Answer Set Programming: Solving

Sebastian Rudolph
Computational Logic Group
Technische Universität Dresden

Slides based on a lecture by Martin Gebser and Torsten Schaub. Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs

- Nogoods from program completion
- Nogoods from loop formulas

4 Conflict-driven nogood learning
■ CDNL-ASP Algorithm

- Nogood Propagation

■ Conflict Analysis

Motivation

■ Goal Approach to computing stable models of logic programs, based on concepts from

- Constraint Processing (CP) and
- Satisfiability Testing (SAT)

■ Idea View inferences in ASP as unit propagation on nogoods

- Benefits
- A uniform constraint-based framework for different kinds of inferences in ASP
- Advanced techniques from the areas of CP and SAT
- Highly competitive implementation

Outline

1 Motivation

2 Boolean constraints
3 Nogoods from logic programs

- Nogoods from program completion
- Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation

■ Conflict Analysis

Assignments

- An assignment A over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals σ_{i} of form $\mathbf{T} v$ or $\mathbf{F} v$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

- T v expresses that v is true and $\mathbf{F} v$ that it is false

Assignments

■ An assignment A over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals σ_{i} of form $\mathbf{T} v$ or $\mathbf{F} v$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

- The complement, $\bar{\sigma}$, of a literal σ is defined as $\overline{\mathbf{T} v}=\mathbf{F} v$ and $\overline{\mathbf{F} v}=\mathbf{T} v$

Assignments

■ An assignment A over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals σ_{i} of form $\mathbf{T} v$ or $\mathbf{F} v$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

■ $A \circ \sigma$ stands for the result of appending σ to A

- We sometimes identify an assignment with the set of its literals

Assignments

■ An assignment A over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals σ_{i} of form $\mathbf{T} v$ or $\mathbf{F} v$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

■ Given $A=\left(\sigma_{1}, \ldots, \sigma_{k-1}, \sigma_{k}, \ldots, \sigma_{n}\right)$, we let $A\left[\sigma_{k}\right]=\left(\sigma_{1}, \ldots, \sigma_{k-1}\right)$

- Given this, we access true and false propositions in A via

Assignments

■ An assignment A over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals σ_{i} of form $\mathbf{T} v$ or $\mathbf{F} v$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

■ We sometimes identify an assignment with the set of its literals

Assignments

■ An assignment A over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals σ_{i} of form $\mathbf{T} v$ or $\mathbf{F} v$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

■ We sometimes identify an assignment with the set of its literals

- Given this, we access true and false propositions in A via

$$
A^{\mathbf{T}}=\{v \in \operatorname{dom}(A) \mid \mathbf{T} v \in A\} \text { and } A^{\mathbf{F}}=\{v \in \operatorname{dom}(A) \mid \mathbf{F} v \in A\}
$$

Assignments

■ An assignment A over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals σ_{i} of form $\mathbf{T} v$ or $\mathbf{F} v$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

- $\mathbf{T} v$ expresses that v is true and $\mathbf{F} v$ that it is false
- The complement, $\bar{\sigma}$, of a literal σ is defined as $\overline{\mathbf{T} v}=\mathbf{F} v$ and $\overline{\mathbf{F} v}=\mathbf{T} v$

■ $A \circ \sigma$ stands for the result of appending σ to A
■ Given $\boldsymbol{A}=\left(\sigma_{1}, \ldots, \sigma_{k-1}, \sigma_{k}, \ldots, \sigma_{n}\right)$, we let $A\left[\sigma_{k}\right]=\left(\sigma_{1}, \ldots, \sigma_{k-1}\right)$
■ We sometimes identify an assignment with the set of its literals

- Given this, we access true and false propositions in A via

$$
A^{\mathbf{T}}=\{v \in \operatorname{dom}(A) \mid \mathbf{T} v \in A\} \text { and } A^{\mathbf{F}}=\{v \in \operatorname{dom}(A) \mid \mathbf{F} v \in A\}
$$

Nogoods, solutions, and unit propagation

- A nogood is a set $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ of signed literals, expressing a constraint violated by any assignment containing $\sigma_{1}, \ldots, \sigma_{n}$

Nogoods, solutions, and unit propagation

■ A nogood is a set $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ of signed literals, expressing a constraint violated by any assignment containing $\sigma_{1}, \ldots, \sigma_{n}$

- An assignment A such that $A^{\mathbf{T}} \cup A^{\mathbf{F}}=\operatorname{dom}(A)$ and $A^{\mathbf{T}} \cap A^{\mathbf{F}}=\emptyset$ is a solution for a set Δ of nogoods, if $\delta \nsubseteq A$ for all $\delta \in \Delta$

Nogoods, solutions, and unit propagation

■ A nogood is a set $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ of signed literals, expressing a constraint violated by any assignment containing $\sigma_{1}, \ldots, \sigma_{n}$

- An assignment A such that $A^{\mathbf{T}} \cup A^{\mathbf{F}}=\operatorname{dom}(A)$ and $A^{\mathbf{T}} \cap A^{\mathbf{F}}=\emptyset$ is a solution for a set Δ of nogoods, if $\delta \nsubseteq A$ for all $\delta \in \Delta$
■ For a nogood δ, a literal $\sigma \in \delta$, and an assignment A, we say that $\bar{\sigma}$ is unit-resulting for δ wrt A, if

1 $\delta \backslash A=\{\sigma\}$ and
2 $\bar{\sigma} \notin A$

Nogoods, solutions, and unit propagation

■ A nogood is a set $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ of signed literals, expressing a constraint violated by any assignment containing $\sigma_{1}, \ldots, \sigma_{n}$

- An assignment A such that $A^{\mathbf{T}} \cup A^{\mathbf{F}}=\operatorname{dom}(A)$ and $A^{\mathbf{T}} \cap A^{\mathbf{F}}=\emptyset$ is a solution for a set Δ of nogoods, if $\delta \nsubseteq A$ for all $\delta \in \Delta$
■ For a nogood δ, a literal $\sigma \in \delta$, and an assignment A, we say that $\bar{\sigma}$ is unit-resulting for δ wrt A, if

1 $\delta \backslash A=\{\sigma\}$ and
2 $\bar{\sigma} \notin A$
■ For a set Δ of nogoods and an assignment A, unit propagation is the iterated process of extending A with unit-resulting literals until no further literal is unit-resulting for any nogood in Δ

Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs
■ Nogoods from program completion

- Nogoods from loop formulas

4 Conflict-driven nogood learning
■ CDNL-ASP Algorithm

- Nogood Propagation

■ Conflict Analysis

Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs
■ Nogoods from program completion

- Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm

■ Nogood Propagation
■ Conflict Analysis

Nogoods from logic programs
 via program completion

The completion of a logic program P can be defined as follows:

$$
\begin{gathered}
\left\{v_{B} \leftrightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n} \mid\right. \\
\left.B \in \operatorname{body}(P) \text { and } B=\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}\right\} \\
\cup\left\{a \leftrightarrow v_{B_{1}} \vee \cdots \vee v_{B_{k}} \mid\right. \\
\left.a \in \operatorname{atom}(P) \text { and } \operatorname{body}_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\right\},
\end{gathered}
$$

where $\operatorname{body}_{P}(a)=\{\operatorname{body}(r) \mid r \in P$ and head $(r)=a\}$

