
Query Containment for Highly Expressive Datalog Fragments

Pierre Bourhis
CNRS LIFL University of Lille 1

& INRIA Lille Nord Europe
Lille, FR

Markus Krötzsch
Fakultät Informatik

Technische Universität
Dresden, DE

Sebastian Rudolph
Fakultät Informatik

Technische Universität
Dresden, DE

ABSTRACT
The containment problem of Datalog queries is well known
to be undecidable. There are, however, several Datalog frag-
ments for which containment is known to be decidable, most
notably monadic Datalog and several “regular” query lan-
guages on graphs. Monadically Defined Queries (MQs) have
been introduced recently as a joint generalization of these
query languages.

In this paper, we study a wide range of Datalog frag-
ments with decidable query containment and determine ex-
act complexity results for this problem. We generalize MQs
to (Frontier-)Guarded Queries (GQs), and show that the con-
tainment problem is 3ExpTime-complete in either case, even
if we allow arbitrary Datalog in the sub-query. If we focus
on graph query languages, i.e., fragments of linear Datalog,
then this complexity is reduced to 2ExpSpace. We also con-
sider nested queries, which gain further expressivity by us-
ing predicates that are defined by inner queries. We show
that nesting leads to an exponentially increasing hierarchy
for the complexity of query containment, both in the linear
and in the general case. Our results settle open problems for
(nested) MQs, and they paint a comprehensive picture of the
state of the art in Datalog query containment.

1. INTRODUCTION
Query languages and their mutual relationships are a cen-

tral topic in database research and a continued focus of in-
tensive study. It has long been known that first-order logic
expressions over the database relations (represented by ex-
tensional database predicates, EDBs) lack the expressive
power needed in many scenarios. Higher-order query lan-
guages have thus been introduced, which allow for the re-
cursive definition of new predicates (so called intensional
database predicates, IDBs). Most notably, Datalog has been
widely studied as a very expressive query language with
tractable query answering (w.r.t. the size of the database).

On the other hand, Datalog has been shown to be too ex-
pressive a language for certain tasks which are of crucial im-
portance in database management. In particular, the query
containment problem that, given two queries Q1 and Q2, asks
if every answer to Q1 is an answer to Q2 in every possi-
ble database, is undecidable for full Datalog [21]. However,

checking query containment is an essential task facilitating
query optimization, information integration and exchange,
as well as database integrity checking. It comes handy for
utilizing databases with materialized views and, as part of
an offline preprocessing technique, and it may help acceler-
ating online query answering.

This motivates the question for Datalog fragments that are
still expressive enough to satisfy their purposes but exhibit
decidable query containment. Moreover, once decidability
is established, the precise complexity of deciding contain-
ment provides further insights. The pursuit of these issues
has led to a productive and well-established line of research
in database theory, which has already produced numerous
results for a variety of Datalog fragments.

Non-recursive Datalog and unions of conjunctive
queries. A non-recursive Datalog program does not have
any (direct or indirect) recursion and it is equivalent to a
union of conjunctive queries (UCQ) (and thus expressible in
first-order logic). The problem of containment of a Datalog
program (in the following referred to as Dlog) in a union of
conjunctive queries is 2ExpTime-complete [14]. Due to the
succintness of non-recursive Datalog compared to UCQs, the
problem of containment of Dlog in non-recursive Datalog
is 3ExpTime-complete [14]. Some restrictions for decreas-
ing the complexity of these problems have been considered.
Containment of linear Datalog programs (LinDlog), i.e., one
where rule bodies contain at most one IDB in a UCQ, is
ExpSpace-complete; complexity further decreases to PSpace
when the linear Datalog program is monadic (LinMDlog, see
below) [13, 14].

The techniques to prove the upper bounds in these results
are based on the reduction to the problem of containment of
tree automata for the general case, and to the containment of
word automata in the linear case.

Monadic Datalog. A monadic Datalog (MDlog) program
is a program containing only unary intensional predicates.
The problem of containment for MDlog is 2ExpTime com-
plete. The upper bound is well known since the 80’s [15],
while the lower bound has been established only recently
[6]. Finally, the containment of Dlog in a monadic MDlog

1

ar
X

iv
:1

40
6.

78
01

v1
 [

cs
.D

B
]

 3
0

Ju
n

20
14

LinMQ
LinMDlog

LinGQ
LinGDlog

LinMQk
LinMQ+

LinGQk
LinGQ+

MQ

GQ

MQk
MQ+

GQk
GQ+

LinDlog

Dlog

MDlog

GDlog

A
C

0

NP PH PSpace ExpTime
CQ

C2RPQ

N
L
o
g
Sp
a
c
e

PT
im

e

D
at

a
C

om
pl

ex
ity

of
Q

ue
ry

A
ns

w
er

in
g

Combined Complexity of Query Answering

Figure 1: Query languages and complexities; languages higher up in the graph are more expressive

is also decidable. It is a straightforward application of The-
orem 5.5 of [16].1 So far, however, tight bounds have not
been known for this result.

Guarded Datalog. Guarded Datalog (GDlog) allows the
use of intensional predicates with unrestricted arities, how-
ever for each rule, the variables of the head should appear in
a single extensional atom appearing in the body of the rule.
While this notion of (frontier-)guarded rules is known for a
while [8, 3], the first use of GDlog as a query language seems
to be only recent [4]. GDlog is a proper extension of MDlog,
since monadic rules can always be rewritten into guarded
rules [4]. It is know that query containment for GDlog is
2ExpTime-complete, a result based on the decidability of the
satisfiability of the guarded negation fixed point logic [5].

Navigational Queries. Conjunctive two-way regular path
queries (C2RPQs) generalize conjunctive queries (CQs) by
regular expressions over binary predicates [18, 9]. Variants
of this type of queries are used, e.g., by the XPath query
language for querying semi-structured XML data. Recent
versions of the SPARQL 1.1 query language for RDF also
support some of regular expressions that can be evaluated
under a similar semantics. Intuitively, C2RPQ is a conjunct
of atoms of the form xLy where L is a two-way regular ex-
pression. A pair of nodes 〈n1, n2〉 is a valuation of the pair
〈x, y〉 if and only if there exists a path between n1 and n2
matching L. The containment of queries in this language
was shown to be ExpSpace-complete [18, 10, 2, 17]. The
containment of Dlog in C2RPQ is 2ExpTime-complete [11].

Monadically Defined Queries. More recently, Monadi-
cally Defined Queries (MQs) and their nested version (MQ+s)

1We thank Michael Benedikt for this observation.

have been introduced [19] as a proper generalization of MD-
log which also captures (unions of) C2RPQs. At the same
time, they are conveniently expressible both in Dlog and
monadic second-order logic. Yet, as opposed to these two,
MQs and MQ+s have been shown to have a decidable con-
tainment problem, but no tight bounds were known so far.

In spite of these continued efforts, the complexity of query
containment is still unclear for many well-known Datalog
fragments, especially for the most expressive ones. In this
paper, we thus study a variety of known and new query lan-
guages in more detail. Figure 1 gives an overview of all Dat-
alog fragments we consider, together with their respective
query-answering complexities.

We provide a detailed complexity analysis of the mutual
containment between queries of the aforementioned (and
some new) formalisms. This analysis is fine-grained in
the sense that—in the case of query formalisms that allow
for nesting—precise complexities depending on the nesting
depth are presented. Moreover, we consider the case where
the used rules are restricted to linear Datalog.

• We introduce guarded queries (GQs) and their nested
versions (GQ+s), Datalog fragments that properly gen-
eralize MQs and MQ+s, respectively, while featuring
the same data and combined complexities for query
answering. On the other hand, already unnested GQs
subsume GDlog. We also consider the restrictions of
all these queries to the linear Datalog case and ob-
serve that this drops data complexities to NLogSpace
whereas it does not affect combined complexities.

• By means of sophisticated automata-based techniques
involving iterated transformations on alternating two-
way automata, we show a generic upper bound stat-
ing that containment of Dlog in nested guarded queries

2

of depth k (GQk) can be decided in (k + 2)ExpTime.
Additionally we show that going down to GDlog on
the containment’s right-hand side allows deciding it in
2ExpTime.

• Inductively defining alternating Turing machine sim-
ulations on tapes of (k + 1)-exponential size, we pro-
vide a matching generic lower bound by showing that
containment of MDlog in MQk is (k + 2)ExpTime-hard.
Together with the upper bound, this provides precise
complexities for all cases, where the left-hand side of
the containment is any fragment between MDlog and
Dlog (cf. Fig. 1) and the right-hand side is any of MQ,
GQ, MQk, GQk, MQ+, GQ+. In particular, this solves
the respective open questions from [19]: MQ contain-
ment is 3ExpTime-complete and MQ+ containment is
NonElementary.

• We next investigate the situation in case only linear
rules are allowed in the definition of the Datalog frag-
ment used on the left hand side of the containment
problem (this distinction generally makes no differ-
ence for the right-hand side). We find that in most of
these cases, the complexities mentioned above drop to
(k + 1)ExpSpace.

In summary, our results settle open problems for (nested)
MQs, and they paint a comprehensive and detailed picture
of the state of the art in Datalog query containment.

2. PRELIMINARIES
We consider a standard language of first-order predicate

logic, based on an infinite set C of constant symbols, an in-
finite set P of predicate symbols, and an infinite set V of
first-order variables. Each predicate p ∈ P is associated
with a natural number ar(p) called the arity of p. The list
of predicates and constants forms the language’s signature
S = 〈P,C〉. We generally assume S = 〈P,C〉 to be fixed,
and only refer to it explicitly if needed.

Formulae, Rules, and Queries. A term is a variable x ∈ V
or a constant c ∈ C. We use symbols s, t to denote terms,
x, y, z, v,w to denote variables, a, b, c to denote constants.
Expressions like t, x, c denote finite lists of such entities.
We use the standard predicate logic definitions of atom and
formula, using symbols ϕ, ψ for the latter.

Datalog queries are defined over an extended signature
with additional predicate symbols, called IDB predicates; all
other predicates are called EDB predicates. A Datalog rule
is a formula of the form ∀x, y.ϕ[x, y] → ψ[x] where ϕ and
ψ are conjunctions of atoms, called the body and head of
the rule, respectively, and where ψ only contains IDB pred-
icates. We usually omit universal quantifiers when writing
rules. Sets of Datalog rules will be denoted by symbols
P,R,S. A set of Datalog rules P is

• monadic if all IDB predicates are of arity one;

• frontier-guarded if the body of every rule contains an
atom p(t) such that p is an EDB predicate and t con-
tains all variables that occur in the rule’s head;

• linear if every rule contains at most one IDB predicate
in its body.

A conjunctive query (CQ) is a formula Q[x] = ∃y.ψ[x, y]
where ψ[x, y] is a conjunction of atoms; a union of con-
junctive queries (UCQ) is a disjunction of such formulae.
A Datalog query 〈P,Q〉 consists of a set of Datalog rules P
and a conjunctive query Q over IDB or EDB predicates (Q
could be expressed as a rule in Datalog, but not in all restric-
tions of Datalog we consider). We write Dlog for the lan-
guage of Datalog queries. A monadic Datalog query is one
where P is monadic, and similarly for other restrictions. We
use the query languages MDlog (monadic), GDlog (frontier-
guarded), LinDlog (linear), and LinMDlog (linear, monadic).

Databases and Semantics. We use the standard semantics
of first-order logic (FOL). A database instance I consists of
a set ∆I called domain and a function ·I that maps constants
c to domain elements cI ∈ ∆I and predicate symbols p to
relations pI ⊆ (∆I)ar(p), where pI is the extension of p.

Given a database instance I and a formula ϕ[x] with free
variables x = 〈x1, . . . , xm〉, the extension of ϕ[x] is the subset
of (∆I)m containing all those tuples 〈δ1, . . . , δm〉 for which
I, {xi 7→ δi | 1 ≤ i ≤ m} |= ϕ[x]. We denote this by
〈δ1, . . . , δm〉 ∈ ϕ

I or by I |= ϕ(δ1, . . . , δm); a similar nota-
tion is used for all other types of query languages. Two for-
mulae ϕ[x] and ψ[x] are called equivalent if their extensions
coincide for every database instance I.

The set of answers of a UCQ Q[x] over I is its extension.
The set of answers of a Datalog query 〈P,Q〉 over I is the in-
tersection of the extensions of Q over all extended database
instances I′ that interpret IDB predicates in such a way that
all rules of P are satisfied. Datalog [1] can also be defined as
the least fixpoint on the inflationary evaluation of Q on I.

Note that we do not require database instances to have a
finite domain, since all of our results are valid in either case.
This is due to the fact that every entailment of a Datalog pro-
gram has a finite witness, and that all of our query languages
are positive, i.e., that their answers are preserved under ho-
momorphisms of database instances.

3. GUARDED QUERIES
Monadically defined queries have been introduced in [19]

as a generalization of monadic Datalog (MDlog) and con-
junctive two-way regular path queries (C2RPQs) for which
query containment is still decidable.2 The underlying idea
of this approach is that candidate query answers are checked
by evaluating a monadic Datalog program, i.e., in contrast
to the usual evaluation of Datalog queries, we start with a
“guessed” answer that is the input to a Datalog program.
2The queries were called MODEQ in [19]; we shorten this to MQ.

3

To implement this, the candidate answer is represented by
special constants λ that the Datalog program can refer to.
This mechanism was called flag & check, since the special
constants act as flags to indicate the answer that should be
checked.

