DATABASE THEORY

Review

Lecture 11: Query Expressiveness

Markus Krötzsch

Knowledge-Based Systems

First-Order Query Expressiveness

Boolean Query Mappings

A Boolean query mapping is a query mapping that returns "true" (usually a database with one table with one empty row) or "false" (usually an empty database).

Every Boolean query mapping

- defines set of databases for which it is true
- defines a decision problem over the set of all databases
- could be decidable or undecidable
- if decidable, it may be characterised in terms of complexity

Note: the "complexity of a mapping" is always "data complexity", i.e., complexity w.rt. the size of the input database; the mapping defines the decision problem and is fixed.

The Limits of FO Queries

Are there polynomial query mappings that cannot be expressed in FO?
\leadsto yes!
We already knew this from previous lectures:

- We learned that $\mathrm{AC}^{0} \subset \mathrm{NC}^{1} \subseteq \ldots \subseteq \mathrm{P}$
- Hence, there is a problem X in $N C^{1}$ that is not in AC^{0}
- Therefore, the corresponding query mapping M_{X} is not FO-definable
$\mathrm{AC}^{0} \subset \mathrm{NC}^{1}$ was first shown for the problem $X=$ PARITY:
- Input: finite relational structure I
- Output: "true" if I has an even number of domain elements

The original proof is specific to this problem [Ajtai 1983].

Expressivity vs. Complexity

All query mappings that can be expressed in first-order logic are of polynomial complexity, actually in AC^{0}.

```
Arbitrary Query Mappings everything undecidable
    Polynomial Time Query Mappings
    First-Order Queries
    Data compl.: AC}\mp@subsup{}{}{0},\mathrm{ Comb./Query compl.: PSpace
    equivalence/containment/emptiness: undec.
        Conjunctive Queries
            Data compl.: AC}\mp@subsup{}{}{0}\mathrm{ ; everything else: NP
                k-Bounded Hypertree Width
                everything (sub)polynomial
```

 Tree CQs
 Markus Krötzsch, 15th May 2019

Any Other FO-Undefinable Problems?

Yes, many.
Strong evidence from complexity theory:

- If any P-complete problem X were FO-definable,
- then every problem in P could be LogSpace-reduced to X
- and then solved in AC^{0},
- hence every problem in P could be solved in LogSpace,
- that is, $P=L$
- Most experts do not think that this is the case.

Therefore, one would expect all P-hard and similarly all NL-hard problems to not be FO-definable.
\leadsto How can we see this more directly?

Proving FO-Undefinability

How to show that a query mapping is FO-definable?
\leadsto Find an FO query that expresses the query mapping
How to show that a query mapping is not FO-definable?
\leadsto Not so easy ... important tools:

- Ehrenfeucht-Fraïssé games
- Locality theorems

Playing One Run of an EF Game

A single run of the game has a fixed number r of rounds
Spoiler starts each round, and Duplicator answers:

- Spoiler picks a domain element from I or from \mathcal{J}
- Duplicator picks an element from the other database $(\mathcal{J}$ or $\mathcal{I})$
\leadsto One element gets picked from each I and \mathcal{J} per round
\leadsto Run of game ends with two lists of elements:
$a_{1}, \ldots, a_{r} \in \Delta^{I}$ and $b_{1}, \ldots, b_{r} \in \Delta^{\mathcal{J}}$
Duplicator wins the run if:
- For all indices i and j, we have $a_{i}=a_{j}$ if and only if $b_{i}=b_{j}$.
- For all lists of indices i_{1}, \ldots, i_{n} and n-ary relation names R, we have $\left\langle a_{i_{1}}, \ldots, a_{i_{n}}\right\rangle \in R^{I}$ if and only if $\left\langle b_{i_{1}}, \ldots, b_{i_{n}}\right\rangle \in R^{\mathcal{J}}$.
"The substructures induced by the selected elements are isomorphic"
Otherwise Spoiler wins the run.

Example: Run of a Three-Turn EF Game

- edges denote a bi-directional binary predicate
- all edges are the same predicate

Example

Who wins the 2 -round game?
Who wins the 3 -round game?

