
DATABASE THEORY

Lecture 8: Tree-Like Conjunctive Queries (2)

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 03 May 2022

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2022)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

Review: Treewidth

Graphs of bounded treewidth as a generalisation of (undirected) trees:

• Trees have treewidth 1

• Graphs of higher treewidth resemble trees with “thicker branches”

• It is (in theory) not hard to check if a graph has treewidth ≤ k for some k

• It is (in theory) not hard to answer BCQs whose primal graph has a bounded
treewidth

Practically feasible only for lower treewidths

However, bounded treewidth does not generalise the notion of hypergraph acyclicity
(acyclic families of hypergraphs may have unbounded treewidth)

Is there a better notion of tree-likeness for hypergraphs?

Markus Krötzsch, 03 May 2022 Database Theory slide 2 of 20

Query Width

Idea of Chekuri and Rajamaran [1997]:

• Create tree structure similar to tree decomposition

• But consider bags of query atoms instead of bags of variables
• Two connectedness conditions:

(1) Bags that refer to a certain variable must be connected
(2) Bags that refer to a certain query atom must be connected

Query width: least number of atoms needed in bags of a query decomposition

Theorem 8.1: Given a query decomposition for a BCQ, the query answering
problem can be decided in time polynomial in the query width.

Markus Krötzsch, 03 May 2022 Database Theory slide 3 of 20

Query Width

Idea of Chekuri and Rajamaran [1997]:

• Create tree structure similar to tree decomposition

• But consider bags of query atoms instead of bags of variables
• Two connectedness conditions:

(1) Bags that refer to a certain variable must be connected
(2) Bags that refer to a certain query atom must be connected

Query width: least number of atoms needed in bags of a query decomposition

Theorem 8.1: Given a query decomposition for a BCQ, the query answering
problem can be decided in time polynomial in the query width.

Markus Krötzsch, 03 May 2022 Database Theory slide 3 of 20

Problems with Query Width

Theorem 8.2 (Gottlob et al. 1999): Deciding if a query has query width at most
k is NP-complete.

In particular, it is also hard to find a query decomposition

{ Query answering complexity drops from NP to P . . .
. . . but we need to solve another NP-hard problem first!

Markus Krötzsch, 03 May 2022 Database Theory slide 4 of 20

Generalised Hypertree Width

Gottlob, Leone, and Scarcello had another idea on defining tree-like hypergraphs:

Intuition:

• Combine key ideas of tree decomposition and query decomposition

• Start by looking at a tree decomposition

• But define the width based on query atoms:
How many atoms do we need to cover all variables in a bag?

{ Generalised hypertree width
{ A technical condition is needed to get a simpler-to-check notion

Markus Krötzsch, 03 May 2022 Database Theory slide 5 of 20

Hypertree Width

Definition 8.3: Consider a hypergraph G = 〈V, E〉. A hypertree decomposition of
G is a tree structure T where each node n of T is associated with a bag of vari-
ables Bn ⊆ V and with a set of edges Gn ⊆ E, such that:

• T with Bn yields a tree decomposition of the primal graph of G.
• For each node n of T:

(1) the vertices used in the edges Gn are a superset of Bn,
(2) if a vertex v occurs in an edge of Gn and this vertex also occurs in Bm

for some node m below n in T, then v ∈ Bn.

The width to T is the largest number of edges in a set Gn.
The hypertree width of G, hw(G), is the least width of its hypertree decomposi-
tions.

((2) is the “special condition”: without it we get the generalised hypertree width)