Example 1. A query that computes the transitive closure
over a relation p can be defined as follows.

p(λ1, y)→ U(y)
U(y) ∧ p(y, z)→ U(z)

U(λ2)→ hit

One defines the answer of the query to contain all pairs
〈δ1, δ2〉 for which the rules entail hit when interpreting λ1
as δ1 and λ2 as δ2.

The approach used monadic Datalog for its close relation-
ship to monadic second-order logic, which was the basis for
showing decidability of query containment. In this work,
however, we develop new techniques for showing the decid-
ability (and exact complexity) of this problem directly. It is
therefore suggestive to consider other types of Datalog pro-
grams to implement the “check” part. The following defini-
tion therefore introduces the general technique for arbitrary
Datalog programs, and defines interesting fragments by im-
posing further restrictions.

Definition 1. Consider a signature S . An FCP (“flag &

check program”) of arity m is a set of Datalog rules P with
k ≥ 0 IDB predicates U1, . . . , Uk, that may use the additional
constant symbols λ1, . . . , λm < S and an additional nullary
predicate symbol hit. An FCQ (“flag & check query”) P is
of the form ∃y.P(z), where P is an FCP of arity |z| and all
variables in y occur in z. The variables x that occur in z but
not in y are the free variables of P.

Let I be a database instance over S . The extension PI

of P is the set of all tuples 〈δ1, . . . , δm〉 ∈ (∆I)m such that
every database instance I′ that extends I to the signature of
P and that satisfies 〈λI

′

1 , . . . , λ
I′

m 〉 = 〈δ1, . . . , δm〉 also entails
hit. The semantics of FCQs is defined in the obvious way
based on the extension of FCPs.

A GQ is an FCQ ∃y.P(z) such that P is frontier-
guarded. Similarly, we define MQ (monadic), LinMQ (linear,
monadic), and LinGQ (linear, frontier-guarded) queries.

In contrast to [19], we do not define monadic queries as
conjunctive queries of FCPs, but we merely allow existential
quantification to project some of the FCP variables. Proposi-
tion 2 below shows that this does not reduce expressiveness.

We generally consider monadic Datalog as a special case
of frontier-guarded Datalog. Monadic Datalog rules do not
have to be frontier-guarded. A direct way to obtain a suit-
able guard is to assume that there is a unary domain pred-
icate that contains all (relevant) elements of the domain of
the database instance. However, it already suffices to require
safety of Datalog rules, i.e., that the variable in the head of a

rule must also occur in the body. Then every element that is
inferred to belong to an IDB relation must also occur in some
EDB relation. We can therefore add single EDB guard atoms
to each rule in all possible ways without modifying the se-
mantics. This is a polynomial operation, since all variables
in the guards are fresh, other than the single head variable
that we want to guard. We therefore find, in particular, the
GQ captures the expressiveness of MQ. The converse is not
true, as the following example illustrates.

Example 2. The following 4-ary LinGQ generalizes Ex-
ample 1 by checking for the existence of two parallel p-
chains of arbitrary length, where each pair of elements
along the chains is connected by a relation q, like the steps
of a ladder.

q(λ1, λ2)→ Uq(λ1, λ2)
Uq(x, y) ∧ p(x, x′) ∧ p(y, y′), q(x′, y′)→ Uq(x′, y′)

Uq(λ3, λ4)→ hit

One might assume that the following MQ is equivalent:

q(λ1, λ2)→ U1(λ1)
q(λ1, λ2)→ U2(λ2)

U1(x) ∧ U2(y) ∧ p(x, x′) ∧ p(y, y′), q(x′, y′)→ U1(x′)
U1(x) ∧ U2(y) ∧ p(x, x′) ∧ p(y, y′), q(x′, y′)→ U2(y′)

U1(λ3) ∧ U2(λ4)→ hit

However, the latter query also matches struc-
tures that are not ladders. For example, the fol-
lowing database yields the answer 〈a, b, c, d〉, al-
though there is no corresponding ladder structure:
{q(a, b), p(a, c), p(b, e), q(c, e), p(a, e′), p(b, d), q(e′, d)}.
One can extend the MQ to avoid this case, but any such fix
is “local” in the sense that a sufficiently large ladder-like
structure can trick the query.

It has been shown that monadically defined queries can
be expressed both in Datalog and in monadic second-order
logic [19]. While we lose the connection to monadic second-
order logic with GQs, the expressibility in Datalog remains.
The encoding is based on the intuition that the choice of the
candidate answers for λ “contextualizes” the inferences of
the Datalog program. To express this without special con-
stants, we can store this context information in predicates of
suitably increased arity.

Example 3. The 4-ary LinGQ of Example 2 can be ex-
pressed with the following Datalog query. For brevity, let
y be the variable list 〈y1, y2, y3, y4〉, which provides the con-
text for the IDB facts we derive.

q(y1, y2)→ U+
q (y1, y2, y)

Uq(x, y, y) ∧ p(x, x′) ∧ p(y, y′), q(x′, y′)→ U+
q (x′, y′, y)

Uq(y3, y4, y)→ goal(y)

This result is obtained by a straightforward extension of the
translation algorithm for MQs [19], which may not produce

4

the most concise representation. Also note that the first rule
in this program is not safe, since y3 and y4 occur in the head
but not in the body. According to the semantics we defined,
such variables can be bound to any element in the active
domain of the given database instance (i.e., they behave as
if bound by a unary domain predicate).

This observation justifies that we consider MQs, GQs, etc.
as Datalog fragments. It is worth noting that the translation
does not change the number of IDB predicates in the body
of rules, and thus preserves linearity. The relation to (linear)
Datalog also yields some complexity results for query an-
swering; we will discuss these at the end of the next section,
after introducing nested variants our query languages.

4. NESTED QUERIES
Every query language gives rise to a nested language,

where we allow nested queries to be used as if they were
predicates. Sometimes, this does not lead to a new query
language (like for CQ and Dlog), but often it affects com-
plexities and/or expressiveness. It has been shown that both
are increased when moving from MQs to their nested vari-
ants [19]. We will see that nesting also has strong effects on
the complexity of query containment.

Definition 2. We define k-nested FCPs inductively. A 1-
nested FCP is an FCP. A k + 1-nested FCP is an FCP that
may use k-nested FCPs of arity m instead of predicate sym-
bols of arity m in rule bodies. The semantics of nested FCPs
is immediate based on the extension of FCPs. A k-nested
FCQ P is of the form ∃y.P(z), where P is a k-nested FCP of
arity |z| and all variables in y occur in z.

A k-nested GQ query is a k-nested frontier-guarded FCQ.
For the definition of frontier-guarded, we still require EDB
predicates in guards: subqueries cannot be guards. The lan-
guage of k-nested GQ queries is denoted GQk; the language
of arbitrarily nested GQ queries is denoted GQ+. Similarly,
we define languages MQk and MQ+ (monadic), LinMQk and
LinMQ+ (linear, monadic), and LinGQk and LinGQ+ (linear,
frontier-guarded).

Note that nested queries can use the same additional sym-
bols (predicates and constants); this does not lead to any se-
mantic interactions, however, as the interpretation of the spe-
cial symbols is “private” to each query. To simplify notation,
we assume that distinct (sub)queries always contain distinct
special symbols. The relationships of the query languages
we introduced here are summarized in Figure 1, where up-
wards links denote increased expressiveness. An interesting
observation that is represented in this figure is that linear
Datalog is closed under nesting:

Theorem 1. LinDlog = LinDlog+.

Another kind of nesting that does not add expressiveness
is the nesting of FCQs in UCQs. Indeed, it turns out that

(nested) FCQs can internalize arbitrary conjunctions and dis-
junctions of FCQs (of the same nesting level). This even
holds when restricting to linear rules.

Proposition 2. Let P be a positive query, i.e., a Boolean
expression of disjunctions and conjunctions, of LinMQk

queries with k ≥ 1. Then there is a LinMQk query P′ of
size polynomial in P that is equivalent to P. Analogous re-
sults hold when replacing LinMQk by MQk, GQk, or LinMQk

queries.

Query answering for MQs has been shown to be NP-
complete (combined complexity) and P-complete (data com-
plexity). For MQ+, the combined complexity increases to
PSpace while the data complexity remains the same. These
results can be extended to frontier-guarded queries. We also
note the query complexity for frontier-guarded Datalog, for
which we are not aware of any published result.

Theorem 3. The combined complexity of evaluating GQ
queries over a database instance is NP-complete. The same
holds for GDlog queries. The combined complexity of evalu-
ating GQ+ queries is PSpace-complete. The data complexity
is P-complete for GDlog, GQ, and GQ+.

The lower bounds in the previous case are immediate from
know results for monadically defined queries. In particular,
the hardness proof for nested MQs also shows that queries of
a particular fixed nesting level can encode the validity prob-
lem for quantified boolean formulae with a certain number of
quantifier alternations; this explains why we show the com-
bined complexity of MQk to be in the Polynomial Hierarchy
in Figure 1. A modification of this hardness proof from [19]
allows us to obtain the same results for the combined com-
plexities in the linear cases; matching upper bounds follow
from Theorem 3.

Theorem 4. The combined complexity of evaluating
LinMQ queries over a database instance is NP-complete.
The same holds for LinGDlog and LinGQ. The com-
bined complexity of evaluating LinMQ+ queries is PSpace-
complete. The same holds for LinGQ+.

The data complexity is NLogSpace-complete for all of
these query languages.

5. DECIDING QUERY CONTAINMENT
WITH AUTOMATA

We first recall a general technique of reducing query con-
tainment to the containment problem for (tree) automata
[14], which we build our proofs on. An introduction to tree
automata is included in the appendix.

A common way to describe the answers of a Dlog query
P = 〈P, p〉 is to consider its expansion trees. Intuitively
speaking, the goal atom p(x) can be rewritten by applying
rules of P in a backward-chaining manner until all IDB pred-
icates have been eliminated, resulting in a CQ. The answers

5

of P coincide with the (infinite) union of answers to the CQs
obtained in this fashion. The rewriting itself gives rise to a
tree structure, where each node is labeled by the instance of
the rule that was used in the rewriting, and the leaves are
instances of rules that contain only EDB predicates in their
body. The set of all expansion trees provides a regular de-
scription of P that we exploit to decide containment.

To formalize this approach, we describe the set of all ex-
pansion trees as a tree language, i.e., as a set of trees with
node labels from a finite alphabet. The number of possible
labels of nodes in expansion trees is unbounded, since rules
are instantiated using fresh variables. To obtain a finite al-
phabet of labels, one limits the number of variables and thus
the overall number of possible rule instantiations [14].

Definition 3. Given a Dlog query P = 〈P, p〉, RP is the
set of all instantiations of rules of P using only the variables
VP = {v1, . . . , vn}, where n is twice the maximal number of
variables occurring in any rule of P.

A proof tree for P is a tree with labels from RP, such that
(a) the root is labeled by a rule with p as its head predicate;
(b) if a node is labeled by a rule ρ with an IDB atom B in its
body, then it has a child node that is labeled by ρ′ with head
atom B. The label of a node e is denoted π(e).

Consider two nodes e1 and e2 in a proof tree with lowest
common ancestor e. Two occurrences of a variable v in π(e1)
and π(e2) are connected if v occurs in the head of π(f) for
all nodes f on the shortest path between e1 and e2, with the
possible exception of e.

A proof tree encodes an expansion tree where we replace
every set of mutually connected variable occurrences by a
fresh variable. Conversely, every expansion tree is repre-
sented by a proof tree that replaces fresh body variables by
variables that do not occur in the head; this is always possi-
ble since proof trees can use twice as many variables as any
rule of P. The set of proof trees is a regular tree language
that can be described by an automaton.

Proposition 5 (Proposition 5.9 [14]). For a Dlog query
P = 〈P, p〉, there is a tree automatonAP of size exponential
in P that accepts exactly the set of all proof trees of P.

In order to use AP to decide containment of P in an-
other query P′, we construct an automaton APvP′ that ac-
cepts all proof trees of P that are “matched” by P′. Indeed,
every proof tree induces a witness, i.e., a minimal matching
database instance, and one can check whether or not P′ can
produce the same query answer on this instance. If this is
the case for all proof trees of P, then containment is shown.

6. DECIDING GUARDED QUERY CON-
TAINMENT

Our first result provides the upper bound for deciding con-
tainment of GQ queries. In fact, the result extends to arbi-
trary Dlog queries on the left-hand side.

Theorem 6. Containment of Dlog queries in GQ queries
can be decided in 3ExpTime.

To prove this, we need to construct the tree automaton
APvP′ for an arbitrary GQ P′. As a first step, we construct
an alternating 2-way tree automaton A+

PvP′ that accepts the
proof trees that we would like APvP′ to accept, but with
nodes additionally being annotated with information about
the choice of λ values to guide the verification.

We first construct automata to verify the match of a sin-
gle, non-recursive rule that may refer to λ constants. The
rule does not have to be monadic or frontier-guarded. Our
construction is inspired by a similar construction for CQs by
Chaudhuri and Vardi [14], with the main difference that the
answer variables in our case are not taken from the root of
the tree but rather from one arbitrary node that is marked
accordingly.

To define this formally, we introduce trees with additional
annotations besides their node labels. Clearly, such trees can
be viewed as regular labelled trees by considering annota-
tions to be components of one label; our approach, however,
leads to a more readable presentation.

Definition 4. Consider a Datalog program P, a rule ρ =

ϕ → p(x), and n ≥ 0 special constants λ = λ1, . . . , λn. The
proof-tree variablesVP used in RP are as in Definition 3.

