
Technische Universität Dresden

Prof. Dr. Sebastian Rudolph

Formal Concept Analysis
Exercise Sheet 7, Winter Semester 2014/15

Exercise 1 (frequent concept intents and closure systems)

De�nition (frequent concept intent). Let K = (G,M, I) be a formal context.

(a) The support of a set B ⊆M of attributes in K is given by

supp(B) :=
|B′|
|G|

.

(b) For a given minimal support minsupp the set of frequent concept intents is given by

{B ⊆M | ∃A ⊆ G : (A,B) ∈ B(G,M, I) ∧ supp(B) ≥ minsupp}.

Show that the set of frequent concept intents together with the set M forms a closure system.

Exercise 2 (support)

Show the validity of the properties of the support function that are employed by the Titanic
algorithm:

Let (G,M, I) be a formal context X, Y ⊆M . Then it holds:

1) X ⊆ Y =⇒ supp(X) ≥ supp(Y)

2) X ′′ = Y ′′ =⇒ supp(X) = supp(Y)

3) X ⊆ Y ∧ supp(X) = supp(Y) =⇒ X ′′ = Y ′′

Exercise 3 (computing concept intents with Titanic)

The following context contains transactions in a supermarket. Compute the closure system of
all concept intents using the Titanic algorithm. (hint: use the table structure from the example
computation in the lecture slides)

ap
p
le
s
(a
)

b
ee
r
(b
)

ch
ip
s
(c
)

tv
m
ag
az
in
e
(d
)

to
ot
h
p
as
te

(e
)

t1 × × ×
t2 × ×
t3 × × ×
t4 × × ×
t5 × ×
t6 × × ×
t7 × ×
t8 × ×

Exercise 4 (optimizing Titanic for iceberg concept lattices)

In the lecture the following steps to optimize Titanic for the computation of iceberg concept
lattices have been mentioned:

1. Stop, as soon as only non-frequent minimal generators are computed.

2. Return only the closures of frequent minimal generators.

3. Generate candidates only from the frequent minimal generators.

4. All subsets of candidates with k − 1 elements must be frequent.

Implement the corresponding modi�cations in Titanic. Utilize the fact that for a formal con-
text K = (G,M, I) and a minimal support constraint minsupp the set of frequent concept
intents together with M form a closure system. The corresponding closure operator h and the
support function support are given by

h(X) :=

{
X ′′, if supp(X) ≥ minsupp

M, otherwise
support(X) :=

{
supp(X), if supp(X) ≥ minsupp

−1, otherwise

Insert the corresponding changes directly into the algorithms attached to this exercise sheet.

Exercise 5 (computing iceberg concept lattices)

We are regarding the following excerpt from the mushroom database:

Mushroom 1
Mushroom 2
Mushroom 3
Mushroom 4
Mushroom 5
Mushroom 6
Mushroom 7
Mushroom 8
Mushroom 9
Mushroom 10

ed
ib

le
 (

e)
po

is
on

ou
s

(p
)

ca
p

sh
ap

e:
 c

on
ve

x
(c

)
ca

p
sh

ap
e:

 fl
at

 (
l)

ca
p

su
rf

ac
e:

 fi
br

ou
s

(i)

a) Compute the corresponding iceberg concept lattice forminsupp = 30% using the modi�ed
algorithm from the previous exercise.

b) Compute the corresponding iceberg concept lattices and label each (frequent) concept
with its corresponding support value.

2

Algorithm 1 Titanic

1) Support({∅});
2) K0 ← {∅};
3) k ← 1;
4) forall m ∈M do {m}.p_s← ∅.s;
5) C ← {{m} | m ∈M};
6) loop begin
7) Support(C);
8) forall X ∈ Kk−1 do X.closure← Closure(X);
9) Kk ← {X ∈ C | X.s 6= X.p_s};
10) if Kk = ∅ then exit loop ;
11) k ++;
12) C ← Titanic-Gen(Kk−1);
13) end loop ;

14) return
⋃k−1

i=0 {X.closure | X ∈ Ki}.

Algorithm 2 Titanic-Gen

Input: Kk−1, the set of key (k − 1)-sets K with their weight K.s.

Output: C, the set of candidate k-sets C
with the values C.p_s := min{s(C \ {m} | m ∈ C}.

The variables p_s assigned to the sets {m1, . . . ,mk} which are generated in step 1 are initialized
by {m1, . . . ,mk}.p_s← smax.

1) C ← {{m1 < m2 < · · · < mk} | {m1, . . . ,mk−2,mk−1}, {m1, . . . ,mk−2,mk}
2) forall X ∈ C do begin eb ∈ Kk−1};
3) forall (k − 1)-subsets S of X do begin
4) if S /∈ Kk−1 then begin C ← C \ {X}; exit forall ; end;
5) X.p_s← min(X.p_s, S.s);
6) end;
7) end;
8) return C.

Algorithm 3 Closure(X) for X ∈ Kk−1

1) Y ← X;
2) forall m ∈ X do Y ← Y ∪ (X \ {m}).closure; forall m ∈M \ Y do begin
3) if X ∪ {m} ∈ C then s← (X ∪ {m}).s
4) else s← min{K.s | K ∈ K, K ⊆ X ∪ {m}};
5) if s = X.s then Y ← Y ∪ {m}
6) end;
7) return Y .

3

