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Abstract. We introduce and investigate the expressive descrip-
tion logic (DL) ALCSCC++, in which the global and local cardi-
nality constraints introduced in previous papers can be mixed. We
prove that the added expressivity does not increase the complex-
ity of satisfiability checking and other standard inference problems.
However, reasoning in ALCSCC++ becomes undecidable if inverse
roles are added or conjunctive query entailment is considered. We
prove that decidability of querying can be regained if global and lo-
cal constraints are not mixed and the global constraints are appropri-
ately restricted. In this setting, query entailment can be shown to be
EXPTIME-complete and hence not harder than reasoning in ALC.

1 Introduction

Description Logics (DLs) [7] are a well-investigated family of logic-
based knowledge representation languages, enjoying widespread
adoption for formalizing ontologies in various application domains
such as biology and medicine [11]. To define the important notions of
such an application domain, DLs allow for stating necessary and suf-
ficient conditions for individuals to belong to a formal concept. These
conditions can be (Boolean combinations of) atomic properties of the
individual in question (expressed by concept names) or properties
that depend on the individual’s relationships with other individuals
and their properties (expressed as role restrictions). Using an exam-
ple from [8], the concept of a motor vehicle can be formalized by the
concept description Vehicle � ∃part.Motor, which uses the concept
names Vehicle and Motor and the role name part as well as the con-
cept constructors conjunction (�) and existential restriction (∃r.C).
The concept inclusion (CI) Motor-vehicle � Vehicle � ∃part.Motor
then states that every motor vehicle needs to belong to this concept
description. Numerical constraints on the number of role succes-
sors (so-called number restrictions) have been used early on in DLs
[10, 13, 12]. For example, using number restrictions, motorcycles can
be constrained to being motor vehicles with exactly two wheels:

Motorcycle�Motor-vehicle� (� 2 part.Wheel)� (� 2 part.Wheel).

The exact complexity of reasoning in ALCQ, the DL that has all
Boolean operations and number restrictions of the form (�n r.C)
and (�n r.C) as concept constructors, was determined by Stephan
Tobies [21, 23]: it is PSPACE-complete without CIs and EXPTIME-
complete in the presence of CIs, independently of whether the num-
bers occurring in the number restrictions are encoded in unary or
binary. Note that, using unary coding of numbers, the number n is
assumed to contribute n to the size of the input, whereas with binary
coding the size of the number n is log n. Thus, for large numbers,
using binary coding is more realistic.
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Whereas number restrictions are local in the sense that they con-
sider role successors of an individual under consideration (e.g. the
wheels that are part of a particular motor vehicle), cardinality restric-
tions on concepts (CRs) [6, 22] are global, i.e., they consider all in-
dividuals in an interpretation. For example, the cardinality restriction
(� 45 000 000 (Car � ∃registered-in.German-district)) states that at
most 45 million cars are registered all over Germany. Such car-
dinality restrictions can be seen as quantitative generalizations of
CIs since a CI of the form C � D can be expressed by the CR
(� 0 (C � ¬D)). The availability of CRs increases the complexity
of reasoning: as mentioned above, consistency in ALCQ w.r.t. CIs
is EXPTIME-complete, but consistency w.r.t. CRs is NEXPTIME-
complete if the numbers occurring in the CRs are assumed to be
encoded in binary [22]. With unary coding of numbers, consis-
tency stays EXPTIME-complete even w.r.t. CRs [22]. However, as
the above example considering 45 million cars indicates, unary cod-
ing does not yield a realistic measure for the input size if numbers
with large values are employed.

In two previous publications we have, on the one hand, extended
the DL ALCQ by more expressive number restrictions using cardi-
nality and set constraints expressed in the quantifier-free fragment
of Boolean Algebra with Presburger Arithmetic (QFBAPA) [14]. In
the resulting DL ALCSCC, which was introduced and investigated
in [1], cardinality and set constraints are applied locally, i.e., they re-
fer to the role successors of an individual under consideration. For
example, we can state that the number of cylinders of a motor must
coincide with the number of spark plugs in this motor, without fixing
what this number actually is, using the following ALCSCC CI:

Motor � succ(|part ∩ Cylinder | = |part ∩ SparkPlug |).
It was shown in [1] that pure concept satisfiability in ALCSCC is a
PSPACE-complete problem, and concept satisfiability w.r.t. a TBox
(i.e. a finite set of CIs) is EXPTIME-complete. This shows that the
more expressive number restrictions do not increase the complexity
of reasoning since reasoning in ALCQ has the same complexity.

On the other hand, we have extended the terminological formalism
of the well-known description logic ALC2 from CIs not only to CRs,
but to more general cardinality constraints expressed in QFBAPA [8],
which we called extended cardinality constraints (ECBoxes). These
constraints are global since they refer to all individuals in the inter-
pretation domain. An example of such a constraint, which is not ex-
pressible using CRs, states that, in Germany, cars running on petrol
outnumber cars running on diesel by a factor of at least two:

2 · |Car � ∃registered-in.German-district � ∃fuel.Diesel|
≤ |Car � ∃registered-in.German-district � ∃fuel.Petrol|.

