## Technische Universität Dresden

Prof. Dr. Sebastian Rudolph

## Formal Concept Analysis

## Exercise Sheet 7, Winter Semester 2014/15

Exercise 1 (frequent concept intents and closure systems)
Definition (frequent concept intent). Let $\mathbb{K}=(G, M, I)$ be a formal context.
(a) The support of a set $B \subseteq M$ of attributes in $\mathbb{K}$ is given by

$$
\operatorname{supp}(B):=\frac{\left|B^{\prime}\right|}{|G|} .
$$

(b) For a given minimal support minsupp the set of frequent concept intents is given by

$$
\{B \subseteq M \mid \exists A \subseteq G:(A, B) \in \mathfrak{B}(G, M, I) \wedge \operatorname{supp}(B) \geq \text { minsupp }\}
$$

Show that the set of frequent concept intents together with the set $M$ forms a closure system.
Exercise 2 (support)
Show the validity of the properties of the support function that are employed by the Titanic algorithm:

Let $(G, M, I)$ be a formal context $X, Y \subseteq M$. Then it holds:

1) $X \subseteq Y \Longrightarrow \operatorname{supp}(X) \geq \operatorname{supp}(Y)$
2) $X^{\prime \prime}=Y^{\prime \prime} \Longrightarrow \operatorname{supp}(X)=\operatorname{supp}(Y)$
3) $X \subseteq Y \wedge \operatorname{supp}(X)=\operatorname{supp}(Y) \Longrightarrow X^{\prime \prime}=Y^{\prime \prime}$

Exercise 3 (computing concept intents with Titanic)
The following context contains transactions in a supermarket. Compute the closure system of all concept intents using the TiTANIC algorithm. (hint: use the table structure from the example computation in the lecture slides)

|  |  |  | $\begin{aligned} & \text { © } \\ & \text { 䔍 } \end{aligned}$ |  | © 0 0 0 $\#$ $\#$ 0 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{1}$ | $\times$ | $\times$ | $\times$ |  |  |
| $t_{2}$ |  |  | $\times$ | $\times$ |  |
| $t_{3}$ |  | $\times$ | $\times$ | $\times$ |  |
| $t_{4}$ | $\times$ | $\times$ |  |  | $\times$ |
| $t_{5}$ |  |  | $\times$ |  | $\times$ |
| $t_{6}$ |  | $\times$ | $\times$ | $\times$ |  |
| $t_{7}$ | $\times$ | $\times$ |  |  |  |
| $t_{8}$ |  |  | $\times$ | $\times$ |  |

Exercise 4 (optimizing Titanic for iceberg concept lattices)
In the lecture the following steps to optimize Titanic for the computation of iceberg concept lattices have been mentioned:

1. Stop, as soon as only non-frequent minimal generators are computed.
2. Return only the closures of frequent minimal generators.
3. Generate candidates only from the frequent minimal generators.
4. All subsets of candidates with $k-1$ elements must be frequent.

Implement the corresponding modifications in Titanic. Utilize the fact that for a formal context $\mathbb{K}=(G, M, I)$ and a minimal support constraint minsupp the set of frequent concept intents together with $M$ form a closure system. The corresponding closure operator $h$ and the support function support are given by

$$
h(X):=\left\{\begin{array}{ll}
X^{\prime \prime}, & \text { if } \operatorname{supp}(X) \geq \text { minsupp } \\
M, & \text { otherwise }
\end{array} \quad \operatorname{support}(X):= \begin{cases}\operatorname{supp}(X), & \text { if } \operatorname{supp}(X) \geq \text { minsupp } \\
-1, & \text { otherwise }\end{cases}\right.
$$

Insert the corresponding changes directly into the algorithms attached to this exercise sheet.
Exercise 5 (computing iceberg concept lattices)
We are regarding the following excerpt from the mushroom database:

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Mushroom 1 |  | X | X |  |
| Mushroom 2 | X | X | X |  |
| Mushroom 3 | X |  |  |  |
| Mushroom 4 | X |  |  |  |
| Mushroom 5 | X | X | X |  |
| Mushroom 6 | X | X | X |  |
| Mushroom 7 |  | X |  |  |
| Mushroom 8 |  | X |  |  |
| Mushroom 9 |  | X |  |  |
| Mushroom 10 |  | X |  |  |

a) Compute the corresponding iceberg concept lattice for minsupp $=30 \%$ using the modified algorithm from the previous exercise.
b) Compute the corresponding iceberg concept lattices and label each (frequent) concept with its corresponding support value.

```
Algorithm 1 Titanic
1) \(\operatorname{Support}(\{\emptyset\})\);
2) \(\mathcal{K}_{0} \leftarrow\{\emptyset\}\);
3) \(k \leftarrow 1\);
4) forall \(m \in M\) do \(\{m\} . p \_s \leftarrow \emptyset . s\);
5) \(\mathcal{C} \leftarrow\{\{m\} \mid m \in M\}\);
6) loop begin
7) \(\operatorname{Support}(\mathcal{C})\);
8) forall \(X \in \mathcal{K}_{k-1}\) do \(X\).closure \(\leftarrow \operatorname{Closure}(X)\);
9) \(\mathcal{K}_{k} \leftarrow\left\{X \in \mathcal{C} \mid X . s \neq X . p \_s\right\}\);
10) if \(\mathcal{K}_{k}=\emptyset\) then exit loop ;
11) \(k++\);
12) \(\mathcal{C} \leftarrow \operatorname{Titanic}-\operatorname{Gen}\left(\mathcal{K}_{k-1}\right)\);
13) end loop ;
14) return \(\bigcup_{i=0}^{k-1}\left\{X\right.\).closure \(\left.\mid X \in \mathcal{K}_{i}\right\}\).
```


## Algorithm 2 Titanic-Gen

Input: $\mathcal{K}_{k-1}$, the set of key $(k-1)$-sets $K$ with their weight K.s.
Output: $\mathcal{C}$, the set of candidate $k$-sets $C$
with the values $C . p_{-} s:=\min \{s(C \backslash\{m\} \mid m \in C\}$.
The variables $p_{-} s$ assigned to the sets $\left\{m_{1}, \ldots, m_{k}\right\}$ which are generated in step 1 are initialized by $\left\{m_{1}, \ldots, m_{k}\right\} \cdot p_{-} s \leftarrow s_{\text {max }}$.

1) $\mathcal{C} \leftarrow\left\{\left\{m_{1}<m_{2}<\cdots<m_{k}\right\} \mid\left\{m_{1}, \ldots, m_{k-2}, m_{k-1}\right\},\left\{m_{1}, \ldots, m_{k-2}, m_{k}\right\}\right.$
2) forall $X \in \mathcal{C}$ do begin $\quad\left[\in \mathcal{K}_{k-1}\right\}$;
3) forall $(k-1)$-subsets $S$ of $X$ do begin
4) if $S \notin \mathcal{K}_{k-1}$ then begin $\mathcal{C} \leftarrow \mathcal{C} \backslash\{X\}$; exit forall ; end;
5) $\quad X . p \_s \leftarrow \min \left(X . p \_s, S . s\right)$;
6) end;
7) end;
8) return $\mathcal{C}$.
```
Algorithm 3 Closure \((X)\) for \(X \in \mathcal{K}_{k-1}\)
1) \(Y \leftarrow X\);
2) forall \(m \in X\) do \(Y \leftarrow Y \cup(X \backslash\{m\})\).closure; forall \(m \in M \backslash Y\) do begin
3) if \(X \cup\{m\} \in \mathcal{C}\) then \(s \leftarrow(X \cup\{m\}) . s\)
4) \(\quad\) else \(s \leftarrow \min \{K . s \mid K \in \mathcal{K}, K \subseteq X \cup\{m\}\}\);
5) if \(s=X . s\) then \(Y \leftarrow Y \cup\{m\}\)
6) end;
7) return \(Y\).
```