Markus Krötzsch, 03 May 2022 Database Theory slide 6 of 20

Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

Markus Krötzsch, 03 May 2022 Database Theory slide 7 of 20

Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

1,2,3,6

1,3,4,6,10

3,4,6,9,10

4,6,8,9,10

4,5,6,7,8,10

A,F

C,F

B,H

C,E

B,G

Markus Krötzsch, 03 May 2022 Database Theory slide 7 of 20

Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

1,2,3,6

1,3,4,6,10

3,4,6,9,10

4,6,8,9,10

4,5,6,7,8,10

A,F

C,F

B,H

C,E

B,G

Markus Krötzsch, 03 May 2022 Database Theory slide 7 of 20

Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

1,2,3,6

1,3,4,6,10

3,4,6,9,10

4,6,8,9,10

4,5,6,7,8,10

A,F

C,F

B,H

C,E

B,G

Markus Krötzsch, 03 May 2022 Database Theory slide 7 of 20

Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

1,2,3,6

1,3,4,6,10

3,4,6,9,10

4,6,8,9,10

4,5,6,7,8,10

A,F

C,F

B,H

C,E

B,G

Markus Krötzsch, 03 May 2022 Database Theory slide 7 of 20

Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

1,2,3,6

1,3,4,6,10

A,F

C,F

B,H

C,E

B,G

3,4,6,9,10

4,6,8,9,10

4,5,6,7,8,10

Markus Krötzsch, 03 May 2022 Database Theory slide 7 of 20

Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

1,2,3,6

1,3,4,6,10

3,4,6,9,10

4,6,8,9,10

4,5,6,7,8,10

A,F

C,F

B,H

C,E

B,G

Markus Krötzsch, 03 May 2022 Database Theory slide 7 of 20

Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

1,2,3,6

1,3,4,6,10

3,4,6,9,10

4,6,8,9,10

4,5,6,7,8,10

A,F

C,F

B,H

C,E

B,G 5B

B

Special condition violated{ no hypertree decomposition
{ But generalised hypertree decomposition of width 2

Markus Krötzsch, 03 May 2022 Database Theory slide 7 of 20

Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

Markus Krötzsch, 03 May 2022 Database Theory slide 8 of 20

Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

C,F

B,G,H

1,2,3,4,6,10

3,4,5,6,7,8,9,10

Markus Krötzsch, 03 May 2022 Database Theory slide 8 of 20

Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

C,F

B,G,H

1,2,3,4,6,10

3,4,5,6,7,8,9,10

Markus Krötzsch, 03 May 2022 Database Theory slide 8 of 20

Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

C,F

B,G,H

1,2,3,4,6,10

3,4,5,6,7,8,9,10

Special condition satisfied{ hypertree decomposition of width 3

Markus Krötzsch, 03 May 2022 Database Theory slide 8 of 20

Hypertree Width: Observations

Observation 8.4: If 〈T, (Bn), (Gn)〉 is a hypertree decomposition for a hypergraph
〈V, E〉, then the union of all sets Gn might be a proper subset of E.

Proof: Indeed, we only require that every bag Bn is “covered” by the edges in Gn, not
that every edge in E is actually used for this purpose. �

Observation 8.5: If 〈T, (Bn), (Gn)〉 is a hypertree decomposition for a hypergraph
〈V, E〉, then, for every hyperedge e ∈ E, there is a node n in T such that e ⊆ Bn.

Proof: Since T, (Bn) is a tree decomposition of the primal graph, and every edge e ∈ E
gives rise to a |e|-clique in this graph, the variables of e must occur together in one bag
of the tree decomposition. �

Markus Krötzsch, 03 May 2022 Database Theory slide 9 of 20

Hypertree Width: Observations

Observation 8.4: If 〈T, (Bn), (Gn)〉 is a hypertree decomposition for a hypergraph
〈V, E〉, then the union of all sets Gn might be a proper subset of E.

Proof: Indeed, we only require that every bag Bn is “covered” by the edges in Gn, not
that every edge in E is actually used for this purpose. �

Observation 8.5: If 〈T, (Bn), (Gn)〉 is a hypertree decomposition for a hypergraph
〈V, E〉, then, for every hyperedge e ∈ E, there is a node n in T such that e ⊆ Bn.

Proof: Since T, (Bn) is a tree decomposition of the primal graph, and every edge e ∈ E
gives rise to a |e|-clique in this graph, the variables of e must occur together in one bag
of the tree decomposition. �

Markus Krötzsch, 03 May 2022 Database Theory slide 9 of 20

Hypertree Width: Observations

Observation 8.4: If 〈T, (Bn), (Gn)〉 is a hypertree decomposition for a hypergraph
〈V, E〉, then the union of all sets Gn might be a proper subset of E.

Proof: Indeed, we only require that every bag Bn is “covered” by the edges in Gn, not
that every edge in E is actually used for this purpose. �

Observation 8.5: If 〈T, (Bn), (Gn)〉 is a hypertree decomposition for a hypergraph
〈V, E〉, then, for every hyperedge e ∈ E, there is a node n in T such that e ⊆ Bn.