2 The DL ALC is the fragment of ALCQ in which only number restrictions
(� 0 r.¬C) (written ∀r.C) and (� 1 r.C) (written ∃r.C) are available.
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It was shown in [8] that reasoning w.r.t. ECBoxes is still in NEXP-
TIME even if the numbers occurring in the constraints are encoded in
binary. The NEXPTIME lower bound follows from the result of To-
bies [22] for CRs mentioned above. This complexity can be lowered
to EXPTIME if a restricted form of cardinality constraints (RCBoxes)
is used. Such RCBoxes are still powerful enough to express statistical
knowledge bases [17].

An obvious way to generalize these two approaches is to combine
the two extensions, i.e., to consider extended cardinality constraints,
but now on ALCSCC concepts rather than just ALC concepts. This
combination was investigated in [2, 3], where a NEXPTIME upper
bound was established for reasoning in ALCSCC w.r.t. ECBoxes. It
is also shown in [2, 3] that reasoning w.r.t. RCBoxes stays in EXP-
TIME also for ALCSCC. Here we go one step further by allowing
for a tighter integration of global and local constraints. The resulting
logic, which we call ALCSCC++, allows, for example, to relate the
number of role successors of a given individual with the overall num-
ber of elements of a certain concept. For example, the ALCSCC++

concept description3

sat(|likes ∩ Car | = |Car |)

describes car lovers, i.e., individuals that like all cars, independently
of whether these cars are related to them by some role or not. More
generally, DLs that can express both local cardinality constraints
(i.e., constraints concerning the role successors of specific individ-
uals) and global cardinality constraints (i.e., constraints on the over-
all cardinality of concepts) can, for instance, be used to check the
correctness of statistical statements. For example, if a German car
company claims that they have produced more than N cars in a cer-
tain year, and P% of the tires used for their cars were produced by
Betteryear, this may be contradictory to a statement of Betteryear
that they have sold less than M tires in Germany. In addition to the
global statistical constraints, such an inconsistency may also depend
on local constraints such as the fact that each car has at least four
tires. Such numerical information may, of course, also influence the
answers to queries. If we know that the car company VMW uses only
tires from Betteryear or Badmonth, but the statistical information al-
lows us to conclude that another car company has actually bought
all the tires sold by Betteryear, then we know that the cars sold by
VMW all have tires produced by Badmonth. This motivates investi-
gating DLs with expressive cardinality constraints, and to consider
not just standard inferences such as satisfiability checking for these
DLs, but also query answering.

In the present paper, we show that, from a worst-case complex-
ity point of view, the extended expressivity of ALCSCC++ comes
for free if we consider classical reasoning problems. Concept sat-
isfiability in ALCSCC++ has the same complexity as in ALC
and ALCSCC with global cardinality constraints: it is NEXPTIME-
complete. However, if we add inverse roles, then concept satisfiabil-
ity becomes undecidable. In addition, for effective conjunctive query
answering this logic turns out to be too expressive. We show that con-
junctive query entailment w.r.t. ALCSCC++ knowledge bases is, in
fact, undecidable. In contrast, we can show that conjunctive query
entailment w.r.t. (an extension of) ALCSCC RCBoxes is decidable
and, in fact, only EXPTIME-complete.

We assume the reader to be sufficiently familiar with all the stan-
dard notions of description logics [7, 9, 20]. More details and full
proofs are available in the extended version of the paper [5].

3 To distinguish between constraints in ALCSCC and in ALCSCC++,
which have a different semantics, we use different keywords for them.

2 The logic ALCSCC++

As in [1, 8], we use the quantifier-free fragment of Boolean Alge-
bra with Presburger Arithmetic (QFBAPA) [14] to express our con-
straints. In this logic, one can build set terms by applying Boolean
operations (intersection ∩, union ∪, and complement ·c) to set vari-
ables as well as the constants ∅ and U . Set terms s, t can then be
used to state set constraints, which are equality and inclusion con-
straints of the form s = t, s ⊆ t, where s, t are set terms. Presburger
Arithmetic (PA) expressions are built from integer constants and set
cardinalities |s| using addition as well as multiplication with an inte-
ger constant. They can be used to form cardinality constraints of the
form k = �, k < �,N dvd �, where k, � are PA expressions, N is an
integer constant, and dvd stands for divisibility. A QFBAPA formula
is a Boolean combination of set and cardinality constraints. A solu-
tion σ of a QFBAPA formula φ is a substitution that assigns a finite
set σ(U) to U and subsets of σ(U) to set variables such that φ is sat-
isfied by this assignment (see [1, 5, 14] for more details). A QFBAPA
formula φ is satisfiable if it has a solution. In [14] it is shown that the
satisfiability problem for QFBAPA formulae is NP-complete.

We are now ready to introduce our new logic, which we call
ALCSCC++ to indicate that it is an extension of the logic ALCSCC
introduced in [1] (see [5] for a more detailed definition). When defin-
ing the semantics of ALCSCC++, we restrict the attention to finite
interpretations to ensure that cardinalities of concept descriptions are
always well-defined non-negative integers.

Definition 1 Given disjoint finite sets NC and NR of concept
names and role names, respectively, ALCSCC++ concept descrip-
tions (short: concepts) are Boolean combinations of concept names
and constraint expressions, where a constraint expression is of the
form sat(Con) for a set constraint or a cardinality constraint Con
that uses role names and ALCSCC++ concept descriptions in place
of set variables. As usual, we use 
 (top) and ⊥ (bottom) as abbre-
viations for A � ¬A and A � ¬A, respectively.