A proof tree for P is λ-annotated if every node has an addi-
tional λ-label that is a partial mapping {λ1, . . . , λn} → VP,
such that: every special constant λi occurs in at least one
λ-label, and whenever a constant λi occurs in two λ-labels,
it is mapped to the same variable and both variable occur-
rences are connected.

A proof tree for P is p-annotated if exactly one node has
an additional p-label of the form p(v), where v is a list of
variables fromVP.

A matching tree T for ρ and P is a λ-annotated and p-
annotated proof tree for P for which there is a mapping ν :
Var(ρ) ∪ {λ1, . . . , λn} → VP such that

(a) ν(p(x)) = p(v);

(b) for every atom α of ϕ, there is a node eα in T such
that the rule instance that eα is labeled with contains
the EDB atom ν(α) in its body;

(c) if λi occurs in α, then the λ-label maps λi to the occur-
rence of ν(λi) in eα;

(d) if α, α′ ∈ ϕ share a variable x, then the occurrences of
ν(x) in eα and eα′ are connected.

Proposition 7. There is an automaton AP,ρ that accepts
exactly the annotated matching trees for ρ and P, and which
is exponential in the size of ρ and P.

We want to use the automataAP,ρ to verify the entailment
of a single rule within a Datalog derivation. We would like
an automaton to check whether a whole derivation is possi-
ble. Unfortunately, we cannot check these derivations using

6

automata of the form AP,ρ, which each need to be run on
a p-annotated tree which has the unique entailment of the
rule marked. The length of a derivation is unbounded, and
we would not be able to distinguish an unbounded amount
of p-markers. To overcome this problem, we create a modi-
fied automatonA+

P,ρ,v that simulates the behavior ofAP,ρ on
a tree with annotation p(v). For A+

P,ρ,v to know which node
the annotation p(v) refers to, it has to be started at this node.
This is a non-standard notion of run, where we do not start at
the root of the tree. Moreover, starting in the middle of the
tree makes it necessary to consider both nodes below and
above the current position, and A+

P,ρ,v therefore needs to be
an alternating 2-way tree automaton.

Proposition 8. There is an alternating 2-way tree au-
tomaton A+

P,ρ,v that is polynomial in the size of AP,ρ such
that, whenever AP,ρ accepts a matching tree T that has the
p-annotation p(v) on node e, then A+

P,ρ,v has an accepting
run that starts from the corresponding node e′ on the tree T ′

that is obtained by removing the p-annotation from T.

Using the automataA+
P,ρ,v, we can now obtain the claimed

alternating 2-way automaton A+
PvP′ for a GQ P′. Intuitively

speaking, A+
PvP′ concatenates the automata A+

P,ρ,v using al-
ternation: whenever a derivation requires a (recursive) IDB
atom, a suitable process A+

P,ρ,v is initiated, starting from
a node in the middle of the tree. The construction relies
on guardedness, which ensures that we can always find a
suitable start node (corresponding to the node that was p-
annotated earlier), by finding a suitable guard EDB atom in
the tree.

Proposition 9. For a Dlog query P and a GQ query P′

with special constants λ, there is an alternating 2-way
automaton A+

PvP′ of exponential size that accepts the λ-
annotated proof trees of P that encode expansion trees with
λ assignments for which P′ has a match.

We are now ready to prove Theorem 6. The automaton
A+

PvP′ allows us to check the answers of P′ on a proof tree
that is λ-annotated to assign values for answer constants.
We can transform this alternating 2-way automaton into a
tree automaton A′PvP′ that is exponentially larger, i.e., dou-
bly exponential in the size of the input. To remove the need
for λ-labels, we modify the automaton A′PvP′ so that it can
only perform a transition from its start state if it finds that the
constants in λ are assigned to the answer variables of P in the
root. Finally, we obtain APvP′ by projecting to the alphabet
RP without λ-annotations; this is again possible in polyno-
mial effort. The containment problem P v P′ is equivalent
by deciding the containment of AP in APvP′ , which is pos-
sible in exponential time w.r.t. to the size of the automata.
Since AP is exponential and APvP′ is double exponential,
we obtain the claimed triple exponential bound.

Our proof of Theorem 6 can be used to obtain another in-
teresting result for the case of frontier-guarded Datalog. If P
is a GDlog query, which does not use any special constants

λ, then the λ-annotations are not relevant and A+
PvP′ can

be constructed as an alternating 2-way automaton on proof
trees. For this, we merely need to modify the construction in
Proposition 9 to start in start states of automata for rules that
entail the goal predicate of P′ with the expected binding of
variables to answer variables of P. We can then omit the pro-
jection step, which required us to convert A+

PvP′ into a tree
automaton earlier. Instead, we can construct from A+

PvP′ a
complement tree automaton ĀPvP′ that is only exponentially
larger thanA+

PvP′ , i.e., doubly exponential overall [15][The-
orem A.1]. Containment can then be checked by checking
the non-emptiness ofAP∩ĀPvP′ , which is possible in poly-
nomial time, leading to a 2ExpTime algorithm overall.

Theorem 10. Containment of Dlog queries in GDlog
queries can be decided in 2ExpTime.

This generalizes an earlier result of Cosmadakis et al. for
monadic Datalog [15] using an alternative, direct proof.

Finally, we can lift our results to the case of nested
queries. Using Proposition 2, we can make the simplifying
assumption that rules with some nested query in their body
contain only one nested query and a guard atom as the only
other atom. Thus all rules with nested queries have the form
g(s) ∧ Q(t) → p(u), where g is an EDB predicate, Q is a
nested query, and the variables u occur in s.

In Proposition 8, we constructed alternating 2-way au-
tomata A+

P,ρ,v that can check the entailment of a particular
atom p(v) starting from a node within the tree. Analogously,
we now construct automataA+

P,Q,θ that check that the nested
query Q matches partially, where θ is a substitution that in-
terprets query variables in terms of proof-tree variables on
the current node of the tree. Only the variables that occur
in g(s) and Q(t) are mapped by θ; the remaining variables
can be interpreted arbitrarily, possibly in distant parts of the
proof tree.

To constructA+
P,Q,θ, we use the alternating 2-way automa-

ton A+
PvQ, constructed in Proposition 9 (assuming, for a

start, that Q is not nested). This automaton is extended to
an alternating 2-way automatonA+

P,Q that accepts trees with
a unique annotation of the form 〈Q, θ〉, for which we check
that it is consistent with the λ-annotation (i.e., for each query
variable x mapped by θ, the corresponding constant λ is as-
signed to θ(x) at the node that is annotated with 〈Q, θ〉). We
then obtain a (top-down) tree automatonAP,Q by transform-
ingA+

P,Q into a tree automaton (exponential), and projecting
away the λ-annotations (polynomial). The automaton AP,Q
is analogous to the tree automatonAP,ρ of Proposition 7. Us-
ing the same transformation as in Proposition 8, we obtain
an alternating 2-way automatonA+

P,Q,θ for each θ.
The automatonA+

PvP′ for a nested query P′ is constructed
as in Proposition 9, but using the automata A+

P,Q,θ instead
of automata A+

P,ρ,v to check the entailment of a subquery Q.
The size of A+

PvP′ is increased by one exponential since the
size ofA+

P,Q,θ is exponentially increased when projecting out

7

λ-labels for Q. Applying this construction inductively, we
obtain the following result.

Theorem 11. Containment of Dlog queries in GQk

queries can be decided in (k + 2)ExpTime.

7. SIMULATING ALTERNATING TURING
MACHINES

To show the hardness of query containment problems,
we generally provide direct encodings of Alternating Tur-
ing Machines (ATMs) with a fixed space bound [12]. To
simplify this encoding, we assume without loss of general-
ity that every universal ATM configuration leads to exactly
two successor configurations. The following definition de-
fines ATM encodings formally. Rather than requiring con-
crete structures to encode ATMs, we abstract the encoding
by means of queries that find suitable structures in a database
instance; this allows us to apply the same definition for in-
creasingly complex encodings. The following definition is
illustrated in Figure 2.

Definition 5. Consider an ATM M = 〈Q,Σ,∆, qs, qe〉

and queries FirstConf[x, y], NextConfδ[x, y] for all δ ∈
∆, LastConf[x], Stateq[x] for all q ∈ Q, Head[x, y],
ConfCell[x, y], FirstCell[x, y], NextCell[x, y], LastCell[x], and
Symbol[x, y]. To refer to tape symbols, we consider con-
stants cσ for all σ ∈ Σ, and to refer to positions of the head,
we use constants h (here), l (left), and r (right).

With respect to these queries, an element c ∈ dom(I) in
a database instance I encodes anM quasi-configuration of
size s if I contains a structure

Stateq(c), FirstCell(c, d1),
ConfCell(c, d1),Symbol(d1, cσ1),Head(d1, p1),NextCell(d1, d2),
ConfCell(c, d2),Symbol(d2, cσ2),Head(d2, p2), . . . ,NextCell(ds−1, ds),
ConfCell(c, ds),Symbol(ds, cσs),Head(ds, ps), LastCell(ds),

where q ∈ Q, σi ∈ Σ, and pi ∈ {h, l, r}. We say that c encodes
an M configuration of size s if, in addition, the sequence
(pi)s

i=1 has the form l, . . . , l, h, r, . . . , r with zero or more oc-
currences of r and l, respectively.

An element c in I encodes a (quasi-)configuration tree of
M in space s if

• I |= FirstConf(c, d1) for some d1,

• d1 is the root of a tree with edges defined by NextConfδ,

• every node in this tree encodes an M (quasi-)
configuration of size s,

• if there is a transition I |= NextConfδ1 (e, e1), where
δ1 = 〈q, σ, q′, σ′, d〉 and q is a universal state, then
there is also a transition I |= NextConfδ2 (e, e2) with
δ1 , δ2,

• if e is a leaf node, then I |= LastConf(e).

If the tree is an accepting run, then c encodes an accepting
run (ofM in space s).

A same-cell query is a query SameCell[x, y] such that,
if c1, c2 ∈ dom(I) encode two quasi-configurations, and
d1, d2 ∈ dom(I) represent the same tape cell in the encod-
ings c1 and c2, respectively, then 〈d1, d2〉 ∈ SameCellI.

Two queries P1[x] and P2[x] containment-encode accept-
ing runs of M in space s if, for every database instance I
and element c ∈ PI1 \P

I
2 , c encodes an accepting run ofM in

space s, and every accepting run ofM in space s is encoded
by some c ∈ PI1 \ PI2 for some I.

Note that elements c may encode more than one configu-
ration (or configuration tree). This is not a problem in our
arguments.

The conditions that ensure that a quasi-configuration tree
is an accepting run can be expressed by a query, based on
the queries given in Definition 5. More specifically, one
can construct a query that accepts all elements that encode a
quasi-configuration sequence that is not a run. Together with
a query that accepts only encodings of quasi-configurations
tree, this allows us to containment-encode accepting runs of
an ATM. Only linear queries, possibly nested, will be needed
to perform the required checks, even in the case of ATMs.
To simplify the statements, we use LinMQ0 as a synonym for
UCQ.

Lemma 12. Consider an ATMM, and queries as in Def-
inition 5, including SameCell[x, y], that are MQk queries for
some k ≥ 0. There is a MQk query P[x], polynomial in the
size ofM and the given queries, such that the following hold.

• For every accepting run ofM in space s, there is some
database instance I with some element c that encodes
the run, such that c < PI.

• If an element c of I encodes a tree of quasi-
configurations of M in space s, and if c < PI, then
c encodes an accepting run ofM in space s.

Moreover, if all input queries are in LinMQk, then so is P.

The previous result allows us to focus on the encoding
of quasi-configuration trees and the definition of queries as
required in Definition 5. Indeed, the main challenge below
will be to enforce a sufficiently large tape for which we can
still find a correct same-cell query.

8. HARDNESS OF MONADIC QUERY
CONTAINMENT

We can now prove our first major hardness result:

Theorem 13. Deciding containment of MDlog queries in
MQk queries is hard for (k + 2)ExpTime.

Note that the statement includes the 3ExpTime-hardness
for containment of MQs as a special case. To prove this re-
sult, we first construct an ExpSpace ATM that we then use to
construct tapes of double exponential size.

8

FirstCell NextCelld1 NextCell
LastCell

d2 dsds−1

Stateq

Symbol
Head p1

cσ1
Symbol
Head p2

cσ2
Symbol
Head ps

cσs

FirstConf
NextConfδ1

NextConfδ2

LastConf
NextConfδ3

LastConf

Figure 2: Illustration of the ATM encoding of Definition 5: shaded configurations (top) are used within the configuration
tree (bottom); ConfCell queries are omitted for clarity

Lemma 14. For any ATM M, there is an MDlog query
P1[x], a LinMQ P2[x], queries as in Definition 5 that are
LinMQs, and a same-cell query that is a UCQ, such that P1[x]
and P2[x] containment-encode accepting runs ofM in expo-
nential space.

Figure 3 illustrates the encoding that we use to prove
Lemma 14. While it resembles the structure of Figure 2, the
labels are now EDB predicates rather than (abstract) queries.
The encoding of tapes attaches to each cell an `-bit address
(where bits are represented by constants 0 and 1). We can
use these bits to count from 0 to 2` to construct tapes of this
length. The query on the left-hand side can only enforce
that there are cells with bit addresses, not that they actually
count; even the exact length of the tape is unspecified. The
query on the right-hand side of the containment then checks
that consecutive cells (in all tapes that occur in the configu-
ration tree) represent successor addresses, and that the first
and last address is as expected.