Nogoods from logic programs via program completion

- The (body-oriented) equivalence

$$
v_{B} \leftrightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n}
$$

can be decomposed into two implications:

Nogoods from logic programs via program completion

- The (body-oriented) equivalence

$$
v_{B} \leftrightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n}
$$

can be decomposed into two implications:
$1 v_{B} \rightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n}$
is equivalent to the conjunction of

$$
\neg v_{B} \vee a_{1}, \ldots, \neg v_{B} \vee a_{m}, \neg v_{B} \vee \neg a_{m+1}, \ldots, \neg v_{B} \vee \neg a_{n}
$$

and induces the set of nogoods

$$
\Delta(B)=\left\{\left\{\mathbf{T} B, \mathbf{F} a_{1}\right\}, \ldots,\left\{\mathbf{T} B, \mathbf{F} a_{m}\right\},\left\{\mathbf{T} B, \mathbf{T} a_{m+1}\right\}, \ldots,\left\{\mathbf{T} B, \mathbf{T} a_{n}\right\}\right\}
$$

Nogoods from logic programs via program completion

- The (body-oriented) equivalence

$$
v_{B} \leftrightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n}
$$

can be decomposed into two implications:
$2 a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n} \rightarrow v_{B}$ gives rise to the nogood

$$
\delta(B)=\left\{\mathbf{F} B, \mathbf{T} a_{1}, \ldots, \mathbf{T} a_{m}, \mathbf{F} a_{m+1}, \ldots, \mathbf{F} a_{n}\right\}
$$

Nogoods from logic programs via program completion

- Analogously, the (atom-oriented) equivalence

$$
a \leftrightarrow v_{B_{1}} \vee \cdots \vee v_{B_{k}}
$$

yields the nogoods
$1 \Delta(a)=\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}$ and
$2 \delta(a)=\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\}$

Nogoods from logic programs atom-oriented nogoods

■ For an atom a where $\operatorname{body}_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

$$
\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}
$$

For nogood $\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}$, the signed literal

Nogoods from logic programs atom-oriented nogoods

- For an atom a where body $_{p}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\},\{\sim z\}\}$, we obtain

x	\leftarrow	y
x	\leftarrow	$\sim z$

$$
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
$$

Nogoods from logic programs atom-oriented nogoods

- For an atom a where body $_{p}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\},\{\sim z\}\}$, we obtain

$$
\begin{array}{llll}
\hline x & \leftarrow & y & \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
x & \leftarrow & \sim z & \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{array}
$$

For nogood $\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}$, the signed literal

Nogoods from logic programs atom-oriented nogoods

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\},\{\sim z\}\}$, we obtain

$$
\begin{array}{|llll}
\hline x & \leftarrow & y & \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
x & \leftarrow & \sim z & \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{array}
$$

For nogood $\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}$, the signed literal

Nogoods from logic programs atom-oriented nogoods

■ Example Given Atom x with $\operatorname{body}(x)=\{\{y\},\{\sim z\}\}$, we obtain

x	\leftarrow	y
x	\leftarrow	$\sim z$

$$
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
$$

For nogood $\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}$, the signed literal

- $\mathbf{F} x$ is unit-resulting wrt assignment $(\mathbf{F}\{y\}, \mathbf{F}\{\sim z\})$ and

Nogoods from logic programs atom-oriented nogoods

■ Example Given Atom x with $\operatorname{body}(x)=\{\{y\},\{\sim z\}\}$, we obtain

x	\leftarrow	y
x	\leftarrow	$\sim z$

$$
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
$$

For nogood $\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}$, the signed literal

- $\mathbf{F} x$ is unit-resulting wrt assignment $(\mathbf{F}\{y\}, \mathbf{F}\{\sim z\})$ and

Nogoods from logic programs atom-oriented nogoods

■ Example Given Atom x with $\operatorname{body}(x)=\{\{y\},\{\sim z\}\}$, we obtain

$$
\begin{array}{|lll|}
\hline x & \leftarrow & y \\
x & \leftarrow & \sim z \\
\hline
\end{array}
$$

$$
\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}
$$

$$
\left\{\left\{\mathbf{F}_{x}, \mathbf{T}\{y\}\right\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\right\}
$$

For nogood $\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}$, the signed literal

- $\mathbf{F} \times$ is unit-resulting wrt assignment $(\mathbf{F}\{y\}, \mathbf{F}\{\sim z\})$ and

Nogoods from logic programs atom-oriented nogoods

■ Example Given Atom x with $\operatorname{body}(x)=\{\{y\},\{\sim z\}\}$, we obtain

$$
\begin{array}{|lll|}
\hline x & \leftarrow & y \\
x & \leftarrow & \sim z \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
$$

For nogood $\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}$, the signed literal

- $\mathbf{F} x$ is unit-resulting wrt assignment $(\mathbf{F}\{y\}, \mathbf{F}\{\sim z\})$ and

Nogoods from logic programs atom-oriented nogoods

■ Example Given Atom x with $\operatorname{body}(x)=\{\{y\},\{\sim z\}\}$, we obtain

$$
\begin{array}{|lll|}
\hline x & \leftarrow & y \\
x & \leftarrow & \sim z \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
$$

For nogood $\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}$, the signed literal

- $\mathbf{F} \times$ is unit-resulting wrt assignment $(\mathbf{F}\{y\}, \mathbf{F}\{\sim z\})$ and

Nogoods from logic programs atom-oriented nogoods

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\},\{\sim z\}\}$, we obtain

$$
\begin{array}{llll}
\hline x & \leftarrow & y & \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
x & \leftarrow & \sim z & \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{array}
$$

For nogood $\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}$, the signed literal

- $\mathbf{T}\{\sim z\}$ is unit-resulting wrt assignment ($\mathbf{T} x, \mathbf{F}\{y\})$

Nogoods from logic programs atom-oriented nogoods

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\},\{\sim z\}\}$, we obtain

$$
\begin{array}{llll}
\hline x & \leftarrow & y & \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
x & \leftarrow & \sim z & \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{array}
$$

For nogood $\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}$, the signed literal

- $\mathbf{T}\{\sim z\}$ is unit-resulting wrt assignment ($\mathbf{T} x, \mathbf{F}\{y\})$

Nogoods from logic programs atom-oriented nogoods

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\},\{\sim z\}\}$, we obtain

$$
\begin{array}{llll}
\hline x & \leftarrow & y & \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
x & \leftarrow & \sim z & \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{array}
$$

For nogood $\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}$, the signed literal

- $\mathbf{T}\{\sim z\}$ is unit-resulting wrt assignment ($\mathbf{T} x, \mathbf{F}\{y\})$

Nogoods from logic programs atom-oriented nogoods

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\},\{\sim z\}\}$, we obtain

$$
\begin{array}{llll}
\hline x & \leftarrow & y & \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
x & \leftarrow & \sim z & \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{array}
$$

For nogood $\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}$, the signed literal

- $\mathbf{T}\{\sim z\}$ is unit-resulting wrt assignment ($\mathbf{T} x, \mathbf{F}\{y\})$