A finite interpretation of NC and NR consists of a finite, non-
empty set ΔI and a mapping ·I that maps every concept name
A ∈ NC to a subset AI of ΔI and every role name r ∈ NR

to a binary relation rI over ΔI . For a given element d ∈ ΔI

we define rI(d) := {e ∈ ΔI | (d, e) ∈ rI}. The interpre-
tation function ·I is inductively extended to ALCSCC++ concept
descriptions by interpreting the Boolean operators as usual, and
the constraint expressions as follows: sat(Con)I := {d ∈ ΔI |
the substitution σI

d satisfies Con}, where σI
d maps

• ∅ to the empty set and U to ΔI ,
• the ALCSCC++ concepts C occurring in Con to CI ,
• and the role names r occurring in Con to rI(d).
The ALCSCC++ concept description C is satisfiable if there is a
finite interpretation I such that CI �= ∅.

Note that the interpretation of concepts as set variables in
ALCSCC++ is global in the sense that it does not depend on d,
i.e., σI

d (C) = CI = σI
e (C) for all d, e ∈ ΔI . In contrast, the

interpretation of role names r as set variables is local since only the
r-successors of d are considered by σI

d (r). In ALCSCC, also the
interpretation of concepts as set variables is local since in the seman-
tics of ALCSCC the substitution σI

d considers only the elements of
CI that are role successors of d for some role name in NR (see [1]
and [5] for details). Thus, the local successor constraints succ(c) of
ALCSCC can be simulated in ALCSCC++ by using C∩(

⋃
r∈NR

r)
instead of just the concept C when formulating the constraints. This
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shows that ALCSCC concepts can be expressed by ALCSCC++

concepts. In addition, extended cardinality constraints (ECBoxes),
as introduced in [8], are expressible within ALCSCC++ concept de-
scriptions, as are nominals, the universal role, and role negation (see
[5] for detailed definitions and a proof of the following proposition).

Proposition 2 ALCSCC++ concepts can polynomially express
nominals, role conjunctions, and ALCSCC ECBoxes, and thus also
ABoxes, ALC ECBoxes and ALCSCC TBoxes. In addition, they
have the same expressivity as concepts of ALCSCC extended with
the universal role or with role negation, whereas both of these fea-
tures are not expressible in plain ALCSCC.

Though TBoxes, ABoxes, and ECBoxes can be expressed by
ALCSCC++ concepts, and TBoxes and ABoxes in ALCSCC can be
expressed by ALCSCC ECBoxes, we will nevertheless sometimes
consider knowledge bases K = (A, T , E) consisting of an ABox A,
a TBox T , and a (possibly restricted) ECBox E .

3 Satisfiability of ALCSCC++ concept descriptions

In the following we consider an ALCSCC++ concept description E
and show how to test E for satisfiability by reducing this problem to
the problem of testing satisfiability of QFBAPA formulae. Since the
reduction is exponential and satisfiability in QFBAPA is in NP, this
yields a NEXPTIME upper bound for satisfiability of ALCSCC++

concept descriptions. This bound is optimal since consistency of ex-
tended cardinality constraints in ALC, as introduced in [8], is already
NEXPTIME hard, and can be expressed as an ALCSCC++ satisfia-
bility problem by Proposition 2.

Our NEXPTIME algorithm combines ideas from the satisfiability
algorithm for ALCSCC concept descriptions [1] and the consistency
procedure for ALC ECBoxes [8]. In particular, we use the notion of
a type, as introduced in [8]. This notion is also similar to the Venn
regions employed in [1]. We assume in the following that E is an ar-
bitrary, but fixed ALCSCC++ concept and ME consists of all sub-
descriptions of the concept description E as well as the negations of
these subdescriptions.

Definition 3 A set t ⊆ ME is a type for E if it satisfies:
(i) if ¬C ∈ ME , then either C or ¬C belongs to t;
(ii) if C �D ∈ ME , then C �D ∈ t iff C ∈ t and D ∈ t;
(iii) if C �D ∈ ME , then C �D ∈ t iff C ∈ t or D ∈ t.

We denote the set of all types for E with types(E). Given an inter-
pretation I and a domain element d ∈ ΔI , the type of d w.r.t. E is
the set tEI (d) := {C ∈ ME | d ∈ CI}.

It is easy to show that the type of an individual really satisfies the
conditions stated in the definition of a type, i.e., tEI (d) ∈ types(E).

Any type t ∈ types(E) yields a concept description Ct, which is
the conjunction of all the elements of t. Due to Condition (i) in the
definition of types, concept descriptions Ct, Ct′ induced by different
types t �= t′ are disjoint, and all concept descriptions in ME can
be obtained as the union of the concept descriptions induced by the
types containing them, i.e., we have

CI =
⋃

t∈types(E) s.t. C∈t

CI
t

for all C ∈ ME and finite interpretations I. Since the type concepts
are disjoint, the following holds for all finite interpretations I:

|CI | =
∑

t∈types(E) s.t. C∈t

|CI
t | and |CI

t | = |
⋂
C∈t

CI |,

where the latter identity is an immediate consequence of the defini-
tion of Ct as the conjunction of all the elements of t.