Another difference from Figure 2 is that we now treat con-
figurations as linear structures, with a beginning and an end.
In our representation of the configuration tree, we next con-
figuration therefore connects to the last cell of the previous
configuration’s tape, rather than its start. We do this to en-
sure that the encoding works well even when restricting to
linear queries. Indeed, the only non-linear rules in P1 are
used to enforce multiple successor configurations for uni-
versal states of an ATM. For normal TMs, even P1 is in Lin-
MDlog. The rules of the P1 are as follows:

firstConf(x, y) ∧ Uconf(y)→ Ugoal(x)

stateq(x) ∧ firstCell(x, y) ∧ Ubit1 (y)→ Uconf(x) for q ∈ Q

biti−1(x, 0) ∧ Ubiti (x)→ Ubiti−1 (x) for i ∈ {2, . . . , `}

biti−1(x, 1) ∧ Ubiti (x)→ Ubiti−1 (x) for i ∈ {2, . . . , `}

symbol(x, cσ) ∧ Usymbol(x)→ Ubit` (x) for σ ∈ Σ

head(x, p) ∧ Uhead(x)→ Usymbol(x) for p ∈ {h, r, l}

nextCell(x, y) ∧ Ubit1 (y)→ Uhead(x)

nextConfδ(x, y) ∧ Uconf(y)→ Uhead(x) for δ = 〈q, σ, q′, σ′, d〉
with q ∈ Q∃

nextConfδ1 (x, y1) ∧ Uconf(y1) ∧ for δ1 = 〈q, σ, q′, σ′, d〉,
nextConfδ2 (x, y2) ∧ Uconf(y2)→ Uhead(x) q ∈ Q∀, and δ1 , δ2

lastConf(x)→ Uhead(x)

Note that we do not enforce any structure to define the query
ConfCell; this query is implemented by a LinMQ that navi-
gates over an arbitrary number of cells within one configu-
ration. This is the main reason why we need LinMQs rather
than UCQs here.

We now use the exponential space ATM of Lemma 14
to encode the tape of 2ExpSpace ATM. The following result
shows, that one can always obtain an exponentially larger
tape by nesting linear queries on the right-hand side.

Lemma 15. Assume that there is some space bound s such
that, for every DTMM, there is a MDlog query P1[x] and an
MQk+1 query P2[x] with k ≥ 0, such that P1[x] and P2[x]
containment-encode accepting runs of M in s, where the
queries required by Definition 5 are MQk+1 queries. More-
over, assume that there is a suitable same-cell query that is
in MQk.

Then, for every ATM M′, there is a MDlog query P′1[x],
an MQk+1 P′2[x], and MQk+1 queries as in Definition 5, such
that P′1[x] and P′2[x] containment-encode an accepting run
ofM′ in space s′ ≥ 2s. Moreover, the size of the queries for
this encoding is polynomial in the size of the queries for the
original encoding.

We show this result by using a deterministic space-s Tur-
ing machine M to count from 0 to 2s, which takes a fixed
number s′ > 2s of steps. We then use the encodings of ac-
cepting runs of M as encodings for tapes of the ATM M′,
where every configuration ofM becomes a cell ofM′. All
tapes simulated in this way are of equal length s′. Some
queries required by Definition 5 are easy to obtain: for exam-
ple, the new query NextCell′[x, y] is the query NextConf[x, y]
of the encoding of M. The most difficult to express is the
new same-cell query, for which we use the following MQk+1:

FirstCell(λ1, x)→ U1(x)

U1(x) ∧ NextCell(x, x′)→ U1(x′)

Stateq(λ1) ∧ FirstCell(λ1, x) ∧ Symbol(x, z) ∧ Head(x, v) ∧
Stateq(λ2) ∧ FirstCell(λ2, y) ∧ Symbol(y, z) ∧ Head(y, v)→ U2(y)

for all q ∈ Q

U1(x) ∧ U2(y) ∧ SameCell(x, y) ∧
NextCell(x, x′) ∧ Symbol(x′, z) ∧ Head(x′, v) ∧

NextCell(y, y′) ∧ Symbol(y′, z) ∧ Head(y′, v)→ U2(y′)

U2(y) ∧ LastCell(y)→ hit

9

firstCell nextCelld1 nextCell
lastCell

d2 dsds−1

stateq

bit1
. . .

symbol
head

bit`

p1
cσ1

0

0

bit1
. . .

symbol
head

bit`

p2
cσ2

0

1

bit1
. . .

symbol
head

bit`

ps

cσs

1

1

firstConf
nextConfδ1

nextConfδ2

lastConf

lastConf

Figure 3: Illustration of the ATM encoding of Lemma 14: shaded configurations (top) are used within the configuration
tree (bottom)

where FirstCell, Symbol, SameCell, and LastCell are the
queries from the encoding of M. The first two rules sim-
ply mark the tape starting at λ1 with U1. The next two rules
then compare the two (potentially very long) tapes from con-
figurations of M to check if they contain exactly the same
symbols at each position, and the last rule finishes. Since
the tapes are not connected in any known way, we have to be
careful to ensure never to loose the connection to either of
the tapes, to avoid comparing random cells from other parts
of the database. Indeed, the last two rules do not mention
λ1 or λ2 at all. We need two IDB predicates to achieve this,
which carefully mark the two tapes cell by cell.

Another important thing to note is that the query SameCell
is only used exactly once in exactly one rule. Indeed, if we
were using it twice, then the length of our queries would
grow exponentially when applying the construction induc-
tively. This is the reason why we encode symbols and head
positions with constants, rather than using unary predicates
like for states. In the latter case, we need many rules, one
for each predicate, as can be seen in the third rule above.
One could try to avoid the use of constants by more complex
encodings that encode information using paths of different
lengths as done by Björklund et al. [7]. However, some addi-
tional device is needed to ensure that database instances are
sufficiently closely connected in this case, which may again
require constants, IDBs of higher arity, or a greater nesting
level of LinMQ queries to navigate larger distances.

With the previous results, Theorem 13 can be proved
by an easy induction: for the base case k = 1 we apply
Lemma 15 to the result of Lemma 14; for the induction step
we use Lemma 15 again.

9. LINEAR DATALOG
Not only query answering, but also containment check-

ing is often slightly simpler in fragments of linear Datalog.
Intuitively, this is so because derivations can be represented
as words rather than as trees. Thus, the automata theoretic
techniques that we have used in Section 6 can be applied

with automata on words where some operations are easier.
In particular, containment of (nondeterministic) automata on
words can be checked in polynomial space rather than in
exponential time. This allows us to establish the following
theorems, which reduce the 2ExpTime upper bound of The-
orem 10 to ExpSpace and the (k + 2)ExpTime upper bound of
Theorem 11 to (k + 1)ExpSpace.

Theorem 16. Containment of LinDlog queries in GDlog
queries can be decided in ExpSpace.

Theorem 17. Containment of LinDlog queries in GQk

queries can be decided in (k + 1)ExpSpace.

Establishing matching lower bounds for the complexity
turns out to be more difficult. In general, we loose the
power of alternation, which explains the reduction in com-
plexity. The general approach of encoding (non-alternating)
Turing machines is the same as in Section 7, where Defini-
tion 5 is slightly simplified since we do not need to consider
universal states, so that configuration trees turn into con-
figuration sequences. Moreover, Lemma 12 applies to this
case as well, since it only requires linear queries. Likewise,
our general inductive step in Lemma 15 uses deterministic
(non-alternating) TMs to construct exponentially long tapes.
Moreover, it turns out that the construction of an initial ex-
ponential space TM in Lemma 14 leads to linear queries if
the TM has no universal states.

Yet it is challenging to lift the exact encodings of
Lemma 14 and Lemma 15. The same-cell query that we
constructed in Lemma 15 for our inductive argument is non-
linear. As explained in Section 8, the use of two IDBs to
mark both sequences of tape cells is essential there to ensure
correctness. The main problem is that we must not loose
connection to either of the sequences during our checks. As
an alternative to using IDBs on both sequences, one could
use the ConfCell query to ensure that the compared cells be-
long to the right configurations. This leads to the following
same-cell query:

10

Stateq(λ1) ∧ FirstCell(λ1, x) ∧ Symbol(x, z) ∧ Head(x, v) ∧
Stateq(λ2) ∧ FirstCell(λ2, y) ∧ Symbol(y, z) ∧ Head(y, v)→ U(y)

for all q ∈ Q

U(y) ∧ ConfCell(λ1, x) ∧ SameCell(x, y) ∧
NextCell(x, x′) ∧ Symbol(x′, z) ∧ Head(x′, v) ∧

NextCell(y, y′) ∧ Symbol(y′, z) ∧ Head(y′, v)→ U(y′)

U(y) ∧ LastCell(y)→ hit

While this works in principle, it has the problem that the
ConfCell query of Lemma 14 is a LinMQ, not a UCQ. There-
fore, if we construct a same-cell query for the 2ExpSpace
case, we obtain LinMQ2 queries, which yields the following
result:

Theorem 18. Deciding containment of LinMDlog queries
in LinMQk queries is hard for kExpSpace.

In order to do better, one can try to express ConfCell as
a UCQ. In general, this is not possible on the database in-
stances that the left-hand query in Lemma 14 recognizes,
since cells may have an exponential distance to their con-
figuration while UCQs can only recognize local structures.
To make ConfCell local, we can modify the left-hand query
to ensure that every cell is linked directly to its configuration
with a binary predicate inConf. Using binary IDB predicates,
we can do this with the following set of frontier-guarded
rules:

firstConf(x, y) ∧ Uconf(y)→ Ugoal(x)

stateq(x) ∧ nextCell(x, y) ∧
inConf(y, x) ∧ Ubit1 (y, x)→ Uconf(x) for q ∈ Q

biti−1(x, 0) ∧ Ubiti (y, z) ∧ inConf(x, z)→ Ubiti−1 (x, z) for i ∈ {2, . . . , `}

biti−1(x, 1) ∧ Ubiti (y, z) ∧ inConf(x, z)→ Ubiti−1 (x, z) for i ∈ {2, . . . , `}

symbol(x, cσ) ∧ Usymbol(x, z) ∧ inConf(x, z)→ Ubit` (x, z) for σ ∈ Σ

head(x, h) ∧ Uhead(x, z) ∧ inConf(x, z)→ Usymbol(x, z)

head(x, l) ∧ Uhead(x, z) ∧ inConf(x, z)→ Usymbol(x, z)

head(x, r) ∧ Uhead(x, z) ∧ inConf(x, z)→ Usymbol(x, z)

nextCell(x, y) ∧ Ubit1 (y, z) ∧ inConf(x, z)→ Uhead(x, z)

nextConfδ(x, y) ∧ Uconf(y) ∧ inConf(x, z)→ Uhead(x, z) for δ ∈ ∆

lastConf(x) ∧ inConf(x, z)→ Uhead(x, z)

Structures matched by this query provide direct links from
each element to their configuration element, and we can thus
formulate ConfCell as a UCQ and obtain the following.

Theorem 19. Deciding containment of LinGDlog queries
in LinMQk queries is hard for (k + 1)ExpSpace.

It is not clear if this result can be extended to contain-
ments of LinMQ in LinMQk; the above approach does not
suggest any suitable modification. In particular, the prop-
agation of inConf in the style of a transitive closure does
not work, since elements may participate in many inConf
relations. On the other hand, the special constants λ in
LinMQs cannot be used to refer to the current configura-
tion, since there can be an unbounded number of configu-
rations but only a bounded number of special constants. It
is possible, however, to formulate a LinMQ Config[x] that

generates the required structure for a single configuration,
since one can then represents the configuration by λ. We
can generate arbitrary sequences of such structures by using
Config[x] as a nested query to that matches a regular expres-
sion firstConf (Config NextConf)∗ Config lastConf, where we
use NextConf to express the disjunction of all nextConfδ re-
lations. This proves the following statement.

Theorem 20. Deciding containment of LinMQ2 queries in
LinMQk queries is hard for (k + 1)ExpSpace.

Finally, we can also continue to use the same approach for
encoding SameCell as in Section 8, without using ConfCell,
while still restricting to linear Datalog (and thus to non-
alternating TMs) on the left-hand side. This leads us to the
following result.

Theorem 21. Deciding containment of LinMDlog queries
in MQk queries is hard for (k + 1)ExpSpace.

We have thus established tight complexity bounds for the
containment of nested GQs, while there remains a gap (of
one exponential or one nesting level) for MQs.

10. CONCLUSIONS
We have studied the most expressive fragments of Dat-

alog for which query containment is still known to be de-
cidable today, and we have provided exact complexities for
most of their query answering and query containment prob-
lems. While containment for nested queries tends to be non-
elementary for unbounded nesting depth, we have shown
tight exponential complexity hierarchies for the main cases
that we studied. As part of our results, we have also set-
tled a number of open problems for known query languages:
the complexity of query containment for MQ and MQ+, the
complexity of query containment of Dlog in GDlog, and the
expressivity of nested LinDlog.

Moreover, we have built on the recent “flag & check”
approach of monadically defined queries to derive various
natural extensions, which lead to new query languages with
interesting complexity results. In most cases, we observed
that the extension from monadic to frontier-guarded Data-
log does not affect any of the complexities, whereas it might
have an impact on expressivity. In contrast, the restriction
to linear Datalog has the expected effects, both for query an-
swering and for query containment.