Nogoods from logic programs atom-oriented nogoods

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\},\{\sim z\}\}$, we obtain

$$
\begin{aligned}
& \begin{array}{|lll|}
\hline x & \leftarrow & y \\
x & \leftarrow & \sim z
\end{array} \\
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \left\{\left\{\mathbf{F}_{x}, \mathbf{T}\{y\}\right\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\right\}
\end{aligned}
$$

For nogood $\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}$, the signed literal

- $\mathbf{T}\{\sim z\}$ is unit-resulting wrt assignment ($\left.\mathbf{T}_{x}, \mathbf{F}\{y\}\right)$

Nogoods from logic programs body-oriented nogoods

- For a body $B=\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}$, we get

$$
\begin{aligned}
& \left\{\mathbf{F} B, \mathbf{T} a_{1}, \ldots, \mathbf{T} a_{m}, \mathbf{F} a_{m+1}, \ldots, \mathbf{F} a_{n}\right\} \\
& \left\{\left\{\mathbf{T} B, \mathbf{F} a_{1}\right\}, \ldots,\left\{\mathbf{T} B, \mathbf{F} a_{m}\right\},\left\{\mathbf{T} B, \mathbf{T} a_{m+1}\right\}, \ldots,\left\{\mathbf{T} B, \mathbf{T} a_{n}\right\}\right\}
\end{aligned}
$$

Example Given Body $\{x, \sim y\}$, we obtain

Nogoods from logic programs body-oriented nogoods

- For a body $B=\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}$, we get

- Example Given Body $\{x, \sim y\}$, we obtain

$$
\ldots \leftarrow x, \sim y
$$

$$
\left\{\mathbf{F}\{x, \sim y\}, \mathbf{T}_{x}, \mathbf{F} y\right\}
$$

$$
\{\{\mathbf{T}\{x, \sim y\}, \mathbf{F} x\},\{\mathbf{T}\{x, \sim y\}, \mathbf{T} y\}\}
$$

Nogoods from logic programs body-oriented nogoods

For a body $B=\left\{a_{1}\right.$

\square

- Example Given Body $\{x, \sim y\}$, we obtain

$$
\begin{aligned}
& \cdots \leftarrow x, \sim y \\
& \vdots \\
& \cdots \leftarrow x, \sim y\{\mathbf{F}\{x, \sim y\}, \mathbf{T} x, \mathbf{F} y\} \\
&\{\{\mathbf{T}\{x, \sim y\}, \mathbf{F} x\},\{\mathbf{T}\{x, \sim y\}, \mathbf{T} y\}\}
\end{aligned}
$$

For nogood $\delta(\{x, \sim y\})=\{\mathbf{F}\{x, \sim y\}, \mathbf{T} x, \mathbf{F} y\}$, the signed literal

- $\mathbf{T}\{x, \sim y\}$ is unit-resulting wrt assignment $\left(\mathbf{T} x, \mathbf{F}_{y}\right)$ and
- $\mathbf{T} y$ is unit-resulting wrt assignment ($\mathbf{F}\{x, \sim y\}, \mathbf{T} x$)

Characterization of stable models

 for tight logic programsLet P be a logic program and

$$
\begin{aligned}
\Delta_{P} & =\{\delta(a) \mid a \in \operatorname{atom}(P)\} \cup\{\delta \in \Delta(a) \mid a \in \operatorname{atom}(P)\} \\
& \cup\{\delta(B) \mid B \in \operatorname{body}(P)\} \cup\{\delta \in \Delta(B) \mid B \in \operatorname{body}(P)\}
\end{aligned}
$$

Characterization of stable models

 for tight logic programsLet P be a logic program and

$$
\begin{aligned}
\Delta_{P} & =\{\delta(a) \mid a \in \operatorname{atom}(P)\} \cup\{\delta \in \Delta(a) \mid a \in \operatorname{atom}(P)\} \\
& \cup\{\delta(B) \mid B \in \operatorname{body}(P)\} \cup\{\delta \in \Delta(B) \mid B \in \operatorname{body}(P)\}
\end{aligned}
$$

Theorem
Let P be a tight logic program. Then,
$X \subseteq \operatorname{atom}(P)$ is a stable model of P iff
$X=A^{\boldsymbol{\top}} \cap \operatorname{atom}(P)$ for a (unique) solution A for Δ_{P}

Characterization of stable models

 for tight logic programs, ie. free of positive recursionLet P be a logic program and

$$
\begin{aligned}
\Delta_{P} & =\{\delta(a) \mid a \in \operatorname{atom}(P)\} \cup\{\delta \in \Delta(a) \mid a \in \operatorname{atom}(P)\} \\
& \cup\{\delta(B) \mid B \in \operatorname{body}(P)\} \cup\{\delta \in \Delta(B) \mid B \in \operatorname{body}(P)\}
\end{aligned}
$$

Theorem
Let P be a tight logic program. Then,
$X \subseteq \operatorname{atom}(P)$ is a stable model of P iff
$X=A^{\boldsymbol{\top}} \cap \operatorname{atom}(P)$ for a (unique) solution A for Δ_{P}

Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs

- Nogoods from program completion

■ Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation

■ Conflict Analysis

Nogoods from logic programs via loop formulas

Let P be a normal logic program and recall that:
■ For $L \subseteq \operatorname{atom}(P)$, the external supports of L for P are

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L \text { and } \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

Nogoods from logic programs via loop formulas

Let P be a normal logic program and recall that:
■ For $L \subseteq \operatorname{atom}(P)$, the external supports of L for P are

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L \text { and } \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

- The (disjunctive) loop formula of L for P is

$$
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{A \in L} A\right) \rightarrow\left(\bigvee_{r \in E S_{P}(L)} \operatorname{body}(r)\right) \\
& \equiv\left(\bigwedge_{r \in E S_{P}(L)} \neg \operatorname{body}(r)\right) \rightarrow\left(\bigwedge_{A \in L} \neg A\right)
\end{aligned}
$$

- Note The loop formula of L enforces all atoms in L to be false whenever L is not externally supported

Nogoods from logic programs via loop formulas

Let P be a normal logic program and recall that:
■ For $L \subseteq \operatorname{atom}(P)$, the external supports of L for P are

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L \text { and } \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

- The (disjunctive) loop formula of L for P is

$$
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{A \in L} A\right) \rightarrow\left(\bigvee_{r \in E S_{P}(L)} \operatorname{body}(r)\right) \\
& \equiv\left(\bigwedge_{r \in E S_{P}(L)} \neg \operatorname{body}(r)\right) \rightarrow\left(\bigwedge_{A \in L} \neg A\right)
\end{aligned}
$$

- Note The loop formula of L enforces all atoms in L to be false whenever L is not externally supported
- The external bodies of L for P are

$$
E B_{P}(L)=\left\{\operatorname{body}(r) \mid r \in E S_{P}(L)\right\}
$$

Nogoods from logic programs loop nogoods

- For a logic program P and some $\emptyset \subset U \subseteq \operatorname{atom}(P)$, define the loop nogood of an atom $a \in U$ as

$$
\lambda(a, U)=\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\}
$$

where $E B_{P}(U)=\left\{B_{1}, \ldots, B_{k}\right\}$

- We get the following set of loop nogoods for P :