Given a type t ∈ ME , the constraints occurring in t induce a QF-
BAPA formula ψt, in which the concepts C and roles r occurring in
these constraints are replaced by set variables XC and Xt

r , respec-
tively. For example, if t = {sat(|A| ≥ 4), sat(A ⊆ r), A}, then
ψt = |XA| ≥ 4 ∧ XA ⊆ Xt

r. Note that set variables correspond-
ing to concepts are independent of the type t, i.e., they are shared
by all types, whereas the set variables corresponding to roles are dif-
ferent for different types. This corresponds to the fact that roles are
evaluated locally, but concepts are evaluated globally in the seman-
tics of ALCSCC++. In order to ensure that the Boolean structure of
concepts is respected by the set variables, we introduce the formula

β =
∧

C�D∈ME

XC�D = XC ∩XD ∧

∧
C�D∈ME

XC�D = XC ∪XD ∧
∧

¬C∈ME

X¬C = (XC)
c.

Overall, we translate the ALCSCC++ concept E into the QFBAPA
formula

δE := (|XE | ≥ 1) ∧ β ∧
∧

t∈types(E)

(|
⋂
C∈t

XC | = 0) ∨ ψt.

Intuitively, to satisfy E, we need to have at least one element in it,
which explains the first conjunct. The third conjunct together with
β ensures that, for any type that is realized (i.e., has elements), the
constraints of this type are satisfied.

The following lemma, whose proof can be found in [5], states that
solvability of δE and satisfiability of E are indeed equivalent.

Lemma 4 The ALCSCC++ concept description E is satisfiable iff
the QFBAPA formula δE is satisfiable.

Since it is easy to see that the size of δE is exponential in E, and
satisfiability of QFBAPA formulae can be decided within NP even
for binary coding of numbers [14], this lemma shows that satisfi-
ability of ALCSCC++ concept descriptions can be decided within
NEXPTIME. Together with the known NEXPTIME lower bound for
consistency of ALC ECBoxes in [8], this yields:

Theorem 5 Satisfiability of ALCSCC++ concept descriptions is
NEXPTIME-complete independently of whether the numbers occur-
ring in these descriptions are encoded in unary or binary.

Thanks to Proposition 2, the NEXPTIME upper bound carries over
to satisfiability of ALCSCC++ knowledge bases, which may feature
an ABox, a TBox and an ECBox.

4 Restricted Cardinality Constraints and ABoxes
in ALCSCC

Recall that ALCSCC is the restriction of ALCSCC++ where con-
cepts C in constraint expressions occur only in the form C ∩
(
⋃

r∈NR
r). In the syntax of ALCSCC, we dispense with writing

the intersection with (
⋃

r∈NR
r) explicitly, and then realize the re-

striction to the role successors of the individual in question by defin-
ing the semantics of set variables corresponding to concepts in the
constraint expressions accordingly. Syntactically, we write succ(c)
instead of sat(c) to make clear that the constraint is to be interpreted
locally by considering only the role successors of the given individual
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(see [1, 5] for a detailed introduction of the syntax and semantics of
ALCSCC). ECBoxes for ALCSCC are basically ALCSCC++ con-
cept descriptions that are Boolean combinations of constraint expres-
sions sat(c) where c contains only ALCSCC concept descriptions
as set variables, but now such expressions are not viewed as con-
cept constructors, but as terminological statements that may be true
or false in an interpretation, corresponding to the respective settings
where the concept description contains all individuals (true) or no in-
dividual (false) (see [8, 2, 5] for a detailed introduction of the syntax
and semantics of ECBoxes in ALC and ALCSCC).

For the sub-logic ALC of ALCSCC, a restricted notion of car-
dinality boxes, called RCBoxes, was introduced in [8], and it was
proved that this restriction lowers the complexity of the consistency
problem from NEXPTIME to EXPTIME. In [2, 3] it was shown that
the same is true for ALCSCC. Here we demonstrate that this result
can be extended to consistency of ALCSCC ABoxes w.r.t. ALCSCC
RCBoxes. In the presence of ECBoxes, this extension is irrelevant
since ECBoxes can express nominals, and thus also ABoxes. How-
ever, this is not the case for RCBoxes. Here, we actually consider an
extension of RCBoxes, which were called ERCBoxes in [19].

Definition 6 Semi-restricted ALCSCC cardinality constraints are
of the form N1|C1| + · · · + Nk|Ck| + M ≤ Nk+1|Ck+1| +
· · · + Nk+�|Ck+�|, where Ci are ALCSCC concept descriptions,
Ni are integer constants for 1 ≤ i ≤ k + �, and M is a non-
negative integer constant. An extended restricted ALCSCC cardi-
nality box (ERCBox) is a positive Boolean combination of semi-
restricted ALCSCC cardinality constraints.

An ALCSCC ABox is a finite set of concept assertions of the form
C(a) and role assertions r(a, b), where C is an ALCSCC concept
description, r is a role name, and a, b are individual names from a
set NI of such names, which is disjoint with NC and NR. The set of
all individual names occurring in an ABox A is denoted as IndA.

An interpretation I is a model of a semi-restricted ALCSCC car-
dinality constraint of the form introduce above if N1|CI

1 | + · · · +
Nk|CI

k | + B ≤ Nk+1|CI
k+1| + · · · + Nk+�|CI

k+�|. The notion of
a model is extended to ERCBoxes using the usual interpretation of
conjunction and disjunction in propositional logic.

In the presence of an ABox, an interpretation additionally assigns
elements aI ∈ ΔI to individual names a. The interpretation I is
a model of an ALCSCC ABox A w.r.t. an ALCSCC ERCBox R if
it is a model of R that additionally satisfies aI ∈ CI for all con-
cept assertions C(a) ∈ A and (aI , bI) ∈ rI for all role assertions
r(a, b) ∈ A.