The only case for which our results for containment com-
plexity are not tight is when we restrict rules to be both linear
and monadic: while small variations in the involved query
languages lead to the expected tight bounds, this particular
combination eludes our analysis. This case could be stud-
ied as part of a future program for analyzing the behavior of
(nested) conjunctive regular path queries, which are also a
special form of monadic, linear Datalog.

Another interesting open question is the role of constants.
Our hardness proofs, especially in the nested case, rely on

11

UCQ,
LinMDlog, MDlog, LinMQk, MQk, LinMQ+,MQ+,
LinGDlog, GDlog LinGQk GQk LinGQ+,GQ+ Dlog

LinMQ PSpace-h [13] kExpSpace-h [Th.18] (k + 1)ExpSpace-c Nonelementary Undecidable
ExpSpace [Th.16] (k + 1)ExpSpace [Th.17] [Th.21]\[Th.17] [Th.18] [1]

LinGDlog, ExpSpace-c (k + 1)ExpSpace-c (k + 1)ExpSpace-c Nonelementary Undecidable
LinMQn (n ≥ 2),
LinMQ+, LinGQ+, [Th.20]\[Th.16] [Th.19,20]\[Th.17] [Th.19,20]\[Th.17] [Th.19,20] [1]
LinGQn, LinDlog

MDlog, GDlog, 2ExpTime-c (k + 2)ExpTime-c (k + 2)ExpTime-c Nonelementary Undecidable
MQn, GQn, [6, 14]\ [Th.13]\[Th.11] [Th.13]\[Th.11] [Th.13] [21]
MQ+, GQ+, Dlog [15], [Th.10]

Table 1: Summary of the known complexities of query containment for several Datalog fragments; sources for each
claim are shown in square brackets, using \ to separate sources for lower and upper complexity bounds, respectively

the use of constants to perform certain checks more effi-
ciently. Without this, it is not clear how an exponential blow-
up of our encoding (or the use of additional nesting levels)
could be avoided. Of course, constants can be simulated
if we have either predicates of higher arity or special con-
stants as in “flag & check” queries. However, for the case of
(linear) monadic Datalog without constants, we conjecture
that containment complexities are reduced by one exponen-
tial each when omitting constants.

An additional direction of future research is to study prob-
lems where we ask for the existence of a containing query of
a certain type rather than merely check containment of two
given queries. The most prominent instance of this scenario
is the boundedness problem, which asks whether a given
Datalog program can be expressed by some (yet unknown)
UCQ. It has been shown that this problem can be studied
using tree-automata-based techniques as for query contain-
ment [15], though other approaches have been applied as
well [4]. Besides boundedness, one can also ask more gen-
eral questions of rewritability, e.g., whether some Datalog
program can be expressed in monadic Datalog or in a regu-
lar path query.

11. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison Wesley, 1994.

[2] S. Abiteboul and V. Vianu. Regular path queries with constraints. J.
Comput. Syst. Sci., 58(3):428–452, 1999.

[3] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. On rules with
existential variables: Walking the decidability line. Artificial
Intelligence, 175(9–10):1620–1654, 2011.

[4] V. Bárány, B. ten Cate, and M. Otto. Queries with guarded negation.
PVLDB, 5(11):1328–1339, 2012.

[5] V. Bárány, B. ten Cate, and L. Segoufin. Guarded negation. In
L. Aceto, M. Henzinger, and J. Sgall, editors, ICALP (2), volume
6756 of Lecture Notes in Computer Science, pages 356–367.
Springer, 2011.

[6] M. Benedikt, P. Bourhis, and P. Senellart. Monadic datalog
containment. In Automata, Languages, and Programming - 39th
International Colloquium, ICALP 2012, pages 79–91, 2012.

[7] H. Björklund, W. Martens, and T. Schwentick. Optimizing
conjunctive queries over trees using schema information. In
E. Ochmanski and J. Tyszkiewicz, editors, Proc. 3rdInt. Symposium

on Mathematical Foundations of Computer Science, volume 5162 of
LNCS, pages 132–143. Springer, 2008.

[8] A. Calì, G. Gottlob, and M. Kifer. Taming the infinite chase: Query
answering under expressive relational constraints. In G. Brewka and
J. Lang, editors, Proc. 11th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’08), pages 70–80. AAAI Press,
2008.

[9] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi.
Reasoning on regular path queries. SIGMOD Record, 32(4):83–92,
2003.

[10] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi.
Reasoning on regular path queries. SIGMOD Record, 32(4):83–92,
2003.

[11] D. Calvanese, G. D. Giacomo, and M. Y. Vardi. Decidable
containment of recursive queries. Theor. Comput. Sci., 336(1):33–56,
2005.

[12] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. of
the ACM, 28(1):114–133, 1981.

[13] S. Chaudhuri and M. Y. Vardi. On the complexity of equivalence
between recursive and nonrecursive datalog programs. In Proc. 13th
Symposium on Principles of Database Systems (PODS’93), pages
107–116, 1994.

[14] S. Chaudhuri and M. Y. Vardi. On the equivalence of recursive and
nonrecursive datalog programs. J. Comput. Syst. Sci., 54(1):61–78,
1997.

[15] S. Cosmadakis, H. Gaifman, P. Kanellakis, and M. Vardi. Decidable
optimization problems for database logic programs. In Proceedings
of the twentieth annual ACM symposium on Theory of computing,
STOC ’88, pages 477–490, New York, NY, USA, 1988. ACM.

[16] B. Courcelle. Recursive queries and context-free graph grammars.
Theoretical Computer Science, 78(1):217 – 244, 1991.

[17] A. Deutsch and V. Tannen. Optimization properties for classes of
conjunctive regular path queries. In Revised Papers from the 8th
International Workshop on Database Programming Languages,
DBPL ’01, pages 21–39, London, UK, UK, 2002. Springer-Verlag.

[18] D. Florescu, A. Levy, and D. Suciu. Query containment for
conjunctive queries with regular expressions. In A. O. Mendelzon
and J. Paredaens, editors, Proc. 17th Symposium on Principles of
Database Systems (PODS’98), pages 139–148. ACM, 1998.

[19] S. Rudolph and M. Krötzsch. Flag & check: Data access with
monadically defined queries. In R. Hull and W. Fan, editors, Proc.
32nd Symposium on Principles of Database Systems (PODS’13),
pages 151–162. ACM, 2013.

[20] W. J. Savitch. Relationships between nondeterministic and
deterministic tape complexities. Journal of Computer and System
Sciences, 4(2):177 – 192, 1970.

[21] O. Shmueli. Decidability and expressiveness aspects of logic queries.
In Proceedings of the Sixth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, PODS ’87, pages
237–249, New York, NY, USA, 1987. ACM.

12

APPENDIX
A. TREE AUTOMATA

We use standard definitions for two-way alternating tree
automata as introduced in [15]. A regular (one-way, non-
alternating) tree automaton is obtained by restricting this
definition.

Tree automata run over ranked, labelled trees of some
maximal arity (out-degree) f . A ranked tree can be seen
a function t mapping sequences of positive natural numbers
(encoding nodes in the tree) to symbols from a fixed finite
alphabet (the labels of each node). Each letter of the alpha-
bet is ranked, i.e., associated with an arity that defines how
many child nodes a node labeled with this symbol should
have. The domain of t, denoted Nodes(t), satisfies the fol-
lowing closure property: if i · j ∈ Nodes(t), then i ∈ Nodes(t)
and i · k ∈ Nodes(t) for all 1 ≤ k ≤ j. Given a ranked tree
t, we write i ∈ Nodes(t) to denote an arbitrary node of t and
t(i) to denote the label of i in t. We denote by Trees(Σ) the
set of trees over the alphabet Σ.

A two-way alternating tree automaton A is a tuple
〈Σ,Q,Qs, δ,Qe〉 where

• Σ is a tree alphabet;

• Q is a set of states;

• Qs ⊆ Q is the set of initial states;

• Qe ⊆ Q is the set of accepting states;

• δ is a transition function from Q×Σ: let q ∈ Q be a state
and σ ∈ Σ be a letter of arity `; then δ(q, σ) is a positive
boolean combination of elements in {−1, 0, 1, · · · , `} ×
Q.

The numbers used in transitions encode directions, where
−1 is up and 0 is stay. For example δ(q, σ) = (〈1, s1〉 ∧

∧1, s2) ∨ (〈−1, t3〉 ∧ 〈2, t4〉) is an example of transition for a
state q and a node labeled σ: a node labeled by σ can be in
the state q iff its first child can be in the states s1 and s2, or
its parent and its second child can be in the states s3 and s4,
respectively.

Let t be a tree over Σ. A run τ ofA over t is a tree labeled
by elements of Q × {−1, 0, 1, · · · , f } × Nodes(t) ∪ {−1}. τ
satisfies the following properties:

• τ is finite.

• The root of τ is labelled by (q0, i, n), where q0 is in Qs.

• If a node v is labelled by (q, i, n) and n is not a node of
t, then v is a leaf of τ.

• If a node v is labelled by (q, i, n′), n is a node of τ la-
belled by σ of arity l and v′ is labelled by (q1, j, n′) then

– if j = −1, then there exists u ≤ k such that n = n′.u
– if j = 0, then n = n′

– if j ≤ k, then n′ = n. j.

• if a node v is labelled by (q, i, n), n ∈ t la-
belled by σ and the children of v are labelled by
(q1, j1, n1) · · · (qk, jk, nk) then δ(q, σ) is satisfied when

interpreting the sybmols {〈 j1, q1〉, · · · , 〈 jk, qk〉} as true
and all other symbols as false.

τ is valid iff, for each leaf of τ labelled by (q, i, n), q is in
Qe. A accepts a tree t if there exists a valid run of t overA.
We denote by Trees(A). The set of trees accepted byA.

A regular (one-way, non-alternating) tree automaton is a
2-way alternating tree automaton where all transitions for
a symbol σ of rank ` are boolean formulae of the form
(〈1, q11〉 ∧ . . . ∧ 〈`, q`1〉) ∨ . . . ∨ (〈1, q1n〉 ∧ . . . ∧ 〈`, q`n〉) for
some n ≥ 0. In particular, directions 0 and −1 do not occur.
In this case, we can represent transitions as sets of lists of
states {〈q11, . . . , q`1〉, . . . , 〈q1n, . . . , q`n〉}.

Finally, we recall two useful theorems from [15].

Theorem 22 (Theorem A.1 of [15]). Let A be a two-
way alternating automaton. Then there exists a tree automa-
ton A whose size is exponential in the size of A such that
Trees(A) = Trees(Σ) \ Trees(A).

Theorem 23 (Theorem A.2 of [15]). Let A be a two-
way alternating automaton. Then there exists a tree automa-
ton A whose size is exponential in the size of A such that
Trees(A) = Trees(A).

B. PROOFS

Proofs for Section 4
Theorem 1. LinDlog = LinDlog+.

Proof. We will prove that any LinDlog+ query can be
rewritten into a LinDlog query of polynomial size. We make
simplifying assumptions on the structure of the nested query
which can be easily obtained by polynomial transformations
and make the presentation easier: we assume that every rule
body of any query occurring at any nesting depth contains
at most one subquery atom (using, e.g., Proposition 2). Sec-
ond, we assume that all variables and IDB predicates that are
not in the same scope are appropriately renamed apart.

In order to proof our claim, we will first show that any
LinDlog2 can be rewritten into an equivalent LinDlog query.
Applying the rewriting iteratively inside-out (and observing
that even manyfold application can be done in polynomial
total time) then allows to conclude that there is a polyno-
mial rewriting of any LinDlog+ query of arbitrary depth into
a LinDlog query.

Consider a LinDlog2 query P = 〈P, p〉 and assume w.l.o.g.
that every rule body of the rules contains at most one
LinDlog1 subquery. Now, going through all rules of P we
produce the rules P′ of the unnested but equivalent version.

Consider a rule ρ ∈ P having the shape

Q(x1, . . . , xn) ∧ p(y1, . . . y`) ∧ B1 ∧ . . . ∧ Bk → H

where p is the body IDB predicate and where Q = 〈Q, q〉 is
a LinDlog1 query. For any k-ary IDB predicate r inside Q we
increase its arity by ` and let P′ contain all rules of Q′ which
is obtained from the rules ρ′ of Q by

13

• replacing any (head or body) IDB atom r(z1, . . . , zk) of
ρ′ by r(z1, . . . , zk, y1, . . . y`) and

• in case ρ′ does not contain any IDB body atom, add
p(y1, . . . y`) to the body.

Further we let P′ contain the rule

q(x1, . . . , xn, y1, . . . y`) ∧ ∧B1 ∧ . . . ∧ Bk → H.

In case of a rule ρ ∈ P having the shape

Q(x1, . . . , xn) ∧ B1 ∧ . . . ∧ Bk → H

we add Q to P′ without change and let P′ contain the rule

q(x1, . . . , xn) ∧ B1 ∧ . . . ∧ Bk → H.

In case a rule ρ ∈ P does not contain a subquery atom we
simply add ρ to P′.

It can now easily verified that 〈P, p〉 and 〈P′, p〉 are equiv-
alent: first it is straightforward, that 〈P, p〉 is equivalent
to 〈P[, p〉 where P[is obtained from P by replacing every
Q(x1, . . . , xn) by q(x1, . . . , xn) (that is, the according goal
predicate) and then adding all rules from Q with no changes
made to them. Second one can show that there is a direct
correspondence between proof trees of 〈P[, p〉 and linearized
proof trees of 〈P′, p〉 which yields the desired result.

