Lemma 7.7: The size of $\varphi_{p, \mathcal{M}, w}$ is polynomial in $|w|$.

The Cook-Levin Theorem

Theorem 7.3 (Cook 1970, Levin 1973): SAT is NP-complete.

Proof:

(1) $\mathrm{Sat}_{\mathrm{at}} \in \mathrm{NP}$

Take satisfying assignments as polynomial certificates for the satisfiability of a formula.
(2) $\mathrm{Sat}_{\mathrm{At}}$ is hard for NP

Proof by reduction from any word problem of some polynomially time-bounded NTM.

Further NP-complete Problems

Towards More NP-Complete Problems

Starting with Sat, one can readily show more problems \mathbf{P} to be NP-complete, each time performing two steps:
(1) Show that $\mathbf{P} \in N P$
(2) Find a known NP-complete problem \mathbf{P}^{\prime} and reduce $\mathbf{P}^{\prime} \leq_{p} \mathbf{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

$$
\begin{array}{cl}
\leq_{p} \text { Clique } & \leq_{p} \text { Independent Set } \\
\text { Sat } \leq_{p} \text { 3-Sat } & \leq_{p} \text { Dir. Hamiltonian Path } \\
& \leq_{p} \text { Subset Sum } \\
& \leq_{p} \text { Knapsack }
\end{array}
$$

NP-Completeness of Clique

Theorem 7.8: Clique is NP-complete.

Clique: Given G, k, does G contain a clique of order $\geq k$?

Proof:

(1) Clique \in NP

Take the vertex set of a clique of order k as a certificate.
(2) Clique is NP-hard

We show Sat \leq_{p} Clique
To every CNF-formula φ assign a graph G_{φ} and a number k_{φ} such that φ satisfiable $\Longleftrightarrow G_{\varphi}$ contains clique of order k_{φ}

Sat \leq_{p} Clique

To every CNF-formula φ assign a graph G_{φ} and a number k_{φ} such that

$$
\varphi \text { satisfiable if and only if } G_{\varphi} \text { contains clique of order } k_{\varphi}
$$

Given $\varphi=C_{1} \wedge \cdots \wedge C_{k}$:

- Set $k_{\varphi}:=k$
- For each clause C_{j} and literal $L \in C_{j}$ add a vertex $v_{L, j}$
- Add edge $\left\{v_{L, j}, v_{K, i}\right\}$ if $i \neq j$ and $L \wedge K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Example 7.9:

$$
\underbrace{(X \vee Y \vee \neg Z)}_{C_{1}} \wedge \underbrace{(X \vee \neg Y)}_{C_{2}} \wedge \underbrace{(\neg X \vee Z)}_{C_{3}}
$$

Sat \leq_{p} Clique

To every CNF-formula φ assign a graph G_{φ} and a number k_{φ} such that φ satisfiable if and only if G_{φ} contains clique of order k_{φ}
Given $\varphi=C_{1} \wedge \cdots \wedge C_{k}$:

- Set $k_{\varphi}:=k$
- For each clause C_{j} and literal $L \in C_{j}$ add a vertex $v_{L, j}$
- Add edge $\left\{u_{L, j}, v_{K, i}\right\}$ if $i \neq j$ and $L \wedge K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Correctness:

G_{φ} has clique of order k iff φ is satisfiable.

Complexity:

The reduction is clearly computable in polynomial time.

NP-Completeness of Independent Set

Independent Set

Input: An undirected graph G and a natural number k
Problem: Does G contain k vertices that share no edges (independent set)?

Theorem 7.10: Independent Set is NP-complete.

Proof: Hardness by reduction Clique \leq_{p} Independent Set:

- Given $G:=(V, E)$ construct $\bar{G}:=(V,\{\{u, v\} \mid\{u, v\} \notin E$ and $u \neq v\})$
- A set $X \subseteq V$ induces a clique in G iff X induces an independent set in \bar{G}.
- Reduction: G has a clique of order k iff \bar{G} has an independent set of order k.

Summary and Outlook

NP-complete problems are the hardest in NP
Polynomial runs of NTMs can be described in propositional logic (Cook-Levin)
Clique and Independent Set are also NP-complete

What's next?

- More examples of problems
- The limits of NP
- Space complexities