- edges denote a bi-directional binary predicate
- all edges are the same predicate

Significance of EF Games

Theorem 11.5: For every r, \mathcal{I} and \mathcal{J}, the following are equivalent:

- $I \equiv_{r} \mathcal{J}$, that is, I and \mathcal{J} satisfy the same FO sentences of rank r (or less).
- $I \sim_{r} \mathcal{J}$, that is, the Duplicator wins the r-round EF game on I and \mathcal{J}.

Therefore, the following are equivalent:

- The query mapping M is FO-definable
- There is an FO sentence φ that defines M
- There is a number r such that, for every \mathcal{I} accepted by M and every \mathcal{J} not accepted by M, the Spoiler wins the r-round EF game on I and \mathcal{J}

Proof idea (2)

We outline the proof for the direction that is more important to us:
Lemma 11.6: For every r, we find $\sim_{r} \subseteq \equiv_{r}$.

Proof (continued): Therefore, by $(*)$, after r rounds we have selected elements $a_{1}, \ldots, a_{r} \in \Delta^{\mathcal{I}}$ and $b_{1}, \ldots, b_{r} \in \Delta^{\mathcal{J}}$, such that $\mathcal{I},\left\{x_{1} \mapsto a_{1}, \ldots, x_{r} \mapsto a_{r}\right\} \vDash \psi$ and $\mathcal{J},\left\{x_{1} \mapsto b_{1}, \ldots, x_{r} \mapsto b_{r}\right\} \mid \neq \psi$.

Hence, the substructures induced by the selected elements are not isomorphic (if they were, we would find that ψ evaluates to the same in both cases)
\leadsto Spoiler wins
The idea can be generalised to formulae φ_{r} that are not in prenex normal form (by interleaving the choice of the quantifier and the evaluation of the formula)

I

\mathcal{J}

Which formula distinguishes the two structures? For example: $\varphi_{3}=\exists x \cdot \exists y \cdot \forall z \cdot r(x, z) \leftrightarrow r(y, z)$

- $I \vDash \varphi_{3}$
- $\mathcal{J} \not \vDash \varphi_{3}$

The formula corresponds to 3-move a winning strategy for Spoiler:

- first select opposing corners in I
- then select an element in \mathcal{J} that neighbours exactly one of the elements selected by Duplicator Markus Krötzsch, 15th May $2019 \quad$ Database Theory

Using EF Games to Show FO-Undefinability

How to show that a query mapping M can not be FO-defined

- Let C_{M} be the class of all databases recognised by M
- Find sequences of databases $I_{1}, I_{2}, I_{3}, \ldots \in C_{M}$ and databases
$\mathcal{J}_{1}, \mathcal{J}_{2}, \mathcal{J}_{3}, \ldots \notin \mathcal{C}_{M}$, such that $I_{i} \sim_{i} \mathcal{J}_{i}$
\sim for any formula φ (however large its quantifier rank r), there is a counterexample $\mathcal{I}_{r} \in \mathcal{C}_{M}$ and $\mathcal{J}_{r} \notin \mathcal{C}_{M}$ that φ cannot distinguish

Problems:

- How to find such sequences of I_{i} and \mathcal{J}_{i} ?
$~$ No general strategy exists
- Given suitable sequences, how to show that $I_{i} \sim_{i} \mathcal{J}_{i}$?
\leadsto Can be difficult, but doable for some special cases

Expressiveness on Linear Orders

Let's look at some very simple structures:
Definition 11.7: A structure I is a linear order if it has a single binary predicate \leq interpreted as a total, transitive, reflexive and asymmetric relation.

```
Example 11.9: Consider the following structures:
\mathcal{L}
\mathcal{L}
```

Spoiler cannot win the 3-round EF game:
Spoiler plays 4 in \mathcal{L}_{8} : Duplicator plays 4 in \mathcal{L}_{7}
Spoiler plays 6 in \mathcal{L}_{8} : Duplicator plays 6 in \mathcal{L}_{7}; spoiler cannot win
Spoiler plays 7 in \mathcal{L}_{8} : Duplicator plays 6 in \mathcal{L}_{7}; spoiler cannot win
Other cases similar: Spoiler never wins

Expressiveness on Linear Orders

Let's look at some very simple structures:

Definition 11.7: A structure I is a linear order if it has a single binary predicate \leq interpreted as a total, transitive, reflexive and asymmetric relation.