Proof: Since T, (Bn) is a tree decomposition of the primal graph, and every edge e ∈ E
gives rise to a |e|-clique in this graph, the variables of e must occur together in one bag
of the tree decomposition. �

Markus Krötzsch, 03 May 2022 Database Theory slide 9 of 20

Complete Hypertree Decompositions

We can make sure that all atoms are in fact used in some set Gn of the decomposition:

Theorem 8.6: If 〈T, (Bn), (Gn)〉 is a (generalised) hypertree decomposition for
a hypergraph 〈V, E〉, then there is a (generalised) hypertree decomposition
〈T ′, (B′n), (G′n)〉 of the same width and of size O(|T | + |E|) such that, for all e ∈ E,
there is a node n in T ′ with e ∈ G′n.

Proof: For every edge e ∈ E that does not appear in (Gn) yet:

• extend T with a new node m that is a child of an existing node n with e ⊆ Bn (this
must exist as just observed)

• define Bm = e and Gm = {e}

This establishes the claim for e and preserves all conditions in the definition of
(generalised) hypertree decomposition. �

Such hypertree decompositions are called complete.

Markus Krötzsch, 03 May 2022 Database Theory slide 10 of 20

Complete Hypertree Decompositions

We can make sure that all atoms are in fact used in some set Gn of the decomposition:

Theorem 8.6: If 〈T, (Bn), (Gn)〉 is a (generalised) hypertree decomposition for
a hypergraph 〈V, E〉, then there is a (generalised) hypertree decomposition
〈T ′, (B′n), (G′n)〉 of the same width and of size O(|T | + |E|) such that, for all e ∈ E,
there is a node n in T ′ with e ∈ G′n.

Proof: For every edge e ∈ E that does not appear in (Gn) yet:

• extend T with a new node m that is a child of an existing node n with e ⊆ Bn (this
must exist as just observed)

• define Bm = e and Gm = {e}

This establishes the claim for e and preserves all conditions in the definition of
(generalised) hypertree decomposition. �

Such hypertree decompositions are called complete.

Markus Krötzsch, 03 May 2022 Database Theory slide 10 of 20

Acyclic Hypergraphs and Hypertree Width (1)

Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: (⇒) Recall that an acyclic hypergraph has a join tree:

• A tree structure T

• where each node is associated with a single edge

• such that, for any vertex v, the nodes with edges that mention v are a subtree of T

This easily corresponds to a hypertree decomposition (using the same tree structure,
singleton edge sets Gn = {e} and vertex bags Bn = e if n is associated with e)

Markus Krötzsch, 03 May 2022 Database Theory slide 11 of 20

Acyclic Hypergraphs and Hypertree Width (1)

Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: (⇒)

Recall that an acyclic hypergraph has a join tree:

• A tree structure T

• where each node is associated with a single edge

• such that, for any vertex v, the nodes with edges that mention v are a subtree of T

This easily corresponds to a hypertree decomposition (using the same tree structure,
singleton edge sets Gn = {e} and vertex bags Bn = e if n is associated with e)

Markus Krötzsch, 03 May 2022 Database Theory slide 11 of 20

Acyclic Hypergraphs and Hypertree Width (1)

Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: (⇒) Recall that an acyclic hypergraph has a join tree:

• A tree structure T

• where each node is associated with a single edge

• such that, for any vertex v, the nodes with edges that mention v are a subtree of T

This easily corresponds to a hypertree decomposition (using the same tree structure,
singleton edge sets Gn = {e} and vertex bags Bn = e if n is associated with e)

Markus Krötzsch, 03 May 2022 Database Theory slide 11 of 20

Acyclic Hypergraphs and Hypertree Width (1)

Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: (⇒) Recall that an acyclic hypergraph has a join tree:

• A tree structure T

• where each node is associated with a single edge

• such that, for any vertex v, the nodes with edges that mention v are a subtree of T

This easily corresponds to a hypertree decomposition (using the same tree structure,
singleton edge sets Gn = {e} and vertex bags Bn = e if n is associated with e)

Markus Krötzsch, 03 May 2022 Database Theory slide 11 of 20

Acyclic Hypergraphs and Hypertree Width (2)

Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: (⇐)

For a hypergraph 〈V, E〉, consider a hypertree decomposition 〈T, (Bn), (Gn)〉
of width 1 that is complete (w.l.o.g.).

