Technische Universität Dresden

Prof. Dr. Sebastian Rudolph

Formal Concept Analysis Exercise Sheet 7, Winter Semester 2014/15

Exercise 1 (frequent concept intents and closure systems)

Definition (frequent concept intent). Let $\mathbb{K} = (G, M, I)$ be a formal context.

(a) The support of a set $B \subseteq M$ of attributes in \mathbb{K} is given by

$$\operatorname{supp}(B) := \frac{|B'|}{|G|}.$$

(b) For a given minimal support minsupp the set of frequent concept intents is given by

$$\{B \subseteq M \mid \exists A \subseteq G : (A, B) \in \mathfrak{B}(G, M, I) \land \operatorname{supp}(B) \ge minsupp\}.$$

Show that the set of frequent concept intents together with the set M forms a closure system.

Exercise 2 (support)

Show the validity of the properties of the support function that are employed by the TITANIC algorithm:

Let (G, M, I) be a formal context $X, Y \subseteq M$. Then it holds:

- 1) $X \subseteq Y \implies \operatorname{supp}(X) \ge \operatorname{supp}(Y)$
- 2) $X'' = Y'' \implies \operatorname{supp}(X) = \operatorname{supp}(Y)$
- 3) $X \subseteq Y \land \operatorname{supp}(X) = \operatorname{supp}(Y) \implies X'' = Y''$

Exercise 3 (computing concept intents with TITANIC)

The following context contains transactions in a supermarket. Compute the closure system of all concept intents using the TITANIC algorithm. (hint: use the table structure from the example computation in the lecture slides)

	apples (a)	× beer (b)	\times × × chips (c)	tv magazine (d)	toothpaste (e)
t_1	×	×	×		
t_2			×	××	
t_3		××	×	×	
t_4	×	×			× ×
t_5			××		×
t_6		××	×	×	
$\begin{array}{c c} t_1 \\ t_2 \\ t_3 \\ t_4 \\ t_5 \\ t_6 \\ t_7 \\ t_8 \end{array}$	×	×			
t_8			×	×	

Exercise 4 (optimizing TITANIC for iceberg concept lattices)

In the lecture the following steps to optimize TITANIC for the computation of iceberg concept lattices have been mentioned:

- 1. Stop, as soon as only *non-frequent* minimal generators are computed.
- 2. Return only the closures of *frequent* minimal generators.
- 3. Generate candidates only from the *frequent* minimal generators.
- 4. All subsets of candidates with k-1 elements must be *frequent*.

Implement the corresponding modifications in TITANIC. Utilize the fact that for a formal context $\mathbb{K} = (G, M, I)$ and a minimal support constraint *minsupp* the set of frequent concept intents together with M form a closure system. The corresponding closure operator h and the support function *support* are given by

$$h(X) := \begin{cases} X'', & \text{if } \operatorname{supp}(X) \ge minsupp\\ M, & \text{otherwise} \end{cases} \quad support(X) := \begin{cases} \operatorname{supp}(X), & \text{if } \operatorname{supp}(X) \ge minsupp\\ -1, & \text{otherwise} \end{cases}$$

Insert the corresponding changes directly into the algorithms attached to this exercise sheet.

Exercise 5 (computing iceberg concept lattices)

We are regarding the following excerpt from the mushroom database:

- a) Compute the corresponding iceberg concept lattice for minsupp = 30% using the modified algorithm from the previous exercise.
- **b)** Compute the corresponding iceberg concept lattices and label each (frequent) concept with its corresponding support value.

Algorithm 1 TITANIC

1) SUPPORT($\{\emptyset\}$); 2) $\mathcal{K}_0 \leftarrow \{\emptyset\};$ 3) $k \leftarrow 1$; 4) forall $m \in M$ do $\{m\}.p_s \leftarrow \emptyset.s;$ 5) $\mathcal{C} \leftarrow \{\{m\} \mid m \in M\};\$ 6) loop begin 7)SUPPORT(\mathcal{C}); forall $X \in \mathcal{K}_{k-1}$ do X.closure \leftarrow CLOSURE(X); 8) $\mathcal{K}_k \leftarrow \{ X \in \mathcal{C} \mid X.s \neq X.p_s \};$ 9) 10)if $\mathcal{K}_k = \emptyset$ then exit loop ; 11)k + +; $\mathcal{C} \leftarrow \text{TITANIC-GEN}(\mathcal{K}_{k-1});$ 12)13) end loop ; 14) return $\bigcup_{i=0}^{k-1} \{ X. closure \mid X \in \mathcal{K}_i \}.$

Algorithm 2 TITANIC-GEN

Input: \mathcal{K}_{k-1} , the set of key (k-1)-sets K with their weight K.s.

Output: C, the set of candidate k-sets Cwith the values $C.p_s := \min\{s(C \setminus \{m\} \mid m \in C\}.$

The variables p_s assigned to the sets $\{m_1, \ldots, m_k\}$ which are generated in step 1 are initialized by $\{m_1, \ldots, m_k\}$. $p_s \leftarrow s_{\max}$.

Algorithm 3 CLOSURE(X) for $X \in \mathcal{K}_{k-1}$

1) $Y \leftarrow X$; 2) forall $m \in X$ do $Y \leftarrow Y \cup (X \setminus \{m\})$.closure; forall $m \in M \setminus Y$ do begin 3) if $X \cup \{m\} \in C$ then $s \leftarrow (X \cup \{m\})$.s 4) else $s \leftarrow \min\{K.s \mid K \in \mathcal{K}, K \subseteq X \cup \{m\}\}$; 5) if s = X.s then $Y \leftarrow Y \cup \{m\}$ 6) end; 7) return Y.