Nogoods from logic programs loop nogoods

- For a logic program P and some $\emptyset \subset U \subseteq$ atom (P), define the loop nogood of an atom $a \in U$ as

$$
\lambda(a, U)=\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\}
$$

where $E B_{P}(U)=\left\{B_{1}, \ldots, B_{k}\right\}$
■ We get the following set of loop nogoods for P :

$$
\Lambda_{P}=\bigcup_{\emptyset \subset U \subseteq \operatorname{atom}(P)}\{\lambda(a, U) \mid a \in U\}
$$

Nogoods from logic programs loop nogoods

- For a logic program P and some $\emptyset \subset U \subseteq \operatorname{atom}(P)$, define the loop nogood of an atom $a \in U$ as

$$
\lambda(a, U)=\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\}
$$

where $E B_{P}(U)=\left\{B_{1}, \ldots, B_{k}\right\}$

- We get the following set of loop nogoods for P :

$$
\Lambda_{P}=\bigcup_{\emptyset \subset U \subseteq \operatorname{atom}(P)}\{\lambda(a, U) \mid a \in U\}
$$

■ The set Λ_{P} of loop nogoods denies cyclic support among true atoms

Example

- Consider the program

$$
\left\{\begin{array}{ll}
x \leftarrow \sim y & u \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v \\
& v \leftarrow u, y
\end{array}\right\}
$$

- For u in the set $\{u, v\}$, we obtain the loop nogood: Similarly for v in $\{u, v\}$, we get:

Example

- Consider the program

$$
\left\{\begin{array}{ll}
x \leftarrow \sim y & u \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v \\
& v \leftarrow u, y
\end{array}\right\}
$$

\square For u in the set $\{u, v\}$, we obtain the loop nogood:

$$
\lambda(u,\{u, v\})=\{\mathbf{T} u, \mathbf{F}\{x\}\}
$$

Example

- Consider the program

$$
\left\{\begin{array}{ll}
x \leftarrow \sim y & u \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v \\
& v \leftarrow u, y
\end{array}\right\}
$$

\square For u in the set $\{u, v\}$, we obtain the loop nogood:

$$
\lambda(u,\{u, v\})=\{\mathbf{T} u, \mathbf{F}\{x\}\}
$$

Similarly for v in $\{u, v\}$, we get:

$$
\lambda(v,\{u, v\})=\{\mathbf{T} v, \mathbf{F}\{x\}\}
$$

Characterization of stable models

Theorem
Let P be a logic program. Then, $X \subseteq \operatorname{atom}(P)$ is a stable model of P iff $X=A^{\boldsymbol{\top}} \cap \operatorname{atom}(P)$ for a (unique) solution A for $\Delta_{P} \cup \Lambda_{P}$

Characterization of stable models

Theorem
Let P be a logic program. Then, $X \subseteq \operatorname{atom}(P)$ is a stable model of P iff $X=A^{\boldsymbol{\top}} \cap \operatorname{atom}(P)$ for a (unique) solution A for $\Delta_{P} \cup \Lambda_{P}$

Some remarks

- Nogoods in Λ_{P} augment Δ_{P} with conditions checking for unfounded sets, in particular, those being loops
■ While $\left|\Delta_{P}\right|$ is linear in the size of P, Λ_{P} may contain exponentially many (non-redundant) loop nogoods

Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs
■ Nogoods from program completion

- Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm

■ Nogood Propagation
■ Conflict Analysis

Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

- Traditional DPLL-style approach (DPLL stands for 'Davis-Putnam-Logemann-Loveland')
- (Unit) propagation
- (Chronological) backtracking
- in ASP, eg smodels

■ Modern CDCL-style approach (CDCL stands for 'Conflict-Driven Constraint Learning')

- (Unit) propagation
- Conflict analysis (via resolution)
- Learning + Backjumping + Assertion
- in ASP, eg clasp

DPLL-style solving

loop

propagate
// deterministically assign literals
if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal else
if top-level conflict then return unsatisfiable else
backtrack // unassign literals propagated after last decision
flip // assign complement of last decision literal

CDCL-style solving

loop

propagate
// deterministically assign literals
if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal else
if top-level conflict then return unsatisfiable else
analyze // analyze conflict and add conflict constraint backjump // unassign literals until conflict constraint is unit

Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs
> - Nogoods from program completion ■ Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis

Outline of CDNL-ASP algorithm

■ Keep track of deterministic consequences by unit propagation on:

- Program completion
- Loop nogoods, determined and recorded on demand
- Dynamic nogoods, derived from conflicts and unfounded sets

Outline of CDNL-ASP algorithm

■ Keep track of deterministic consequences by unit propagation on:

- Program completion
- Loop nogoods, determined and recorded on demand
- Dynamic nogoods, derived from conflicts and unfounded sets

■ When a nogood in $\Delta_{P} \cup \nabla$ becomes violated:

- Analyze the conflict by resolution (until reaching a Unique Implication Point, short: UIP)
- Learn the derived conflict nogood δ
- Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for δ
- Assert the complement of the UIP and proceed (by unit propagation)
- Terminate when either: - Finding a stable model (a solution for $\Delta_{P} \cup \Lambda_{P}$) - Deriving a conflict independently of (heuristic) choices

Outline of CDNL-ASP algorithm

■ Keep track of deterministic consequences by unit propagation on:

- Program completion
- Loop nogoods, determined and recorded on demand
- Dynamic nogoods, derived from conflicts and unfounded sets

■ When a nogood in $\Delta_{P} \cup \nabla$ becomes violated:

- Analyze the conflict by resolution (until reaching a Unique Implication Point, short: UIP)
- Learn the derived conflict nogood δ
- Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for δ
- Assert the complement of the UIP and proceed (by unit propagation)
- Terminate when either:
- Finding a stable model (a solution for $\Delta_{P} \cup \Lambda_{P}$)
- Deriving a conflict independently of (heuristic) choices

Algorithm 1: CDNL-ASP

Input : A normal program P

Output : A stable model of P or "no stable model"

$$
\begin{aligned}
& A:=\emptyset \\
& \nabla:=\emptyset \\
& d l:=0
\end{aligned}
$$

// assignment over atom $(P) \cup \operatorname{body}(P)$ // set of recorded nogoods
// decision level

loop

$(A, \nabla):=\operatorname{NogoodPropagation}(P, \nabla, A)$
if $\varepsilon \subseteq A$ for some $\varepsilon \in \Delta_{P} \cup \nabla$ then
if $\max (\{$ dlevel $(\sigma) \mid \sigma \in \varepsilon\} \cup\{0\})=0$ then return no stable model $(\delta, d l):=\operatorname{Conflict} A n a l y s i s(\varepsilon, P, \nabla, A)$ $\nabla:=\nabla \cup\{\delta\}$ $A:=A \backslash\{\sigma \in A \mid d l<\operatorname{dlevel}(\sigma)\}$ // (temporarily) record conflict nogood
// backjumping
else if $A^{\mathbf{\top}} \cup A^{\mathbf{F}}=\operatorname{atom}(P) \cup \operatorname{body}(P)$ then
// stable model return $A^{\boldsymbol{\top}} \cap \operatorname{atom}(P)$
else
$\sigma_{d}:=\operatorname{Select}(P, \nabla, A)$
// decision