We modify the decomposition so that, for every edge e ∈ E, there is exactly one node ne

in T such that Gne = {e} and Bne = e.

Modification procedure:

• Choose an arbitrary total order ≺ on the nodes of T such that nodes are before
their child nodes (i.e., ≺ is a topological order wrt. T)

• For each e ∈ E:
1. Find the ≺-least node ne of T with Gne = {e} and Bne = e

(exists since we have a complete decomposition of width 1)
2. For every node n , ne with Gn = {e}:

re-attach all children of n to ne and delete n

Note: Since we have hypertree width 1, the set Gne in step (1) must be singleton.

Markus Krötzsch, 03 May 2022 Database Theory slide 12 of 20

Acyclic Hypergraphs and Hypertree Width (2)

Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: (⇐) For a hypergraph 〈V, E〉, consider a hypertree decomposition 〈T, (Bn), (Gn)〉
of width 1 that is complete (w.l.o.g.).

We modify the decomposition so that, for every edge e ∈ E, there is exactly one node ne

in T such that Gne = {e} and Bne = e.

Modification procedure:

• Choose an arbitrary total order ≺ on the nodes of T such that nodes are before
their child nodes (i.e., ≺ is a topological order wrt. T)

• For each e ∈ E:
1. Find the ≺-least node ne of T with Gne = {e} and Bne = e

(exists since we have a complete decomposition of width 1)
2. For every node n , ne with Gn = {e}:

re-attach all children of n to ne and delete n

Note: Since we have hypertree width 1, the set Gne in step (1) must be singleton.

Markus Krötzsch, 03 May 2022 Database Theory slide 12 of 20

Acyclic Hypergraphs and Hypertree Width (2)

Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: (⇐) For a hypergraph 〈V, E〉, consider a hypertree decomposition 〈T, (Bn), (Gn)〉
of width 1 that is complete (w.l.o.g.).

We modify the decomposition so that, for every edge e ∈ E, there is exactly one node ne

in T such that Gne = {e} and Bne = e.

Modification procedure:

• Choose an arbitrary total order ≺ on the nodes of T such that nodes are before
their child nodes (i.e., ≺ is a topological order wrt. T)

• For each e ∈ E:
1. Find the ≺-least node ne of T with Gne = {e} and Bne = e

(exists since we have a complete decomposition of width 1)
2. For every node n , ne with Gn = {e}:

re-attach all children of n to ne and delete n

Note: Since we have hypertree width 1, the set Gne in step (1) must be singleton.

Markus Krötzsch, 03 May 2022 Database Theory slide 12 of 20

Acyclic Hypergraphs and Hypertree Width (3)

Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: Note that a node n as in step (2) cannot be a predecessor of ne in T (which
would lead to bad results!).

Suppose for a contradiction that n is a predecessor of ne. Then:

• Bn = Bne = e due to the special condition.

• n ≺ ne by our choice of ≺.

But then we would have selected n rather than ne to be preserved.

The modified hypertree decomposition corresponds to a join tree:

• each node is associated with a single edge

• no edge is associated with more than one node

• the vertices satisfy the connectedness condition for join trees
(since T is a tree decomposition of the primal graph)

Hence the hypergraph has a join tree and is therefore acyclic. �

Markus Krötzsch, 03 May 2022 Database Theory slide 13 of 20

Acyclic Hypergraphs and Hypertree Width (3)

Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: Note that a node n as in step (2) cannot be a predecessor of ne in T (which
would lead to bad results!).

Suppose for a contradiction that n is a predecessor of ne. Then:

• Bn = Bne = e due to the special condition.

• n ≺ ne by our choice of ≺.

But then we would have selected n rather than ne to be preserved.

The modified hypertree decomposition corresponds to a join tree:

• each node is associated with a single edge

• no edge is associated with more than one node

• the vertices satisfy the connectedness condition for join trees
(since T is a tree decomposition of the primal graph)

Hence the hypergraph has a join tree and is therefore acyclic. �

Markus Krötzsch, 03 May 2022 Database Theory slide 13 of 20

Acyclic Hypergraphs and Hypertree Width (3)

Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: Note that a node n as in step (2) cannot be a predecessor of ne in T (which
would lead to bad results!).