Example 11.8: Consider the following structures:
$\mathcal{L}_{6}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6$
$\mathcal{L}_{7}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7$
Spoiler can win the 3-round EF game as follows:
Spoiler plays 4 in \mathcal{L}
Duplicator plays 4 in \mathcal{L}_{6} : Spoiler plays 6 in \mathcal{L}
Duplicator plays 5 in \mathcal{L}_{6} : Spoiler plays 5 in \mathcal{L}_{7} and wins
Duplicator plays 5 in \mathcal{L}_{6} : Spoiler plays 5 in \mathcal{L}_{7} and wins
Duplicator plays 6 in \mathcal{L}_{6} : Spoiler plays 7 in \mathcal{L}_{7} and wins
Duplicator plays 3 in \mathcal{L}_{6} : symmetric game (flipped horizontally)

Markus Krötzsch, 15th May $2019 \quad$ Database Theory

EF Games and Linear Orders

Theorem 11.10: The following are equivalent:

- $\mathcal{L}_{m} \sim_{r} \mathcal{L}_{n}$
- either (1) $m=n$, or (2) $m \geq 2^{r}-1$ and $n \geq 2^{r}-1$

Proof: See board

FO-Definability of Parity

Theorem 11.11: Parity is not FO-definable for linear orders, hence it is not FOdefinable for arbitrary databases.

Proof:

- Suppose for a contradiction that Parity is FO-definable by some query φ.
- Let r be the quantifier rank of φ.
- Consider databases \mathcal{L}_{m} and \mathcal{L}_{n} with $m=2^{r}$ and $n=2^{r}+1$.
- We know that $\mathcal{L}_{m} \sim_{r} \mathcal{L}_{n}$, and therefore $\mathcal{L}_{m} \equiv_{r} \mathcal{L}_{n}$
- Hence, $\mathcal{L}_{m} \vDash \varphi$ if and only if $\mathcal{L}_{n} \vDash \varphi$.
- But $\mathcal{L}_{m} \in$ Parity while $\mathcal{L}_{n} \notin$ Parity.
- Therefore, φ does not FO-define Parity. Contradiction.

Defining a Graph From a Linear Order

We use abbreviations for the following FO formulas:

$\operatorname{succ}[x, y]=$	$(x \leq y) \wedge \neg(y \leq x) \wedge$		y is the successor of x
	$\forall z \cdot(z \leq x \vee y \leq z)$		
$\min [x]=$	$\forall z \cdot x \leq z$	x	is the first element
$\max [x]$	$=\forall z \cdot z \leq x$	x	is the last element

We now define the formula ψ that derives edges from a linear order:

$$
\forall x, y . \operatorname{edge}(x, y) \leftrightarrow \exists z \cdot \operatorname{succ}^{\circ}[x, z] \wedge \operatorname{succ}^{\circ}[z, y]
$$

FO-Definability of Connectivity

The Connectivity problem over finite graphs is as follows:

Connectivity

- Input: A finite graph (relational structure with one binary relation "edge")
- Output: "true" if there is an (undirected) path between any pair of vertices

Theorem 11.12: Connectivity is not FO-definable.

Proof:

- Suppose for a contradiction that Connectivity is FO-definable using a query φ.
- We show that this would make Parity FO-definable on linear orders.
- For a linear order \mathcal{L} with order predicate \leq, we define a finite graph $\mathcal{G}(\mathcal{L})$ over a binary predicate "edge" such that $\mathcal{G}(\mathcal{L})$ is connected if and only if \mathcal{L} has an odd number of elements.

Illustration: Graphs From Linear Orders

Completing the Proof

Observation:

The graph $\mathcal{G}(\mathcal{L})$ is connected if and only if \mathcal{L} has odd parity.
Therefore, if φ FO-defines Connectivity on graphs with predicate edge, then $\neg(\varphi \wedge \psi)$ FO-defines Parity on linear orders.

Since Parity is not FO-definable, no such φ can exist.