Note that ALCSCC ECBoxes can express both ERCBoxes and
ABoxes, which yields a NEXPTIME-upper bound for the consis-
tency problem of ALCSCC ABoxes w.r.t. ALCSCC ERCBoxes
[2, 3]. Since EXPTIME-hardness already holds for consistency of re-
stricted cardinality boxes (RCBoxes) in ALCSCC without an ABox
[8, 2, 3], we also obtain an EXPTIME complexity lower bound. Ac-
tually, the hardness proof in [8] does not require large numbers, and
thus EXPTIME-hardness even holds for unary coding of numbers.

One important contribution of the present paper is to close this
complexity gap, by lowering the upper bound to EXPTIME.

Theorem 7 Consistency of ALCSCC ABoxes w.r.t. ALCSCC ER-
CBoxes is an EXPTIME-complete problem.

Since the proof of this theorem is quite long and technical, we
cannot give it here. A detailed proof can be found in [5]. It uses an
extension of the approach employed in [2, 3] to decide consistency of

ALCSCC RCBoxes, but the presence of the ABox requires substan-
tial changes. Basically, this approach is based on type elimination,
but instead of the simple types employed in the previous section,
so-called augmented types [1] are used. An augmented type (t, V )
consists of a type t together with a polynomially large set of Venn re-
gions V , such that the QFBAPA formula ψt induced by the successor
constraints contained in t can be satisfied by a solution in which only
these Venn regions are non-empty. The ABox individuals are taken
into account by allowing them to occur in types and Venn regions.
Locally, we can actually express in QFBAPA that set variables Xb

corresponding to individuals b must have cardinality ≤ 1. In addi-
tion, if t contains the individual a and A contains r(a, b), we can
add the constraint |Xb ∩ Xr| ≥ 1 to the QFBAPA formula ψt in-
duced by t. Globally, constraints that ensure that individuals occur
only once cannot be expressed by ERCBoxes, but this is taken care
of by the second elimination step below.

In principle, type elimination now proceeds on input A,R (where
without loss of generality A �= ∅ and R is a conjunction of semi-
restricted constraints) as follows:

1. The set of all augmented types for A and R are computed. There
are exponentially many such types and they can be computed in
exponential time using QFBAPA reasoning.

2. Starting with the set of all augmented types, all maximal subsets
are computed such that (i) for every individual b there is exactly
one augmented type (t, V ) with b ∈ t in this set, and (ii) the
concept assertions in A are respected, i.e., b ∈ t and C(b) ∈ A
implies C ∈ t for all augmented types (t, V ) in the set. It can be
shown that there are exponentially many such maximal sets, and
they can be computed in exponential time (see [5]). For each of
these maximal sets, the procedure continues with the next step.

3. Remove augmented types (t, V ) for which the successors re-
quired by its Venn regions are not realized by an augmented type
in the set. Continue with this step until no more augmented types
are removed. If there is an individual b in A such that there is no
augmented type (t, ·) with b ∈ t in the set, then terminate with
failure. Otherwise, continue with the next step.

4. Remove augmented types (t, ·) that are forced to be empty by
the ERCBox, i.e., where there is no solution of the corresponding
system of linear inequations in which the variable vt standing
for the cardinality of the type concept Ct has a value different
from 0. Continue with the previous step if such a type is removed.
If no augmented type is removed in this step, then the algorithm
terminates with success.

In [5] we show that this elimination algorithm is sound and com-
plete, and runs in exponential time. Given an arbitrary, not neces-
sarily conjunctive ERCBox R, we can reduce testing consistency of
A w.r.t. R to testing consistency of A w.r.t. Rρ for exponentially
many conjunctive ERCBoxes Rρ of a size that is linearly bounded
by the size of R. Here A is consistent w.r.t. R iff A is consistent
w.r.t. Rρ for one of these conjunctive ERCBoxes Rρ. This yields the
EXPTIME upper bound stated in Theorem 7.

One might ask whether the approach used here to deal with in-
dividuals in ABoxes could also be used to treat nominals in concept
descriptions, where a nominal is a concept that must be interpreted as
a singleton set. The answer to the above question is, unfortunately,
negative. In fact, using a reduction from [23], it is easy to see that
adding nominals increases the complexity of ERCBox consistency
from EXPTIME to NEXPTIME even for ALC, i.e. consistency of
conjunctive ALCO ERCBoxes is NEXPTIME-complete (see [5] for
details).
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5 Undecidable Extensions of ALCSCC++

It turns out that a seemingly harmless extension of ALCSCC++

makes the satisfiability problem undecidable. ALCISCC++ is ob-
tained from ALCSCC++ by allowing role inverses, i.e. expressions
of the form r− for any r ∈ NR, to occur in the places of role names.
The semantics of the expression r− is defined by (r−)I = {(e, d) |
(d, e) ∈ rI}. The key insight for showing our undecidability result
is that adding this feature enables us to encode multiplication of con-
cept extensions, allowing for a reduction from Hilbert’s tenth prob-
lem [16]. We provide an example illustrating how “class extension
multiplication” can be expressed.

Example 8 In order to express that the cardinality of a concept C
coincides with the product of the cardinalities of concepts A and B,
we employ two auxiliary roles r and s. The following figure illus-
trates the construction we are aiming at.