Observations

■ Decision level dl, initially set to 0 , is used to count the number of heuristically chosen literals in assignment A
■ For a heuristically chosen literal $\sigma_{d}=\mathbf{T} a$ or $\sigma_{d}=\mathbf{F}$ a, respectively, we require $a \in(\operatorname{atom}(P) \cup \operatorname{body}(P)) \backslash\left(A^{\mathbf{T}} \cup A^{\mathbf{F}}\right)$

- For any literal $\sigma \in A, d l(\sigma)$ denotes the decision level of σ, viz. the value $d l$ had when σ was assigned
- No explicit flipping of heuristically chosen literals

Observations

■ Decision level $d l$, initially set to 0 , is used to count the number of heuristically chosen literals in assignment A
■ For a heuristically chosen literal $\sigma_{d}=\mathbf{T} a$ or $\sigma_{d}=\mathbf{F} a$, respectively, we require $a \in(\operatorname{atom}(P) \cup \operatorname{body}(P)) \backslash\left(A^{\mathbf{T}} \cup A^{\mathbf{F}}\right)$

- For any literal $\sigma \in A, d l(\sigma)$ denotes the decision level of σ, viz. the value $d l$ had when σ was assigned
- A conflict is detected from violation of a nogood $\varepsilon \subseteq \Delta_{P} \cup \nabla$

■ A conflict at decision level 0 (where A contains no heuristically chosen literals) indicates non-existence of stable models
■ A nogood δ derived by conflict analysis is asserting, that is, some literal is unit-resulting for δ at a decision level $k<d l$

Observations

■ Decision level $d l$, initially set to 0 , is used to count the number of heuristically chosen literals in assignment A
■ For a heuristically chosen literal $\sigma_{d}=\mathbf{T} a$ or $\sigma_{d}=\mathbf{F}$ a, respectively, we require $a \in(\operatorname{atom}(P) \cup \operatorname{body}(P)) \backslash\left(A^{\mathbf{T}} \cup A^{\mathbf{F}}\right)$
■ For any literal $\sigma \in A, d l(\sigma)$ denotes the decision level of σ, viz. the value $d l$ had when σ was assigned

- A conflict is detected from violation of a nogood $\varepsilon \subseteq \Delta_{P} \cup \nabla$
- A conflict at decision level 0 (where A contains no heuristically chosen literals) indicates non-existence of stable models

■ A nogood δ derived by conflict analysis is asserting, that is, some literal is unit-resulting for δ at a decision level $k<d l$

- After learning δ and backjumping to decision level k, at least one literal is newly derivable by unit propagation
■ No explicit flipping of heuristically chosen literals !

Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

$d l$	σ_{d}	$\bar{\sigma}$	δ
1	Tu		
2	$F\{\sim x, \sim y\}$		

Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

$d l$	σ_{d}	$\bar{\sigma}$	δ
1	$\mathbf{T} u$		
2	$\mathbf{F}\{\sim x, \sim y\}$		
3		$F\{\sim y\}$	
		Fw	

Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

$d l$	σ_{d}	$\bar{\sigma}$	δ
1	$\mathbf{T} u$		
2	$\mathbf{F}\{\sim x, \sim y\}$		
		$\mathbf{F} w$	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$
3	$F\{\sim y\}$		
		$F x$	$\{T x, F\{\sim y\}\}=\delta(x)$
		$F\{x\}$	$\{T\{x\}, F x\} \in \triangle(\{x\})$

Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

$d l$	σ_{d}	$\bar{\sigma}$	δ
1	$\mathbf{T} u$		
2	$\mathbf{F}\{\sim x, \sim y\}$		
		$\mathbf{F} w$	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$
3	$\mathbf{F}\{\sim y\}$		
		$F x$	$\{T x, F\{\sim y\}\}=\delta(x)$
		$F\{x\}$	$\{T\{x\}, F x\} \in \triangle(\{x\})$

Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

$d l$	σ_{d}	$\bar{\sigma}$	δ
1	$\mathbf{T} u$		
2	$\mathbf{F}\{\sim x, \sim y\}$		
		$\mathbf{F} w$	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$
3	$\mathbf{F}\{\sim y\}$		
		$\mathbf{F} x$	$\{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)$
		$\mathbf{F}\{x\}$	$\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})$
		$\mathbf{F}\{x, y\}$	$\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\})$
			$\{T u, F\{x\}, F\{x, y\}\}=\lambda(u,\{u, v\})$

Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

$d l$	σ_{d}	$\bar{\sigma}$	δ
1	$\mathbf{T} u$		
2	$\mathbf{F}\{\sim x, \sim y\}$		
		$\mathbf{F} w$	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$
3	$\mathbf{F}\{\sim y\}$		
		$\mathbf{F} x$	$\{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)$
		$\mathbf{F}\{x\}$	$\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})$
		$\mathbf{F}\{x, y\}$	$\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\})$
		\vdots	\vdots
			$\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})$

Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

$d l$	σ_{d}	$\bar{\sigma}$	δ
1	$\mathbf{T} u$		
		Tx	$\{T u, F x\} \in \nabla$
		Fv v	$\{F v, T\{x\}\} \in \triangle(v)$
		Fw $w, F\{\sim x\}\}=\delta(v)$	
		Tw, F $\{\sim x, \sim y\}\}=\delta(w)$	

Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

dl	σ_{d}	$\bar{\sigma}$	δ
1	Tu		
		T x	$\{\mathbf{T} u, \mathbf{F} x\} \in \nabla$
		Tv	$\{\mathrm{F} v, \mathrm{~T}\{x\}\} \in \triangle(v)$
		Fy	$\{\boldsymbol{T} y, \mathbf{F}\{\sim x\}\}=\delta(y)$
		Fw	$\{T w, F\{\sim x, \sim y\}\}=\delta(w)$

Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

$d l$	σ_{d}	$\bar{\sigma}$	δ
1	$\mathbf{T} u$		
		$\mathbf{T} x$	$\{\mathbf{T} u, \mathbf{F} x\} \in \nabla$
		\vdots	\vdots
		$\mathbf{T} v$	$\{\mathbf{F} v, \mathbf{T}\{x\}\} \in \Delta(v)$
		\mathbf{F}_{v}	$\{\mathbf{T} y, \mathbf{F}\{\sim x\}\}=\delta(y)$
		$\mathbf{F} w$	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$

Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

$d \boldsymbol{l}$	σ_{d}	$\bar{\sigma}$	δ
1	$\mathbf{T} u$		
		$\mathbf{T} x$	$\{\mathbf{T} u, \mathbf{F} x\} \in \nabla$
		\vdots	\vdots
		$\mathbf{T} v$	$\{\mathbf{F} v, \mathbf{T}\{x\}\} \in \Delta(v)$
		\mathbf{F}_{y}	$\{\mathbf{T} y, \mathbf{F}\{\sim x\}\}=\delta(y)$
		$\mathbf{F} w$	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$

Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs

- Nogoods from program completion
- Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm

■ Nogood Propagation

- Conflict Analysis

Outline of NogoodPropagation

■ Derive deterministic consequences via:

- Unit propagation on Δ_{P} and ∇;
- Unfounded sets $U \subseteq$ atom (P)

■ Note that U is unfounded if $E B_{P}(U) \subseteq A^{\mathbf{F}}$
■ Note For any $a \in U$, we have $(\lambda(a, U) \backslash\{\mathbf{T} a\}) \subseteq A$
\qquad

Outline of NogoodPropagation

■ Derive deterministic consequences via:

- Unit propagation on Δ_{P} and ∇;
- Unfounded sets $U \subseteq$ atom (P)

■ Note that U is unfounded if $E B_{P}(U) \subseteq A^{\mathbf{F}}$
■ Note For any $a \in U$, we have $(\lambda(a, U) \backslash\{\mathbf{T} a\}) \subseteq A$
■ An "interesting" unfounded set U satisfies:

$$
\emptyset \subset U \subseteq\left(\operatorname{atom}(P) \backslash A^{\mathbf{F}}\right)
$$

- Wrt a fixpoint of unit propagation,

Outline of NogoodPropagation

■ Derive deterministic consequences via:

- Unit propagation on Δ_{P} and ∇;
- Unfounded sets $U \subseteq$ atom (P)
- Note that U is unfounded if $E B_{P}(U) \subseteq A^{\mathbf{F}}$

■ Note For any $a \in U$, we have $(\lambda(a, U) \backslash\{\mathbf{T} a\}) \subseteq A$
■ An "interesting" unfounded set U satisfies:

$$
\emptyset \subset U \subseteq\left(\operatorname{atom}(P) \backslash A^{\mathbf{F}}\right)
$$

- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of P
- Note Tight programs do not yield "interesting" unfounded sets !

Outline of NogoodPropagation

■ Derive deterministic consequences via:

- Unit propagation on Δ_{P} and ∇;
- Unfounded sets $U \subseteq$ atom (P)

■ Note that U is unfounded if $E B_{P}(U) \subseteq A^{\mathbf{F}}$

- Note For any $a \in U$, we have $(\lambda(a, U) \backslash\{\mathbf{T} a\}) \subseteq A$

■ An "interesting" unfounded set U satisfies:

$$
\emptyset \subset U \subseteq\left(\operatorname{atom}(P) \backslash A^{\mathbf{F}}\right)
$$

- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of P

■ Note Tight programs do not yield "interesting" unfounded sets !
■ Given an unfounded set U and some $a \in U$, adding $\lambda(a, U)$ to ∇ triggers a conflict or further derivations by unit propagation

■ Note Add loop nogoods atom by atom to eventually falsify all $a \in U$

Algorithm 2: NogoodPropagation

Input : A normal program P, a set ∇ of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.

$$
U:=\emptyset
$$

// unfounded set

loop

```
repeat
```

if $\delta \subseteq A$ for some $\delta \in \Delta_{P} \cup \nabla$ then return $(A, \nabla) \quad / /$ conflict
$\Sigma:=\left\{\delta \in \Delta_{P} \cup \nabla \mid \delta \backslash A=\{\bar{\sigma}\}, \sigma \notin A\right\} \quad / /$ unit-resulting nogoods
if $\Sigma \neq \emptyset$ then let $\bar{\sigma} \in \delta \backslash A$ for some $\delta \in \Sigma$ in
dlevel $(\sigma):=\max (\{\operatorname{dlevel}(\rho) \mid \rho \in \delta \backslash\{\bar{\sigma}\}\} \cup\{0\})$
$A:=A \circ \sigma$
until $\Sigma=\emptyset$
if $\operatorname{loop}(P)=\emptyset$ then return (A, ∇)
$U:=U \backslash A^{\mathbf{F}}$
if $U=\emptyset$ then $U:=\operatorname{UnfoundedSet}(P, A)$
if $U=\emptyset$ then return $(A, \nabla) \quad / /$ no unfounded set $\emptyset \subset U \subseteq$ atom $(P) \backslash A^{\mathrm{F}}$
let $a \in U$ in
$L \nabla:=\nabla \cup\left\{\{\mathbf{T} a\} \cup\left\{\mathbf{F} B \mid B \in E B_{P}(U)\right\}\right\} \quad / /$ record loop nogood

Requirements for UnFOUNDEDSET

■ Implementations of UnfoundedSet must guarantee the following for a result U
$1 U \subseteq\left(\operatorname{atom}(P) \backslash A^{\mathbf{F}}\right)$
$2 E B_{P}(U) \subseteq A^{\mathbf{F}}$
$3 U=\emptyset$ iff there is no nonempty unfounded subset of $\left(\operatorname{atom}(P) \backslash A^{\mathbf{F}}\right)$

- Calculating the greatest unfounded set
- Calculating unfounded sets within strongly connected components of the positive atom dependency graph of P - Usually, the latter option is implemented in ASP solvers

Requirements for UnfoundedSET

- Implementations of UnfoundedSet must guarantee the following for a result U
$1 U \subseteq\left(\operatorname{atom}(P) \backslash A^{\mathbf{F}}\right)$
$2 E B_{P}(U) \subseteq A^{\mathbf{F}}$
$3 U=\emptyset$ iff there is no nonempty unfounded subset of $\left(\operatorname{atom}(P) \backslash A^{\mathbf{F}}\right)$
■ Beyond that, there are various alternatives, such as:
- Calculating the greatest unfounded set
- Calculating unfounded sets within strongly connected components of the positive atom dependency graph of P
- Usually, the latter option is implemented in ASP solvers

Example: NogoodPropagation

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

$d \boldsymbol{l}$	σ_{d}	$\bar{\sigma}$	δ
1	$\mathbf{T} u$		
2	$\mathbf{F}\{\sim x, \sim y\}$		
		$\mathbf{F} w$	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$
3	$\mathbf{F}\{\sim y\}$		
		$\mathbf{F} x$	$\{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)$
		$\mathbf{F}\{x\}$	$\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})$
		$\mathbf{F}\{x, y\}$	$\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\})$
		$\mathbf{T}\{\sim x\}$	$\{\mathbf{F}\{\sim x\}, \mathbf{F}\}=\delta(\{\sim x\})$
		$\mathbf{T} y$	$\{\mathbf{F}\{\sim y\}, \mathbf{F y}\}=\delta(\{\sim y\})$
		$\mathbf{T}\{v\}$	$\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)$
		$\mathbf{T}\{u, y\}$	$\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})$
			$\mathbf{T} v$
			$\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)$
			$\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})$

Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs

- Nogoods from program completion - Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis

Outline of ConflictAnalysis

- Conflict analysis is triggered whenever some nogood $\delta \in \Delta_{P} \cup \nabla$ becomes violated, viz. $\delta \subseteq A$, at a decision level $d l>0$

■ Note that all but the first literal assigned at $d l$ have been unit-resulting for nogoods $\varepsilon \in \Delta_{P} \cup \nabla$