Locality and FO-definability

A special case of Gaifman's Locality Theorem of first-order logic:
Theorem 11.14: For every integer $r \geq 1$:

- if \mathcal{G}_{1} is 3^{r-1}-equivalent to \mathcal{G}_{2}
- then $\mathcal{G}_{1} \sim_{r} \mathcal{G}_{2}$, and thus $\mathcal{G}_{1} \equiv_{r} \mathcal{G}_{2}$
\leadsto Intuition: FO can only express local properties
How to show that a query mapping M can not be FO-defined:
- Let C_{M} be the class of all databases recognised by M
- Find sequences of graphs $\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}, \ldots \in \mathcal{C}_{M}$ and graphs $\mathcal{J}_{1}, \mathcal{J}_{2}, \mathcal{J}_{3}, \ldots \notin C_{M}$, such that I_{i} is i-equivalent to \mathcal{J}_{i}
\leadsto for any formula φ (however large its quantifier rank r), there is a counterexample $\mathcal{I}_{3^{r-1}} \in \mathcal{C}_{M}$ and $\mathcal{J}_{3^{r-1}} \notin \mathcal{C}_{M}$ that φ cannot distinguish

Beyond Linear Orders: Locality

Intuition: Duplicator can win an EF game if selected nodes have the same "neighbourhood"
\leadsto let's define this for graphs (structures with binary predicates)
Definition 11.13: Consider a graph \mathcal{G}. For a natural number $d \geq 0$ and a vertex v, the d-neighbourhood of $v, N(v, d)$, is defined inductively:

- $N(v, 0)=\{v\}$
- $N(v, d+1)=N(v, d) \cup$
$\left\{w \mid w\right.$ is a direct neighbour of some $\left.w^{\prime} \in N(v, d)\right\}$
Two vertices v and w have the same d-type if the subgraphs $\left.\mathcal{G}\right|_{N(v, d)}$ and $\left.\mathcal{G}\right|_{N(w, d)}$ are isomorphic.
Two graphs are d-equivalent if, for every d-type, they have the same number of d-neighbourhoods of this type.

Connectivity is not FO-definable (Proof 2)

Theorem 11.15: Connectivity is not FO-definable

Proof: counterexample for quantifier rank r : set $d=3^{r}$

I_{d}

- the only d-type is a path of $2 d+1$ nodes
- \mathcal{I}_{d} and \mathcal{J}_{d} are d-equivalent

2-COLOURABILITY

Theorem 11.16: 2-Colourability is not FO-definable.

Proof: counterexample for quantifier rank r : set $d=3^{r}$ (odd number)

- the only d-type is a path of $2 d+1$ nodes
- I_{d} and \mathcal{J}_{d} are d-equivalent

Summary: Limits of FO-Queries

FO queries (and hence Relational Calculus) cannot express properties that require a "global" view:

- properties where one needs to follow paths
- properties where one needs to count elements

Remember Lecture 1?
"Stops at distance 2 from Helmholtzstr."

$$
R_{2}=\delta_{\mathrm{To} \rightarrow \operatorname{From}}\left(\pi_{\mathrm{To}}\left(\text { Connect } \bowtie R_{1}\right)\right)
$$

What about all stops reachable from Helmholtzstr.?
\leadsto Not expressible in Relational Calculus
Yet, all examples we saw are in P
\leadsto Is there another query language that could help us?

$$
\text { Markus Krötzsch, 15th May } 2019
$$

Acyclicity

Theorem 11.17: Acyclicity is not FO-definable.

Proof: counterexample for quantifier rank r : set $d=3^{r}$

- d-types are paths of $\leq 2 d+1$ nodes
- I_{d} and \mathcal{J}_{d} are d-equivalent

Summary and Outlook

FO-queries (and thus CQs) cannot express even all tractable query mappings ~ FO-definability

Showing that a query is not FO-definable requires some creativity
\leadsto Ehrenfeucht-Fraïssé Games as one approach
FO-queries can only express "local" properties

Possible proof techniques:

- Ehrenfeucht-Fraïssé Games
- Locality Theorems
- For more approaches see

Chapter 17 of [Abiteboul, Hull, Vianu 1994]

Open questions:

- If FO cannot express all tractable queries, what can?