BAC

r

rs

s

We first enforce that role r connects precisely each member of A with
every member of B:

A ≡ ∃r.
 B ≡ ∃r−.
 A � sat(B = r) B � sat(A = r−)

Next, we make sure that (i) every domain element has precisely as
many outgoing r edges as outgoing s edges; (ii) the elements with
incoming s edges are precisely the instances of concept C; and (iii)
no element can have more than one incoming s edge (in other words,
s is inverse functional):


 � sat(|r| = |s|) C ≡ ∃s−.
 
 � sat(|s−| ≤ 1)

A construction very much along the lines of the given example
allows us to express the undecidable Hilbert’s tenth problem as an
ALCISCC++ concept satisfiability problem, and hence establish
undecidability of the latter.

Theorem 9 Satisfiability of ALCISCC++ concept descriptions is
undecidable.

Our other undecidability result for ALCSCC++ concerns query-
ing. As usual, we focus on Boolean conjunctive queries, since general
query answering can be reduced to it.

Definition 10 In queries, we use variables from a countably infinite
set V . A Boolean conjunctive query (CQ) q is a finite set of atoms
of the form r(x, y) or C(z), where r is a role, C is concept, and
x, y, z ∈ V . A CQ q is satisfied by I (written: I |= q) if there
is a variable assignment π : V → ΔI (called match) such that
(π(x), π(y)) ∈ rI for every r(x, y) ∈ q and π(z) ∈ CI for ev-
ery C(z) ∈ q. A CQ q is (finitely) entailed by a knowledge base K
(written: K |=(fin) q) if every (finite) model I of K satisfies q.

We actually show undecidability of CQ entailment for a much
weaker logic, thereby providing a very restricted fragment of

constant-free and equality-free two-variable first-order logic for
which finite CQ entailment is already undecidable, significantly
strengthening and solidifying earlier results along those lines [18].

We show our undecidability result for the DL ALCcov, a slight
extension of ALC by role cover axioms of the form cov(r, s) for role
names r and s. An interpretation I satisfies cov(r, s) if rI ∪ sI =
ΔI ×ΔI . Role cover axioms can be expressed in ALCSCC++ via
sat

(

 ⊆ sat(|r ∪ s| = |U|)

)
, hence ALCcov is a sub-logic of

ALCSCC++.
The undecidability of finite CQ entailment from ALCcov TBoxes

is established by a reduction from the undecidable problem of de-
termining if a Turing machine (TM) is looping. As usual, the key
ingredient for this is to enforce a grid structure on which the TM’s
tape configurations are represented horizontally (connected via a role
named h) while the vertical direction (role v) corresponds to the sub-
sequent time steps.

Intuitively, we use the query to catch the unwanted situation of the
grid not being “closed”, i.e., two corresponding tape cells of time-
consecutive configurations are v-connected, while the cells to their
right are not:

q = ∃x, y, x′, y′.v(x, y) ∧ h(x, x′) ∧ h(y, y′) ∧ v(x′, y′)

Now, the covering axiom cov(v, v) ensures that, whenever two ele-
ments are not v-connected, they must be v-connected. This is needed
to enable the above query to catch the described problem.

Beyond this key ingredient, expressing the progression (i.e., com-
puting successor configurations) of the TM by ALC TBox axioms
is straightforward. Note however, that the requirement of model-
finiteness forces the grid to “loop back” at some stage, thereby only
allowing to represent TM runs that become repetitive after some time
– which is the reason for our reduction from the looping rather than
the halting problem.

Hence we obtain an ALCcov TBox T and CQ q such that T |=fin

q if and only if the underlying TM is not looping.

Theorem 11 Finite conjunctive query entailment by ALCcov

TBoxes is undecidable.

Finally, taking into account that ALCSCC++subsumes ALCcov

and only allows for finite models, we obtain the announced result.

Corollary 12 CQ entailment for ALCSCC++is undecidable.

6 Decidable querying for ALCSCC
In stark contrast to the undecidability result just presented, we
prove that conjunctive query entailment by ALCSCC ABoxes w.r.t.
ALCSCC ERCBoxes is only EXPTIME-complete, and thus not
harder than deciding knowledge base consistency for plain ALC.

Our result employs a construction by Lutz [15], but careful and
non-trivial argumentation is needed to show that the idea, conceived
for arbitrary models, carries over to our finite-model case. The ap-
proach reduces entailment of some CQ q to an exponential number of
inconsistency checks, which are in EXPTIME by Theorem 7, result-
ing in an overall EXPTIME procedure. In their entirety, these men-
tioned checks verify if some model exists that does not admit any
matches of q having a specific, forest-like shape.

It remains to argue that these specific, forest-shaped query matches
of q are the only ones that matter for checking entailment. To this
end, we show that all other matches can be “removed” by a model
transformation consisting of the following three consecutive steps:
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(i) forward-unraveling, resulting in possibly-infinite structures, then
(ii) cautious collapsing to regain finiteness while keeping the model
“forest-like enough” for small conjunctive queries to match only in
a tree-shaped way, and finally (iii) enriching the model by copies
of domain elements to again satisfy the global counting constraints
which had possibly become violated in the course of the previous
steps. Due to lack of space, we will focus on sketching the men-
tioned model transformation constructions. Technical details as well
as proofs are available in the technical report [5].