Proposition 2. Let P be a positive query, i.e., a Boolean
expression of disjunctions and conjunctions, of LinMQk

queries with k ≥ 1. Then there is a LinMQk query P′ of
size polynomial in P that is equivalent to P. Analogous re-
sults hold when replacing LinMQk by MQk, GQk, or LinMQk

queries.

Proof. We show the claim by induction, by expressing the
innermost disjunctions and conjunctions of P with equiv-
alent LinMQk queries of linear size. We consider positive
queries without existential quantifiers (i.e., where all vari-
ables are answer variables), but the inner LinMQk may use
existential quantifiers.

Let P[x] = P1[x1]∨. . .∨Pn[xn] be a disjunction of LinMQk

queries. Each query Pi is of the form ∃zi.P′i[x′
i
], where x′

i
is

the list of free variables of P′i (corresponding to constants λ),
and zi contains exactly those variables of x′

i
that do not occur

in xi. We assume without loss of generality that zi is disjoint
from z j if i , j, and that each P′i uses a unique set of IDBs
that does not occur in other queries. We consider queries P̄i
obtained by replacing the special constant that represents a
variable x j ∈ x by the special constant λ j (assumed to not
occur in P yet). Thus, the queries P̄i share special constants
exactly where queries P1 share variables. We can now define
the LinMQk P′ as ∃z1 . . . zn.P̄1 ∪ . . . ∪ P̄n, where we assume
that the correspondence of special constants to free variables
is such that the existential quantifiers refer to the same vari-
ables as before.

Let P[x] = P1[x1] ∧ . . . ∧ Pn[xn] be a conjunction of
LinMQk queries. Let Pi = ∃zi.P′i[x′

i
] as before, and let Ui

for i ∈ {1, . . . , n − 1} be fresh IDB predicates. The queries

P̄i are defined as before by renaming special constants to re-
flect shared variables. For each i ∈ {1, . . . , n}, the set of rules
P̂i is obtained from P̄i as follows: if i < n, then every rule
ϕ → hit ∈ P̄i is replaced by the rule ϕ → Ui(λ1), where λ1
is a fixed special constant in the queries; if i > 1, then every
rule ϕ → ψ ∈ P̄i where ϕ does not contain an IDB predi-
cate is replaced by the rule ϕ ∧ Ui−1(λ1)→ ψ, where λ1 is as
before. The LinMQk P′ is defined as ∃z1 . . . zn.P̂1 ∪ . . .∪ P̂n.

These constructions lead to equivalent LinMQk queries of
linear size, so the claim follows by inductions. The cases
for MQk, GQk, and LinMQk follow from the same construc-
tions (note that, without the requirement of linearity, a sim-
pler construction is possible in the case of conjunctions).

Theorem 3. The combined complexity of evaluating GQ
queries over a database instance is NP-complete. The same
holds for GDlog queries. The combined complexity of evalu-
ating GQ+ queries is PSpace-complete. The data complexity
is P-complete for GDlog, GQ, and GQ+.

Proof. The lower bounds are immediate from the match-
ing complexities for MQ and MQ+ queries, respectively [19].

First, we prove that checking if a tuple is an answer of a
GQ over a database instance I is in NP for combined com-
plexity. Let I be an instance, let P be a GQ with frontier
guarded rules P, and let δ be be a candidate answer for P as
in Definition 1.

Since each rule in P is frontier-guarded, each intentional
fact that is derived when checking the answer follows from
the application of one particular rule, instantiated to match
one particular (guard) EDB fact in the body. Therefore, the
number of IDB facts that can be derived is polynomially
bounded in the size of I and P.

Thus, for every derivation of P, only a polynomial number
of rule applications are necessary, since it is enough to derive
each IDB fact once. It is clear that one can guess such a
derivation, where we guess, for each derivable IDB fact, one
specific rule instance by which it is derived. The correctness
of this guess can be checked in polynomial time, showing
that the problem can be solved in NP.

We now show that checking an answer of a GQ+ over an
instance I is in PSpace. Let I be an instance, let P be a GQk

with frontier guarded rules P (that may contain subqueries),
and let δ be be a candidate answer for P as in Definition 1.
We demonstrate by induction on k that checking if δ is a
solution for P w.r.t. I is in NPSpace. For the induction base,
the claim follows from the above result for GQs.

For the induction step, using the same argument as before,
we can see that the number of IDB facts that can be derived
by P is still polynomial. Therefore, we can again guess a
polynomial derivation as before, though the rule instances
now may refer to subqueries of smaller nesting depth. By the
induction hypothesis, whenever we need to verify the appli-
cability of such a rule, we can use an NPSpace algorithm for
the nested query. The overall number of such checks is poly-
nomial, yielding the overall NPSpace algorithm. The result
follows since NPSpace =PSpace [20].

14

The fact that query evaluation is in P for data complexity
is immediate from the fact our queries can be expressed in
Datalog, which is known to have this data complexity. A
direct proof is also obtained by observing that the number
of possible derivation sequences that the above algorithms
need to consider is in itself polynomial in I if P is fixed,
so that the algorithms themselves are already in P for data
complexity.

Theorem 4. The combined complexity of evaluating
LinMQ queries over a database instance is NP-complete.
The same holds for LinGDlog and LinGQ. The com-
bined complexity of evaluating LinMQ+ queries is PSpace-
complete. The same holds for LinGQ+.

The data complexity is NLogSpace-complete for all of
these query languages.

Proof. The claimed NP-completeness is immediate.
Hardness follows from the hardness of CQ query answering.
Membership follows from the membership of GQ.

The claimed membership in PSpace follows from the
PSpace-membership of LinDlog; note that this uses Theo-
rem 1. Hardness for LinGQ+ follows from the hardness for
LinMQ+, which we show by modifying the PSpace-hardness
proof for monadically defined queries from [19].

We show the result by providing a reduction from the va-
lidity problem of quantified Boolean formulae (QBFs). We
recap that for any QBF, it is possible to construct in polyno-
mial time an equivalent QBF that has the specific shape

Q1x1Q2x2 . . .Qnxn

∨
L∈L

∧
`∈L

`,

with Q1, . . .Qn ∈ {∃,∀} and L being a set of sets of literals
over the propositional variables x1, . . . , xn. In words, we as-
sume our QBF to be in prenex form with the propositional
part of the formula in disjunctive normal form. For every
literal set L = {xk1 , . . . , xki , ¬xki+1 , . . . ,¬xk j }, we now de-
fine the n-ary FCP pL = {t(λk1) ∧ . . . ∧ t(λki) ∧ f (λki+1) ∧
. . . ∧ f (λk j) → hit}. Moreover, we define the n-ary FCP
pL = {pL(λ1, . . . , λn) → hit | L ∈ L}. Letting pL = pn we
now define FCPs pn−1 . . . p0 in descending order. If Qi = ∃,
then the i−1-ary FCP pi−1 is defined as the singleton rule set
{pi(λ1, . . . , λi−1, y)→ hit}. In case Qi = ∀, we let pi−1 contain
the rules

f (x)→ U?(x)
U!(x) ∧ f (x) ∧ t(y)→ U?(y)

U!(x) ∧ t(x)→ hit

U?(x) ∧ pi(λ1, . . . , λi−1, x)→ U!(x)

Note that p0 is a Boolean LinMQ+ query the size of which
is polynomial in the size of the input QBF.

Now, let D be the database containing the two individu-
als 0 and 1 as well as the facts f (0) and t(1). We now show

that the considered QBF is true exactly if D |= p0(). To
this end, we first note that by construction the extension of
pL contains exactly those n-tuples 〈δ1, . . . , δn〉 for which the
corresponding truth value assignment val, sending xi to true
iff δi = 1, makes the formula

∧
`∈L ` true. In the same way,

the extension of pL represents the set of truth value assign-
ments satisfying

∨
L∈L
∧
`∈L `. Then, by descending induc-

tion, we can show that the extensions of pi encode the as-
signments to free propositional variables of the subformula
Qi+1xi+1 . . .Qnxn

∨
L∈L
∧
`∈L ` that make this formula true.

Consequently, p0 has a nonempty extension if the entire con-
sidered QBF is true.

Finally, the NLogSpace-completeness for data complexity
is again immediate, where the upper bound is obtained from
LinDlog, and the lower bound follows from the well-known
hardness of reachability queries, which can be expressed in
LinMDlog.

Proofs for Section 6
Proposition 7. There is an automaton AP,ρ that accepts

exactly the annotated matching trees for ρ and P, and which
is exponential in the size of ρ and P.

Proof. We first construct an automaton A′P,ρ that accepts
matching trees where each node is additionally annotated by
a partial mapping of the form Var(ρ) → VP (called Var(ρ)-
label), such that: every special variable x ∈ Var(ρ) occurs in
at least one Var(ρ)-label, and whenever a variable x ∈ Var(ρ)
occurs in two, it is mapped to the same variable and both
variable occurrences are connected. Note that this is essen-
tially the same condition that we imposed for λ-annotations.

The intersection of tree automata can be computed in
polynomial time. We can therefore construct automata to
check part of the conditions for (annotated) matching trees to
simplify the definitions. We first construct an automatonAx
for checking the condition on Var(ρ)-labels for one variable
x ∈ Var(ρ). We define Ax = 〈Σ,Qx,Qs

x, δx,Qe
x〉, where the

alphabet Σ consists of quadruples of proof-tree labels (from
RP), λ-labels, p-labels, and Var(ρ)-labels. The state set Qx
is {a, b, accept} ∪ {qv | v ∈ VP}, signifying that the current
node is above the first node annotated with a mapping for x,
below or besides any nodes that were annotated with a map-
ping for x, or at a node where x is mapped to a variable v.
That start-state set is Qs

x = {a} ∪ {qv | v ∈ VP}; the end-state
set if Qe

x = {accept}.
Consider a rule ρ′ ∈ RP of the form r1(v1) ∧ . . . ∧ rn(vn) ∧

h1(w1) ∧ . . . ∧ hm(wm) → h(v), where ri are EDB predicates
and h(i) are IDB predicates. For the case that m > 0, there
is a transition 〈q1, . . . , qm〉 ∈ δ(q, 〈ρ′, _, _, ν〉) exactly if the
following conditions are satisfied:

• if q = a and ν(x) is undefined, then qi = a for one
1 ≤ i ≤ m and q j = b for all 1 ≤ j ≤ m with i , j;

• if q = qv and ν(x) = v, then qi = qv for all 1 ≤ i ≤ m
such that v occurs in wi and qi = b for all other i;

15

• if q = b and ν(x) is undefined, then qi = b for all 1 ≤
i ≤ m.

For the case m = 0, there is a transition 〈accept〉 ∈
δ(q, 〈ρ′, _, _, ν〉) exactly if:

• if q = qv and ν(x) = v;

• if q = b and ν(x) is undefined.

It is easy to check that the automaton Ax satisfies the re-
quired condition. Now an automaton for checking the con-
dition on Var(ρ)-labels can be constructed as the intersec-
tionA′Var(ρ) =

⋂
x∈Var(ρ)Ax. The automatonA′λ for checking

the condition on λ-labels is constructed in a similar fashion.
Likewise, an automaton A′p for checking the condition on
p-labels is easy to define.

It remains to construct an automaton for checking the
conditions (a)–(d) of Definition 4. To do this, we inter-
pret the Var(ρ)-labels and λ-labels as partial specifications of
the required mapping ν. Condition (a) further requires that
ν(x) = v, i.e., that the Var(ρ)-label at the unique node an-
notated with p(v) contains this mapping. It is easy to verify
this with an automatonA′(a). Together,A′(a),A

′
λ, andA′Var(ρ)

provide a consistent variable mapping that respects the p-
label (a) and the connectedness of variable occurrences, i.e.,
(c) and (d). To check the remaining condition (b), we use an
automatonA′(b).

The automaton for (b) will use auxiliary markers to record
which atoms have been matched in the current node and how
exactly this was done. We record such a match as a partial
function from atoms q(z) ∈ ϕ to instances q(w) of such atoms
using variables w ⊆ VP. The set of all such partial functions
is denoted Matchϕ,P. Note that this set is exponential (not
double exponential).

We now define A′(b) = 〈Σ,Q,Qs, δ,Qe〉 where Σ is as for
Ax above. The set of states Q is {accept} ∪ (2ϕ ×Matchϕ,P),
where elements from 2ϕ encode the subset of ϕ that should
be witnessed at or below the current node, and the ele-
ments from Matchϕ,P encode atoms that must be matched
at the current node with their respective instantiations. The
start-state set Qs is {〈ϕ, µ〉 | µ ∈ Matchϕ,P}; the end-
state set Qe is {accept}. The transition function δ is de-
fined as follows. Consider a rule ρ′ ∈ RP of the form
r1(v1) ∧ . . . ∧ rn(vn) ∧ h1(w1) ∧ . . . ∧ hm(wm)→ h(v), where
ri are EDB predicates and h(i) are IDB predicates. For the
case m > 0, there is a transition 〈〈β1, µ1〉, . . . , 〈βm, µn〉〉 ∈

δ(〈β, µ〉, 〈ρ′, νλ, _, νVar(ρ)〉) exactly if the set β ⊆ ϕ can be par-
titioned into sets β′, β1, . . . , βm such that (νλ ∪ νVar(ρ))(β′) =

µ(β′) and µ(β′) ⊆ {r1(v1), . . . , rn(vn)}. The element µi of
successor states can be chosen freely; the validity of the
choice will be checked later. For the case m = 0, there is
a transition 〈accept〉 ∈ δ(〈β, µ〉, 〈ρ′, νλ, _, νVar(ρ)〉) exactly if
(νλ ∪ νVar(ρ))(β) = µ(β) and µ(β) ⊆ {r1(v1), . . . , rn(vn)}. In
fact, the information from Matchϕ,P is not strictly necessary
to define the transition, since the relevant elements µ are al-
ways determined by other choices in the transition. How-

ever, having this information explicit will be important in
later proofs.