- If $\sigma \in \delta$ has been unit-resulting for ε, we obtain a new violated nogood by resolving δ and ε as follows:

$$
(\delta \backslash\{\sigma\}) \cup(\varepsilon \backslash\{\bar{\sigma}\})
$$

- Iterated resolution progresses in inverse order of assignment

Outline of ConflictAnalysis

- Conflict analysis is triggered whenever some nogood $\delta \in \Delta_{P} \cup \nabla$ becomes violated, viz. $\delta \subseteq A$, at a decision level $d l>0$

■ Note that all but the first literal assigned at $d l$ have been unit-resulting for nogoods $\varepsilon \in \Delta_{P} \cup \nabla$

- If $\sigma \in \delta$ has been unit-resulting for ε, we obtain a new violated nogood by resolving δ and ε as follows:

$$
(\delta \backslash\{\sigma\}) \cup(\varepsilon \backslash\{\bar{\sigma}\})
$$

■ Resolution is directed by resolving first over the literal $\sigma \in \delta$ derived last, viz. $(\delta \backslash A[\sigma])=\{\sigma\}$

- Iterated resolution progresses in inverse order of assignment

Outline of ConflictAnalysis

■ Conflict analysis is triggered whenever some nogood $\delta \in \Delta_{P} \cup \nabla$ becomes violated, viz. $\delta \subseteq A$, at a decision level $d l>0$

■ Note that all but the first literal assigned at $d l$ have been unit-resulting for nogoods $\varepsilon \in \Delta_{P} \cup \nabla$

- If $\sigma \in \delta$ has been unit-resulting for ε, we obtain a new violated nogood by resolving δ and ε as follows:

$$
(\delta \backslash\{\sigma\}) \cup(\varepsilon \backslash\{\bar{\sigma}\})
$$

■ Resolution is directed by resolving first over the literal $\sigma \in \delta$ derived last, viz. $(\delta \backslash A[\sigma])=\{\sigma\}$

- Iterated resolution progresses in inverse order of assignment
- Iterated resolution stops as soon as it generates a nogood δ containing exactly one literal σ assigned at decision level dl
- This literal σ is called First Unique Implication Point (First-UIP)
- All literals in ($\delta \backslash\{\sigma\}$) are assigned at decision levels smaller than $d l$

Algorithm 3: Conflict AnAlysis

Input : A non-empty violated nogood δ, a normal program P, a set ∇ of nogoods, and an assignment A.
Output : A derived nogood and a decision level.
loop
let $\sigma \in \delta$ such that $\delta \backslash A[\sigma]=\{\sigma\}$ in
$k:=\max (\{\operatorname{dlevel}(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})$
if $k=\operatorname{dlevel}(\sigma)$ then let $\varepsilon \in \Delta_{P} \cup \nabla$ such that $\varepsilon \backslash A[\sigma]=\{\bar{\sigma}\}$ in $\lfloor\delta:=(\delta \backslash\{\sigma\}) \cup(\varepsilon \backslash\{\bar{\sigma}\})$
// resolution
else return (δ, k)

Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

dl	σ_{d}	$\bar{\sigma}$	δ
1	Tu		
2	$\mathbf{F}\{\sim x, \sim y\}$		
		Fw	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$
3	F $\{\sim y\}$		
		F x	$\{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)$
		$\mathbf{F}\{x\}$	$\left\{\mathbf{T}\{x\}, \mathbf{F}_{x}\right\} \in \Delta(\{x\})$
		$\mathbf{F}\{x, y\}$	$\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\})$
		$\mathbf{T}\{\sim x\}$	$\left\{\mathbf{F}\{\sim x\}, \mathbf{F}^{\prime}\right\}=\delta(\{\sim x\})$
		Ty	$\left\{\mathbf{F}\{\sim y\}, \mathbf{F}^{\prime}\right\}=\delta(\{\sim y\})$
		T $\{v\}$	$\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)$
		$\mathbf{T}\{u, y\}$	$\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})$
		Tv	$\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)$
			$\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})$

Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

	σ_{d}	$\overline{\bar{\sigma}}$	δ
1	Tu		
2	$\mathbf{F}\{\sim x, \sim y\}$		
		Fw	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$
3	F $\{\sim y\}$		
		FX F $\{x\}$	$\left\{\mathbf{T}_{x}, \mathbf{F}\{\sim y\}\right\}=\delta(x)$
		$\begin{aligned} & F\{x\} \\ & F\{x, y\} \end{aligned}$	$\begin{aligned} & \{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\}) \\ & \{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\}) \end{aligned}$
		T\{ $\sim x\}$	$\{\mathbf{F}\{\sim x\}, \mathbf{F} x\}=\delta(\{\sim x\})$
		Ty	$\{\mathbf{F}\{\sim y\}, \mathbf{F} y\}=\delta(\{\sim y\})$
		T $\{v\}$	$\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)$
		T $\{u, y\}$	$\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})$
		Tv	$\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)$
			$\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})$

Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

dl	σ_{d}	$\bar{\sigma}$	δ
1	Tu		
2	$\mathbf{F}\{\sim x, \sim y\}$		
		Fw	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$
3	F $\{\sim y\}$		
		F x	$\{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)$
		$\mathbf{F}\{x\}$	$\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})$
		$\mathbf{F}\{x, y\}$	$\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\})$
		$\mathbf{T}\{\sim x\}$	$\{\mathbf{F}\{\sim x\}, \mathbf{F} x\}=\delta(\{\sim x\})$
		Ty	$\{\mathbf{F}\{\sim y\}, \mathbf{F} y\}=\delta(\{\sim y\})$
		$\mathbf{T}\{v\}$	$\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)$
		$\mathbf{T}\{u, y\}$	$\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})$
		Tv	$\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)$
			$\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})$

Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

dl	σ_{d}	$\bar{\sigma}$	δ
1	Tu		
2	$\mathbf{F}\{\sim x, \sim y\}$		
		Fw	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$
3	F $\{\sim y\}$		
		F_{x}	$\{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)$
		$\mathbf{F}\{x\}$	$\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})$
		$\mathbf{F}\{x, y\}$	$\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\})$
		$\mathbf{T}\{\sim x\}$	$\{\mathbf{F}\{\sim x\}, \mathbf{F} x\}=\delta(\{\sim x\})$
		Ty	$\{\mathbf{F}\{\sim y\}, \mathbf{F} y\}=\delta(\{\sim y\})$
		$\mathbf{T}\{v\}$	$\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)$
		$\mathbf{T}\{u, y\}$	$\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})$
		Tv	$\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)$
			$\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})$

Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

dl	σ_{d}	$\bar{\sigma}$	δ
1	Tu		
2	$\mathbf{F}\{\sim x, \sim y\}$		
		Fw	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$
3	F $\{\sim y\}$		
		F x	$\{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)$
		F $\{x\}$	$\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})$
		$\mathbf{F}\{x, y\}$	$\left\{\mathbf{T}\{x, y\}, \mathbf{F}_{x}\right\} \in \Delta(\{x, y\})$
		$\mathbf{T}\{\sim x\}$	$\{\mathbf{F}\{\sim x\}, \mathbf{F} x\}=\delta(\{\sim x\})$
		Ty	$\{\mathbf{F}\{\sim y\}, \mathbf{F} y\}=\delta(\{\sim y\})$
		$\mathbf{T}\{v\}$	$\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)$
		$\mathbf{T}\{u, y\}$	$\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})$
		Tv	$\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)$
			$\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})$

Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

dl	/ σ_{d}	$\bar{\sigma}$	δ
1	Tu		
2	$\mathbf{F}\{\sim x, \sim y\}$		
		Fw	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$
3	F $\{\sim y\}$		
		F x	$\{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)$
		F $\{x\}$	$\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})$
		$\mathbf{F}\{x, y\}$	$\left\{\mathbf{T}\{x, y\}, \mathbf{F}_{x}\right\} \in \Delta(\{x, y\})$
		$\mathbf{T}\{\sim x\}$	$\{\mathbf{F}\{\sim x\}, \mathbf{F} x\}=\delta(\{\sim x\})$
		Ty	$\{\mathbf{F}\{\sim y\}, \mathbf{F} y\}=\delta(\{\sim y\})$
		$\mathbf{T}\{v\}$	$\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)$
		$\mathbf{T}\{u, y\}$	$\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})$
		Tv	$\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)$
			$\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})$

$\left\{\mathbf{T} u, \mathbf{F}_{x}, \mathbf{F}\{x\}\right\}$

Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

dl	/ σ_{d}	$\bar{\sigma}$	δ
1	Tu		
2	$\mathbf{F}\{\sim x, \sim y\}$		
		Fw	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$
3	F $\{\sim y\}$		
		F x	$\{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)$
		F $\{x\}$	$\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})$
		$\mathbf{F}\{x, y\}$	$\left\{\mathbf{T}\{x, y\}, \mathbf{F}_{x}\right\} \in \Delta(\{x, y\})$
		$\mathbf{T}\{\sim x\}$	$\{\mathbf{F}\{\sim x\}, \mathbf{F} x\}=\delta(\{\sim x\})$
		Ty	$\{\mathbf{F}\{\sim y\}, \mathbf{F} y\}=\delta(\{\sim y\})$
		$\mathbf{T}\{v\}$	$\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)$
		$\mathbf{T}\{u, y\}$	$\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})$
		Tv	$\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)$
			$\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})$

$\left\{\mathbf{T} u, \mathbf{F}_{x}, \mathbf{F}\{x\}\right\}$

Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

dl	σ_{d}	$\bar{\sigma}$	δ
1	Tu		
2	$\mathbf{F}\{\sim x, \sim y\}$		
		Fw	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$
3	F $\{\sim y\}$		
		Fx	$\{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)$
		$\mathbf{F}\{x\}$	$\left\{\mathbf{T}\{x\}, \mathbf{F}_{x}\right\} \in \Delta(\{x\})$
		$\mathbf{F}\{x, y\}$	$\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\})$
		$\mathbf{T}\{\sim x\}$	$\left\{\mathbf{F}\{\sim x\}, \mathbf{F}^{\prime}\right\}=\delta(\{\sim x\})$
		Ty	$\left\{\mathbf{F}\{\sim y\}, \mathbf{F}^{\prime}\right\}=\delta(\{\sim y\})$
		T $\{v\}$	$\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)$
		$\mathbf{T}\{u, y\}$	$\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})$
		Tv	$\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)$
			$\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})$

$$
\begin{aligned}
& \left\{\mathbf{T} u, \mathbf{F}_{x}\right\} \\
& \left\{\mathbf{T} u, \mathbf{F}_{x}, \mathbf{F}_{1}\{x\}\right\}
\end{aligned}
$$

Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

dl	/ σ_{d}	$\bar{\sigma}$	δ
1	Tu		
2	$\mathbf{F}\{\sim x, \sim y\}$		
		Fw	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$
3	F $\{\sim y\}$		
		F x	$\{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)$
		F $\{x\}$	$\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})$
		$\mathbf{F}\{x, y\}$	$\left\{\mathbf{T}\{x, y\}, \mathbf{F}_{x}\right\} \in \Delta(\{x, y\})$
		$\mathbf{T}\{\sim x\}$	$\{\mathbf{F}\{\sim x\}, \mathbf{F} x\}=\delta(\{\sim x\})$
		Ty	$\{\mathbf{F}\{\sim y\}, \mathbf{F} y\}=\delta(\{\sim y\})$
		$\mathbf{T}\{v\}$	$\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)$
		$\mathbf{T}\{u, y\}$	$\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})$
		Tv	$\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)$
			$\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})$

$$
\begin{aligned}
& \left\{\mathbf{T} u, \mathbf{F}_{x}\right\} \\
& \left.\left\{\mathbf{T} u, \mathbf{F}_{x}, \mathbf{F}_{2} x\right\}\right\}
\end{aligned}
$$

Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

dl	σ_{d}	$\bar{\sigma}$	δ
1	Tu		
2	$\mathbf{F}\{\sim x, \sim y\}$	Fw	$\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)$
3	$\mathbf{F}\{\sim y\}$	Fx F $\{x\}$ $\mathbf{F}\{x, y\}$ $\mathbf{T}\{\sim x\}$ Ty $\mathbf{T}\{v\}$ $\mathbf{T}\{u, y\}$ Tv	$\begin{aligned} & \{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x) \\ & \{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\}) \\ & \{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\}) \\ & \{\mathbf{F}\{\sim x\}, \mathbf{F} x\}=\delta(\{\sim x\}) \\ & \{\mathbf{F}\{\sim y\}, \mathbf{F} y\}=\delta(\{\sim y\}) \\ & \{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u) \\ & \{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\}) \\ & \{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v) \\ & \{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\}) \\ & \hline \end{aligned}$

$$
\begin{aligned}
& \left\{\mathbf{T} u, \mathbf{F}_{x}\right\} \\
& \left\{\mathbf{T} u, \mathbf{F}_{x}, \mathbf{F}_{1}\{x\}\right\}
\end{aligned}
$$

Remarks

- There always is a First-UIP at which conflict analysis terminates
- In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl

Remarks

■ There always is a First-UIP at which conflict analysis terminates

- In the worst, resolution stops at the heuristically chosen literal assigned at decision level $d l$
■ The nogood δ containing First-UIP σ is violated by A, viz. $\delta \subseteq A$
■ We have $k=\max (\{d l(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})<d l$
of the search space than traversed before,
without explicitly flipping any heuristically ch osen literal

Remarks

■ There always is a First-UIP at which conflict analysis terminates

- In the worst, resolution stops at the heuristically chosen literal assigned at decision level $d l$
■ The nogood δ containing First-UIP σ is violated by A, viz. $\delta \subseteq A$
■ We have $k=\max (\{d l(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})<d l$
- After recording δ in ∇ and backjumping to decision level k, $\bar{\sigma}$ is unit-resulting for δ !
- Such a nogood δ is called asserting
of the search space than traversed before,
without explicitly flipping any heuristically ch osen literal

Remarks

■ There always is a First-UIP at which conflict analysis terminates

- In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
■ The nogood δ containing First-UIP σ is violated by A, viz. $\delta \subseteq A$
■ We have $k=\max (\{d l(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})<d l$
- After recording δ in ∇ and backjumping to decision level k, $\bar{\sigma}$ is unit-resulting for δ !
- Such a nogood δ is called asserting

■ Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before, without explicitly flipping any heuristically chosen literal !