The construction of sufficiently tree-like models

Let K = (A, T ,R) be an ALCSCC knowledge base, where A is
an ABox, T is a TBox and R is an ERCBox. By routine transfor-
mations, we can ensure that K is in a normalized form where all
concepts appearing in A and R are concept names and all concepts
in T are of depth at most one.

Let I be a finite model of K. We denote with ΔI
named the set of all

named individuals, i.e., elements d ∈ ΔI for which aI = d holds
for some individual name a ∈ IndA.

Definition 13 The forward unraveling of an interpretation I is (a
potentially infinite) interpretation I→ = (ΔI→

, ·I→
) defined by

• ΔI→
= (ΔI)+ \

(
ΔI

named ·ΔI
named · (ΔI)∗

)
, in words: ΔI→

consists of all nonempty sequences of elements from ΔI except
those, where the first two elements are named individuals.

• For any a ∈ IndA, let aI→
= aI , i.e. a is interpreted by the one-

element sequence consisting of the named element aI from I.4

• For concept names A ∈ NC and role names r ∈ NR, we let

AI→
= {w | last(w) ∈ AI} and

rI
→
= rI∩(ΔI

named×ΔI
named)∪{(w,wd) | (last(w), d) ∈ rI},

where last(w) denotes the last element of the sequence w.

The notion of forward-unravelings differs only slightly from the
classical notion of unraveling [9]. The only difference is that the se-
quences starting from two named individuals are excluded from the
domain and that roles linking named inviduals are assigned manually
by the last item from Definition 13. It is not surprising that forward-
unravellings preserve satisfaction of ALCSCC ABoxes and TBoxes
as well as conjunctive query non-entailment. The proof is standard
and hinges on the fact that w ∈ ΔI→

and last(w) ∈ ΔI satisfy the
same ALCSCC concepts. For CQ non-entailment it is enough to see
that last(·) is a homomorphism from I→ to I.

Lemma 14 If I |= (A, T ) then I→ |= (A, T ). Moreover, for any
conjunctive query q, if I �|= q then I→ �|= q.

Unraveling removes non-forest-shaped query matches. However,
I→ does not need to be finite even if I is. To regain finiteness with-
out re-introducing unwanted query matches, we are going to intro-
duce the notion of a k-loosening, which depends on k–blocking. An
element u ∈ ΔI→

is k–blocked by its prefix w, if u = ww′ for
some w′ of length longer than k, and w’s and u’s suffixes of length k
coincide (see the illustrating picture). We say that u is minimally k–
blocked if it is k–blocked (by some prefix), but none of its prefixes
is k–blocked. With Bl

[k]
I→ we denote the set of minimally k–blocked

elements in I→.
4 We will not syntactically distinguish elements from ΔI and one-element

sequences from ΔI→
; in particular this means ΔI ⊆ ΔI→

.

ww′

w
w

ww′

size > k

k

Definition 15 The k-loosening I [k] of I is obtained from I→ by ex-
haustively selecting minimally k–blocked elements v from Bl

[k]
I→ (k–

blocked by some w), removing all descendants of v and identifying
the nodes v and w.

> k

w

v
Bl

[k]
I→

The above sketch illustrates a single step in the construction of I [k].
Note that the k–loosening of a finite I is finite since I→ is finitely
branching (due to the finiteness of I) and has finite depth (since
blocking eventually occurs on every branch due to the pigeonhole
principle). Thus, from König’s lemma we can conclude that I [k] is
indeed finite.

Like unravelings, k-loosenings preserve satisfaction of normal-
ized ABoxes and TBoxes, as well as CQ non-entailment. However,
ERCBoxes might become violated in the construction.

Lemma 16 For any positive k, I |= (A, T ) implies I [k] |= (A, T ),
and I �|= q implies I [k] �|= q.

For a given interpretation J , an anonymous cycle is simply a
word w ∈ (ΔJ )+ · (ΔJ \ ΔJ

named) · (ΔJ )+, where the first
and the last element are the same, and for any two consecutive ele-
ments di, di+1 of w there exists a role r witnessing (di, di+1) ∈ rJ .
The girth of J is the length of the smallest anonymous cycle in J
if such a cycle exists or ∞ otherwise. The main feature of the k–
loosening I [k] is that the girth of I [k] is at least k.

Lemma 17 For any k ∈ N the girth of I [k] is at least k.

Once k is greater than the number of atoms in q (denoted with |q|),
the k–loosening of a model is still “locally acyclic enough” to ensure
that the query matches only in a “forest-shaped” manner.

We next consider how to adjust a k-loosening such that it again
satisfies the initial ERCBox. Since role inverses are not express-
ible in ALCSCC, creating multiple copies of a single element, and
forward-linking them to other elements precisely in the same way as
the original element, can be done without any harm to modelhood
nor query-non-entailment. We formalize this intuition below.

Definition 18 For J |= (A, T ,R) and S ⊆ (ΔI × N+) we define
the S–duplication of J as the interpretation J+S = (ΔJ

+S , ·J+S )
with:
• ΔI

+S = ΔI ∪
⋃

(v,n)∈S{v
(i)
cpy | 1 ≤ i ≤ n},

• aJ+S = aJ for each individual name a ∈ IndA,
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• For concept names A ∈ NC and role names r ∈ NR we set:

AJ+S = AJ ∪
⋃

(v,n)∈S

{
v(i)cpy | 1 ≤ i ≤ n ∧ v ∈ AJ

}
and

rJ+S = rJ ∪
⋃

(v,n)∈S

{
(v(i)cpy , w) | 1 ≤ i ≤ n ∧ (v, w) ∈ rJ

}
.

v

v
(1)
cpy

J

Once again, it can be shown that the S–duplication of J preserves
satisfaction of ABoxes, TBoxes and query non-entailment.