The automaton A′P,ρ is obtained as the intersection
A′Var(ρ) ∩ A

′
λ ∩ A

′
p ∩ A

′
(a) ∩ A

′
(b). It is easy to verify that

it accepts exactly the Var(ρ)-annotated matching trees. Note
that A′P,ρ is exponential in size, already due to the exponen-
tially large alphabet Σ. Now the required automaton AP,ρ
is obtained by “forgetting” the Var(ρ)-label in transitions of
A′P,ρ. This projection operation for tree automata is possi-
ble with a polynomial increase in size: every state of AP,ρ
is a pair of a state of A′P,ρ and a Var(ρ)-label; transitions of
AP,ρ are defined as for A′P,ρ, but keeping Var(ρ)-label infor-
mation in states and introducing transitions for all possible
Var(ρ)-labels in child nodes.

Proposition 8. There is an alternating 2-way tree au-
tomaton A+

P,ρ,v that is polynomial in the size of AP,ρ such
that, whenever AP,ρ accepts a matching tree T that has the
p-annotation p(v) on node e, then A+

P,ρ,v has an accepting
run that starts from the corresponding node e′ on the tree T ′

that is obtained by removing the p-annotation from T.
Proof. Using alternating 2-way automata, we can traverse

a tree starting from any node, visiting each node once. To
control the direction of the traversal, we create multiple
copies of each state q: states qdown are processed like normal
states in AP,ρ, states qup use an inverted transition of AP,ρ
to move up the tree into a state qσ,i; these auxiliary states
are used to check that the label of the upper node is actually
σ and to start new downwards processes for all child nodes
other than the one (i) that we came from.

To ensure that the constructed automaton A+
P,ρ,v simu-

lates the behavior of AP,ρ in case the annotation p(v) is
found, we eliminate all transitions that mention other p-
annotations. Moreover, we assume without loss of gener-
ality that the states of AP,ρ that allow a transition mention-
ing p(v) cannot be left through any other transition; this
can always be ensured by duplicating states and using them
exclusively for one kind of transition. Let Qp be the set
of states of AP,ρ that admit (only) transitions mentioning
p(v). Let A′P,ρ = 〈Σ′,Q,Qs, δ

′,Qe〉 denote the automaton
over the alphabet Σ′ of λ-annotated proof trees (without p-
annotations), with the same (start/end) states as AP,ρ, and
where δ′ is defined based on the transition function δ ofAP,ρ
as follows: δ′(〈ρ′,M〉) is the union of all sets of the form
δ(〈ρ′, λ-label, p-label〉) where p-label is either p(v) or empty.
By this construction, there is a correspondence between the
accepting runs of AP,ρ over trees where one node e is anno-
tated with p(v) and accepting runs of A′P,ρ (on trees without
p-annotations) for which the node e is visited in some state
of Qp.

Let s be the maximal out-degree of proof trees for P, i.e.,
the maximal number of IDB atoms in bodies of P. The state
set Q+ of A+

P,ρ,v is given by the disjoint union {qup | q ∈
Q} ∪ {qσ,i | q ∈ Q, σ ∈ Σ, 1 ≤ i ≤ s} ∪ {qdown | q ∈ Q} ∪
{start, accept}. The start-state set is Q+

s = {start} and the
end-state set is Q+

e = {accept} ∪ {qdown | q ∈ Qe}.

16

Transitions ofA+
P,ρ,v are defined as follows:

• For all σ ∈ Σ, let δ+(start, σ) be the disjunction of all
formulae 〈0, qup〉 ∧ 〈0, qdown〉 where q ∈ Qp.

• For states qdown and σ ∈ Σ, let δ+(qdown, σ) be the dis-
junction of all formulae 〈1, q1

down〉 ∧ . . .∧ 〈m, q
m
down〉 for

whichA′P,ρ has a transition 〈q1, . . . , qm〉 ∈ δ′(q, σ).

• For states qup and σ ∈ Σ, let δ+(qup, σ) be the disjunc-
tion of all formulae 〈−1, q′σ′,i〉 for whichA′P,ρ has a tran-
sition 〈q1, . . . , qi−1, q, qi+1, . . . , qm〉 ∈ δ′(q′, σ′) and the
current node is the ith child of its parent (we can as-
sume that this information is encoded in the labels σ,
even for basic proof trees, which increases the alpha-
bet only linearly; we omit this in our definitions since it
would clutter all other parts of our proof without need).

• For states qσ,i,q′ , let δ+(qσ,i,q′ , σ) be the disjunction of
all formulae 〈0, qup〉 ∧ 〈1, q1

down〉 ∧ . . . ∧ 〈i − 1, qi−1
down〉 ∧

〈i + 1, qi+1
down〉 ∧ . . . ∧ 〈m, q

m
down〉 for which A′P,ρ has a

transition 〈q1, . . . , qi−1, q′, qi+1, qm〉 ∈ δ′(q, σ).

• For all starting states q ∈ Qs of A′P,ρ and σ ∈ Σ, let
δ(qup, σ) = 〈0, accept〉.

It is not hard to verify that A+
P,ρ,v has the required proper-

ties.

Proposition 9. For a Dlog query P and a GQ query P′

with special constants λ, there is an alternating 2-way
automaton A+

PvP′ of exponential size that accepts the λ-
annotated proof trees of P that encode expansion trees with
λ assignments for which P′ has a match.

Proof. Let P′ be the set {ρ1, . . . , ρ`}. For every IDB pred-
icate p, let P′p denote the set of rules in P′ with head predi-
cate p (possibly hit). Without loss of generality, we assume
that distinct rules use distinct sets of variables. For every
frontier-guarded rule ρ′, let guard(ρ′) be a fixed EDB atom
that acts as a guard in this rule, i.e., an atom that refers to all
variables in the head of ρ′.

Consider a rule ρ′ ∈ P′ with IDB atoms q1(t1), . . . , qm(tm)
in its body. We construct new rules from ρ′ by replacing
each atom qi(t i) with a guard atom guard(ρ′i), suitably uni-
fied. Formally, assume that there are rules ρ′i ∈ P′qi

with head
qi(si) and a substitution θ that is a most general unifier for the
problems t iθ = siθ, for all i ∈ {1, . . . ,m}, and that maps ev-
ery variable in ρ′i that does not occur in the head to a globally
fresh variable. Then the guard expansion of ρ′ for (ρ′i)

m
i=1 and

θ is the rule that is obtained from ρ′θ by replacing each body
atom qi(t i)θ by guard(ρ′i)θ. By construction, two distinct
atoms guard(ρ′i)θ and guard(ρ′j)θ do not share variables, un-
less at positions that correspond to head variables in rules
ρ′i and ρ′j. The atoms guard(ρ′i)θ in a guard expansion are
called replacement guards. We consider two guard expan-
sions to be equivalent if they only differ in the choice of the
most general unifier. Let Guard(ρ′) be the set of all guard ex-
pansions of ρ′ ∈ P′, i.e., a set containing one representative
of each class of equivalent guard expansions. Guard(ρ′) is

exponential since there are up to |P′|m non-equivalent guard
expansions for a rule with m IDB atoms.

The automaton A+
PvP′ is constructed as follows. For ev-

ery guard expansion ρg ∈
⋃
ρ′∈P′ Guard(ρ′) and every list v

of proof-tree variables of the arity of the head of ρg, con-
sider the alternating 2-way tree automaton A+

P,ρg,v of Propo-
sition 8. We assume w.l.o.g. that the state sets of these au-
tomata are mutually disjoint. Let A+

PvP′ = 〈Σ,Q,Qs, δ,Qe〉.
As before, Σ consists of pairs of a rule instance from RP and
a partial mapping of λ to VP. The state set Q is the disjoint
union of all state sets of the automata of form A+

P,ρg,v. The
start-state set Qs is the disjoint union of all start-state sets of
automata A+

P,ρg,v for which ρg is a guard expansion of a rule
with head hit (and v is the empty list). The end-state set Qe
is the disjoint union of all end-state sets of automataA+

P,ρg,v.
The transition function δ is defined as follows. By the

construction in Proposition 7, each state q in the automaton
AP,ρ encodes a partial mapping match(q) from body atoms
of ρ to instantiated atoms that use variables fromVP, which
are matched at the current tree node. This information is pre-
served through alphabet projections, intersections, and even
through the construction in Proposition 8. We can therefore
assume that each state q ofA+

PvP′ is associated with a partial
mapping match(q).

For every state q ∈ QP,ρg,v and every σ ∈ Σ, we de-
fine δ(q, σ) = δP,ρg,v(q, σ) ∧ ψ, where ψ defined as fol-
lows. For every replacement guard atom α of ρg for which
match(q)(α) is defined, we consider the formula ψα =

〈0, q1〉 ∨ . . . ∨ 〈0, q`〉, where

• α = guard(ρ′)θ for some rule ρ′ and substitution θ;

• match(q)(α) = αθ′ for some substitution θ′;

• q1, . . . q` are the start states of the automaton AP,ρ′,zθθ′

where p(z) is the head of ρ′.

Now ψ is the conjunction of all formulae ψα thus de-
fined.

Proofs for Section 7
Lemma 12. Consider an ATMM, and queries as in Def-

inition 5, including SameCell[x, y], that are MQk queries for
some k ≥ 0. There is a MQk query P[x], polynomial in the
size ofM and the given queries, such that the following hold.

• For every accepting run ofM in space s, there is some
database instance I with some element c that encodes
the run, such that c < PI.

• If an element c of I encodes a tree of quasi-
configurations of M in space s, and if c < PI, then
c encodes an accepting run ofM in space s.

Moreover, if all input queries are in LinMQk, then so is P.

Proof. We construct P from all (polynomially many) pos-
itive queries obtained by instantiating the query patterns in
Figure 4. Since P needs to be a unary query with variable
x, we extend every positive query that does not contain x

17

(1) Unique head marker and correct left/right head markers:
Head(y, p1) ∧ NextCell(y, z) ∧ Head(z, p2) where 〈p1, p2〉 ∈ {〈h, h〉, 〈h, l〉, 〈r, h〉, 〈r, l〉}

Head(y, h) ∧ Head(y, p) where p ∈ {r, l}

(2) Unique start configuration:
FirstConf(x, y) ∧ Stateq(y) where q , qs

FirstConf(x, y) ∧ FirstCell(y, z) ∧ Head(z, p) where p ∈ {l, r}
FirstConf(x, y) ∧ ConfCell(y, z) ∧ Symbol(z, cσ) where σ , �

(3) Valid, uniquely defined transitions:
Stateq(y) ∧ Head(z, h) ∧ ConfCell(y, z) ∧ Symbol(z, cσ) ∧ NextConfδ(y, y′) ∧ where δ = 〈q1, σ1, q2, σ2, d〉

Stateq′ (y′) ∧ ConfCell(y′, z′) ∧ SameCell(z′, z) ∧ Symbol(z′, cσ′) with q1 , q or σ1 , σ or q2 , q′ or σ2 , σ
′

(4) Unique end state:
LastConf(y) ∧ Stateq(y) where q , qe

(5) Memory:
ConfCell(y1, x1) ∧ Head(x1, r) ∧ Symbol(x1, cσ) ∧ NextConfδ(y1, y2) ∧

ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ Symbol(x2, cσ′) where σ , σ′

ConfCell(y1, x1) ∧ Head(x1, l) ∧ Symbol(x1, cσ) ∧ NextConfδ(y1, y2) ∧
ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ Symbol(x2, cσ′) where σ , σ′

(6) Head movement:
ConfCell(y1, x1) ∧ Head(x1, h) ∧ NextConfδ(y1, y2) ∧ where δ = 〈q1, σ1, q2, σ2, right〉

ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ NextCell(x2, x′2) ∧ Head(x′2, p) and p ∈ {r, l}
ConfCell(y1, x1) ∧ Head(x1, h) ∧ NextConfδ(y1, y2) ∧ where δ = 〈q1, σ1, q2, σ2, right〉

ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ LastCell(x2) ∧ Head(x2, p) and p ∈ {r, l}
ConfCell(y1, x1) ∧ Head(x1, h) ∧ NextConfδ(y1, y2) ∧ where δ = 〈q1, σ1, q2, σ2, left〉

ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ NextCell(x′2, x2) ∧ Head(x′2, p) and p ∈ {r, l}
ConfCell(y1, x1) ∧ Head(x1, h) ∧ NextConfδ(y1, y2) ∧ where δ = 〈q1, σ1, q2, σ2, left〉

ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ FirstCell(z, x2) ∧ Head(x2, p) and p ∈ {r, l}

Figure 4: Queries to construct a containment encoding as in Lemma 12

with the atom FirstConf[x, x′] (omitted for space reasons in
Figure 4). By Proposition 2 we can express the disjunctions
of all the positive queries in Figure 4 as a LinMQk P[x] of
polynomial size (for k = 0 it is a UCQ).

If an element c in a database instanceI encodes an accept-
ing run ofM in space s, and I contains no other structures,
then none of the queries in Figure 4 matches. Hence c < PI.

Conversely, assume that c encodes a tree of M quasi-
configurations in space s and c < PI. If none of the queries
in Figure 4 (1) match, the head positions of every configura-
tion must form a sequence l, . . . , l, h, r, . . . , r; hence all quasi-
configurations are actually configurations. Queries (2)–(4)
ensure that the first and last configuration are in the start and
end state, respectively, and that each transition is matched by
suitable state and tape modifications. Queries (5) ensure that
tape cells that are not at the head of the TM are not modified
between configurations. Queries (6) ensure that the move-
ment of the head is consistent with the transitions, and es-
pecially does not leave the prescribed space. Note that the
queries allow transitions that try to move the head beyond

the tape and require that the head stays in its current position
in this case. This allows the ATM to recognize the end of
the tape, which is important for the Turing machines that we
consider below. With all these restrictions observed, c must
encode a run ofM in space s.

Proofs for Section 8
Lemma 14. For any ATM M, there is an MDlog query

P1[x], a LinMQ P2[x], queries as in Definition 5 that are
LinMQs, and a same-cell query that is a UCQ, such that P1[x]
and P2[x] containment-encode accepting runs ofM in expo-
nential space.

Proof. Let M = 〈Q,Σ,∆, qs, qe〉 with Q partitioned into
existential states Q∃ and universal states Q∀. In order to
use Lemma 12, we first construct queries P′1 and P′2 that
containment-encode quasi-configuration trees ofM in space
2` for some ` that is linear in the size of the queries (w.r.t. to
suitable queries as in Definition 5).

Our signature contains the binary predicates (distin-
guished from the queries of Definition 5 by using lower case

18

letters) firstConf, nextConfδ for all δ ∈ ∆, firstCell, nextCell,
biti for all i ∈ {1, . . . , `}, symbol, head, as well as the unary
predicates lastConf, and stateq for all q ∈ Q.

We define P′1 to be the following MDlog query that has the
goal predicate Ugoal and uses two further constants 0 and 1:

firstConf(x, y) ∧ Uconf(y)→ Ugoal(x)

stateq(x) ∧ firstCell(x, y) ∧ Ubit1 (y)→ Uconf(x) for q ∈ Q

biti−1(x, 0) ∧ Ubiti (x)→ Ubiti−1 (x) for i ∈ {2, . . . , `}

biti−1(x, 1) ∧ Ubiti (x)→ Ubiti−1 (x) for i ∈ {2, . . . , `}

symbol(x, cσ) ∧ Usymbol(x)→ Ubit` (x) for σ ∈ Σ

head(x, h) ∧ Uhead(x)→ Usymbol(x)

head(x, l) ∧ Uhead(x)→ Usymbol(x)

head(x, r) ∧ Uhead(x)→ Usymbol(x)

nextCell(x, y) ∧ Ubit1 (y)→ Uhead(x)

nextConfδ(x, y) ∧ Uconf(y)→ Uhead(x) for δ = 〈q, σ, q′, σ′, d〉
with q ∈ Q∃

nextConfδ1 (x, y1) ∧ Uconf(y1) ∧ for δ1 = 〈q, σ, q′, σ′, d〉,
nextConfδ2 (x, y2) ∧ Uconf(y2)→ Uhead(x) q ∈ Q∀, and δ1 , δ2

lastConf(x)→ Uhead(x)

P′1 encodes structures that resemble configuration
trees, but with each configuration “tape” consist-
ing of an arbitrary sequence of “cells” of the form
bit1(x, v1), . . . , bit`(x, v`), symbol(x, cσ), head(x, p), where
each vi is either 0 or 1. The values for the bit sequence
encode a binary number of length `. We provide a query
P′2 which ensures that each sequence of cells encodes an
ascending sequence of binary numbers from 00 . . . 0 to
11 . . . 1. More precisely, P′2 checks if there are any consec-
utive cells that violate this rule, i.e., the structures matched
by P′1 but not by P′2 are those where each configuration
contains 2` cells. The following query checks whether bit i
is the rightmost bit containing a 0 and bit i in the successor
configuration also contains a 0, which is a situation that
must not occur if the bit sequences encode a binary counter:

biti(y, 0) ∧ biti+1(y, 1) ∧ . . . ∧ bit`(y, 1) ∧ nextCell(y, z) ∧ biti(z, 0)

In a similar way, we can ensure that every bit to the right
of the rightmost 0 is changed to 0, every bit that is left of
a 0 remains unchanged, the first number is 0 . . . 0, and the
last number is 1 . . . 1. The query P′2 is the union of all of
these (polynomially many) conditions, each with new atom
firstConf(x,y) added and all variables other than x existen-
tially quantified; this ensures that we obtain a unary query
that matches the same elements as P′1 if it matches at all.

We claim that the elements matching P′1 but not P′2 encode
quasi-configuration trees ofM in space 2`. Indeed, it is easy
to specify the queries required by Definition 5. The most
complicated query is ConfCell[x, y], which can be defined
by the following LinMQ:

stateq(λ1) ∧ nextCell(λ1, y)→ U(y) for all q ∈ Q

U(y) ∧ nextCell(y, z)→ U(y)

U(λ2)→ hit

The remaining queries are now easy to specify, where we
use ConfCell[x, y], knowing that a conjunctive query over
LinMQs can be transformed into a single LinMQ using Propo-
sition 2:

FirstConf[x, y] B firstConf(x, y)

NextConfδ[x, y] B ∃z.ConfCell(x, z) ∧ nextConfδ(z, y)

LastConf[x] B ∃z.ConfCell(x, z) ∧ lastConf(z)

Stateq[x] B stateq(x)

Head[x, y] B head(x, y)

FirstCell[x, y] B firstCell(x, y))

NextCell[x, y] B nextCell(x, y)

LastCell[x] B lastConf(x) ∨ ∃z.nextConf(x, z)

Symbol[x, y] B symbol(x, y)

SameCell[x, y] B ∃v1, . . . , v`.bit1(x, v1) ∧ bit1(y, v1) ∧

. . . ∧ bit`(x, v`) ∧ bit`(y, v`)

Using these queries, we can construct a LinMQ P as in
Lemma 12 such that P1 = P′1 and P2 = P′2 ∨ P containment-
encode accepting runs ofM.

Lemma 15. Assume that there is some space bound s such
that, for every DTMM, there is a MDlog query P1[x] and an
MQk+1 query P2[x] with k ≥ 0, such that P1[x] and P2[x]
containment-encode accepting runs of M in s, where the
queries required by Definition 5 are MQk+1 queries. More-
over, assume that there is a suitable same-cell query that is
in MQk.

Then, for every ATM M′, there is a MDlog query P′1[x],
an MQk+1 P′2[x], and MQk+1 queries as in Definition 5, such
that P′1[x] and P′2[x] containment-encode an accepting run
ofM′ in space s′ ≥ 2s. Moreover, the size of the queries for
this encoding is polynomial in the size of the queries for the
original encoding.

Proof. There is a TM M = 〈Q,Σ,∆, qs, qe〉 that counts
from 0 to 2s in binary (using space s) and then halts. M can
be small (constant size) since our formalization of (A)TMs
allows the TMs to recognize the last tape position to ensure
that the maximal available space is used. The computation
will necessarily take s′ > 2s steps to complete since mul-
tiple steps are needed to increment the counter by 1. Let
P1[x] and P2[x] be queries that containment-encode accept-
ing runs ofM in s, and let ConfCell, SameCell, etc. denote
the respective LinMQk as in Definition 5.

LetM′ = 〈Q′,Σ′,∆′, q′s, q
′
e〉 be an arbitrary ATM. We use

the signature of P1, extended by additional binary predicates
firstConf′, nextConf′δ for all δ ∈ ∆′, symbol′, head′, as well as
unary predicates lastConf′, and state′q for all q ∈ Q′. All of
these are assumed to be distinct from predicates in P1.

Let Ugoal be the goal predicate of P1, and let Utape be a new
unary IDB predicate. We construct the program P̄1 from P1
as follows. For every rule of P1 that does not contain an IDB
atom in its body we add the atom Utape(x) to the body, where
x is any variable that occurs in the rule. Intuitively speak-
ing, the IDBs Utape and Ugoal mark the start and end of tapes
ofM′, which are represented by runs ofM. Moreover, we

19

modify P̄1 to “inject” additional state and head information
for M′ into configurations of M, i.e., we extend P1 to en-
sure that every element e with stateq(e) also occurs in some
symbol′(e, c′σ′) and in some relation head′(e, p). This can
always be achieved by adding a linear number of IDB pred-
icates and rules.

Now P′1 is defined to be a MDlog query with goal predicate
U′goal (assumed, like all IDB predicates of form U′ below, to
be distinct from any IDB predicate in P̄1), which is obtained
as the union of P̄1 with the following rules:

firstConf′(x, y) ∧ U′conf(y)→ U′goal(x)

state′q(x) ∧ Ugoal(x)→ U′conf(x) for q ∈ Q

nextCell′(x, y) ∧ Ugoal(y)→ Utape(x) for q ∈ Q

nextConf′δ(x, y) ∧ U′conf(y)→ Utape(x) for δ = 〈q, σ, q′, σ′, d〉
with q ∈ Q∃

nextConf′δ1
(x, y1) ∧ U′conf(y1) ∧ for δ1 = 〈q, σ, q′, σ′, d〉,

nextConf′δ2
(x, y2) ∧ U′conf(y2)→ Utape(x) q ∈ Q∀, and δ1 , δ2

lastConf′(x)→ Utape(x)

P′1 encodes trees of trees of M quasi-configurations in
space s. The structures matched by P′1 but not by P2 en-
code trees of accepting runs of M in space s (note that
these runs are linear, since M is not alternating). Every
such run consists of the same number s′ ≥ 2s of con-
figurations; these configurations represent the tape cells of
our encoding of M′ sequences. This encoding is formal-
ized by queries as follows. The queries FirstConf′[x, y],
State′q[x], Head′[x, y], and Symbol′[x, y] are directly ex-
pressed by singleton CQs that use the eponymous pred-
icates firstConf′(x, y), etc. To access cells of M′, we
can use the analogous queries to access configurations of
M: FirstCell′[x, y] = FirstConf(x, y), NextCell′[x, y] =

NextConf(x, y), and LastCell′[x] = LastConf(x).
The remaining queries can be expressed as LinMQ queries.

To present these queries in a more readable way, we spec-
ify them in regular expression syntax rather than giving
many rules for each. It is clear that regular expressions
over unary and binary predicates can be expressed in LinMQ
(it was already shown that MQs can express regular path
queries, which is closely related [19]). We use abbrevia-
tion P1SYMBOL to express the regular expression that is a
disjunction of all predicate symbols that occur in P1 (this al-
lows us to skip over any structures generated by P1; with the
specific forms of P1 that can occur in our proofs, one could
make this more specific to use only certain binary predi-
cates, but our formulation does not depend on internals of
P1). Moreover, let STATE be the disjunction of all atoms
state′q(x) and ∃y.head′(x, y) (both unary).

NextConf′δ[x, y] B STATE P1SYMBOL∗ nextConf′δ
LastConf′[x] B STATE P1SYMBOL∗ lastConf′

ConfCell′[x, y] B STATE P1SYMBOL∗ HEAD

The unary query LastConf′[x] uses the variable at the begin-
ning of the expression as its answer. It is easy to verify that

the elements accepted by P′1 but not by P2 encode sequences
of quasi-configurations of M′ in space s′ with respect to
these queries. To apply Lemma 12, we need to specify an
additional SameCell′ query for this encoding.

SameCell′ is expressed by an MQk+1 query that can in gen-
eral not be expressed by a MQk query:

FirstCell(λ1, x)→ U1(x)

U1(x) ∧ NextCell(x, x′)→ U1(x′)

Stateq(λ1) ∧ FirstCell(λ1, x) ∧ Symbol(x, z) ∧ Head(x, v) ∧
Stateq(λ2) ∧ FirstCell(λ2, y) ∧ Symbol(y, z) ∧ Head(y, v)→ U2(y)

for all q ∈ Q

U1(x) ∧ U2(y) ∧ SameCell(x, y) ∧
NextCell(x, x′) ∧ Symbol(x′, z) ∧ Head(x′, v) ∧

NextCell(y, y′) ∧ Symbol(y′, z) ∧ Head(y′, v)→ U2(y′)

U2(y) ∧ LastCell(y)→ hit

where FirstCell, Symbol, SameCell, and LastCell are the
queries for which P1 and P2 containment-encode runs ofM.
Note that our constructions already ensure that the sequences
ofM-cells compared by SameCell′ are of the same length.

To complete the proof, we apply Lemma 12 to construct
an MQk+1 P̄2. The MQk+1 P′2 is obtained by expressing the
disjunction of P2 and P̄2 as an MQk+1 using Proposition 2.
Then P′1 and P′2 containment encode accepting runs of M′

in space s′.

Theorem 13. Deciding containment of MDlog queries in
MQk queries is hard for (k + 2)ExpTime.

Proof. The claim is shown by induction on k. For the base
case, we show that deciding containment of MQ queries is
3ExpTime-hard. By Lemma 14, for any DTMM0, there is a
MDlog query P0

1, a LinMQ P0
2, LinMQs as in Definition 5, and

a same-cell query that is a UCQ with respect to which P0
1 and

P0
2 containment-encode accepting runs ofM0 in exponential

space s. By applying Lemma 15, we obtain, for an arbitrary
ATMM1, a MDlog query P1

1, an MQ P1
2, and MQ queries as in

Definition 5 (including a same-cell query), that containment-
encode accepting runs ofM1 in space s′ ≥ 2s.

The induction step for k > 1 is immediate from
Lemma 15.

20