Lemma 19 For any interpretation J , if J |= (A, T ), then for any
S ⊆ (ΔI ×N+), we have J+S |= (A, T ). Moreover if J �|= q then
also J+S �|= q.

The inequalities from R have the convenient property that, if a
vector 	x containing the cardinalities of all atomic concepts’ exten-
sions is a solution to R, then also a vector c · 	x, i.e., the vector ob-
tained by multiplying each entry of 	x by a constant c is also a solu-
tion to R. Thus there is a solution to R of the form (1 + |I [k]|) · 	xI ,
where 	xI is the solution to R describing the atomic concept exten-
sions’ cardinalities in I. Since I [k] preserves (non-)emptiness of all
concepts from I, we can simply copy an appropriate number of ele-
ments from I [k], to make the ERCBox R satisfied again.

Lemma 20 For any finite interpretation I |= (A, T ,R), there ex-
ists a finite set S ⊆ (ΔI × N+) such that I [k]

+S |= (A, T ,R).

This concludes our construction, the core result of which can be
informally stated as follows: For any ALCSCC knowledge base K
and every CQ q the following holds: if K |= q then there is a forest-
shaped query match of q into every model of K. This follows from
the fact that any model of K not admitting such a match would allow
us to construct a model without any query matches, contradicting the
assumption.

Deciding CQ entailment in exponential time

Now we are ready to employ the announced exponential time method
for deciding conjunctive query entailment from [15]. For a given
K = (A, T ,R) and a query q, we enumerate a set of ALCH∩

knowledge bases Ks = (A′, T ′) called spoilers, and check whether
K ∪ Ks is consistent. Spoilers are modeled to prevent forest-shaped
query matches. They are constructed by, on the one hand, rolling-up
tree-shaped partial query matches into concepts and forbidding exis-
tence of such concept in a model and, on the other hand, forbidding
certain behaviour of the ABox part of a model. Lutz [15] shows that
one can restrict ones attention to exponentially many spoilers and
that the size of each such spoiler is only polynomial in |K| and |q|.

The algorithm for CQ entailment is then obtained by simply re-
placing Lutz’s satisfiability algorithm for ALCH∩ knowledge bases5

5 Note that ALCH∩ is a sub-logic of ALCSCC.

by our finite satisfiability algorithm for ALCSCC knowledge bases
from Section 4. We derive correctness of the procedure as follows:
K ∪ Ks is satisfiable for some spoiler Ks exactly if there is a model
of K without forest-shaped matches of q and hence – thanks to our
above argument – there is a model without any match of q. We con-
clude:

Theorem 21 Conjunctive query entailment by ALCSCC ABoxes
w.r.t. ALCSCC ERCBoxes is EXPTIME-complete.

It is worth pointing out that our result also implies the exact up-
per bound for finite CQ entailment by ALCHQ knowledge-bases,
for which only a doubly-exponential upper bound was known (see
e.g. [18]). This result was somehow missing in the literature, prob-
ably due to the fact that ALCHQ is not known to be finitely-
controllable.

Corollary 22 Finite conjunctive query entailment by ALCHQ
ABoxes w.r.t. ALCHQ TBoxes is EXPTIME-complete.

7 Conclusion

We have introduced the DL ALCSCC++, which allows for mix-
ing local and global cardinality constraints. Though being consid-
erably more expressive than previously investigated DLs with cardi-
nality constraints, reasoning in ALCSCC++ has turned out to be not
harder that reasoning in ALC with very simple cardinality restric-
tions. However, extending ALCSCC++ with inverse roles causes un-
decidability for the standard inference satisfiability, as does consider-
ing the non-standard inference of query entailment in ALCSCC++.
We were able to show that decidability of query entailment can be re-
gained by considering restricted cardinality constraints (ERCBoxes)
in the sub-logic ALCSCC of ALCSCC++. The EXPTIME upper
bound proved for this task depends on the ExpTime upper bound
for ABox consistency in ALCSCC w.r.t. ERCBoxes shown for the
first time in the present paper.

Some of the results presented here have already been sketched in a
paper at the DL workshop [4]. However, there the positive result for
query entailment was restricted to a setting without ABox since we
did not yet have the result for ABox consistency, and only a 2EXP-
TIME upper bound for the complexity was shown. In addition, the
undecidability result for ALCISCC++ is also not contained in [4].

Regarding future work, it would be interesting to investigate the
impact that adding inverse roles has on reasoning in ALCSCC w.r.t.
different kinds of terminological boxes (TBox, ERCBox, ECBox),
though this will probably be a very hard task. From an application
point of view, as a first step towards a more practical query answering
algorithm, we intend to investigate the ABox consistency problem in
ALCSCC w.r.t. ERCBoxes. Since type elimination algorithms are
not only worst-case, but also best-case exponential, we will try to
devise a tableau-based algorithm for this problem, which may use
numerical algorithms and satisfiability checkers for QFBAPA as sub-
procedures.
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