Suppose for a contradiction that n is a predecessor of ne. Then:

• Bn = Bne = e due to the special condition.

• n ≺ ne by our choice of ≺.

But then we would have selected n rather than ne to be preserved.

The modified hypertree decomposition corresponds to a join tree:

• each node is associated with a single edge

• no edge is associated with more than one node

• the vertices satisfy the connectedness condition for join trees
(since T is a tree decomposition of the primal graph)

Hence the hypergraph has a join tree and is therefore acyclic. �

Markus Krötzsch, 03 May 2022 Database Theory slide 13 of 20

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time (actually in LOGCFL).

Proof: Consider a BCQ q, a width-k hypertree decomposition 〈T, (Bn), (Gn)〉 of (the
hypergraph of) q, and a database instance I.

We first construct a modified BCQ q′, hypertree decomposition 〈T, (Bn), (G′n)〉 of q′, and
a database instance I′, such that I |= q iff I′ |= q′ and

⋃
G′n = Bn for all nodes n of T:

• For each node n and atom r(~x) ∈ Gn

• create a new relation r′ and let ~y be a list of all variables in ~x ∩ Bn

• replace r(~x) ∈ Gn by r′(~y) ∈ G′n
• define r′I

′

as the projection of rI to ~y

BCQ q′, hypertree decomposition 〈T, (Bn), (G′n)〉, and database instance I′ are of size
polynomial in the input.

Markus Krötzsch, 03 May 2022 Database Theory slide 14 of 20

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time (actually in LOGCFL).

Proof: Consider a BCQ q, a width-k hypertree decomposition 〈T, (Bn), (Gn)〉 of (the
hypergraph of) q, and a database instance I.

We first construct a modified BCQ q′, hypertree decomposition 〈T, (Bn), (G′n)〉 of q′, and
a database instance I′, such that I |= q iff I′ |= q′ and

⋃
G′n = Bn for all nodes n of T:

• For each node n and atom r(~x) ∈ Gn

• create a new relation r′ and let ~y be a list of all variables in ~x ∩ Bn

• replace r(~x) ∈ Gn by r′(~y) ∈ G′n
• define r′I

′

as the projection of rI to ~y

BCQ q′, hypertree decomposition 〈T, (Bn), (G′n)〉, and database instance I′ are of size
polynomial in the input.

Markus Krötzsch, 03 May 2022 Database Theory slide 14 of 20

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time (actually in LOGCFL).

Proof: Consider a BCQ q, a width-k hypertree decomposition 〈T, (Bn), (Gn)〉 of (the
hypergraph of) q, and a database instance I.

We first construct a modified BCQ q′, hypertree decomposition 〈T, (Bn), (G′n)〉 of q′, and
a database instance I′, such that I |= q iff I′ |= q′ and

⋃
G′n = Bn for all nodes n of T

:

• For each node n and atom r(~x) ∈ Gn

• create a new relation r′ and let ~y be a list of all variables in ~x ∩ Bn

• replace r(~x) ∈ Gn by r′(~y) ∈ G′n
• define r′I

′

as the projection of rI to ~y

BCQ q′, hypertree decomposition 〈T, (Bn), (G′n)〉, and database instance I′ are of size
polynomial in the input.

Markus Krötzsch, 03 May 2022 Database Theory slide 14 of 20

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time (actually in LOGCFL).

Proof: Consider a BCQ q, a width-k hypertree decomposition 〈T, (Bn), (Gn)〉 of (the
hypergraph of) q, and a database instance I.

We first construct a modified BCQ q′, hypertree decomposition 〈T, (Bn), (G′n)〉 of q′, and
a database instance I′, such that I |= q iff I′ |= q′ and

⋃
G′n = Bn for all nodes n of T:

• For each node n and atom r(~x) ∈ Gn

• create a new relation r′ and let ~y be a list of all variables in ~x ∩ Bn

• replace r(~x) ∈ Gn by r′(~y) ∈ G′n
• define r′I

′

as the projection of rI to ~y

BCQ q′, hypertree decomposition 〈T, (Bn), (G′n)〉, and database instance I′ are of size
polynomial in the input.

Markus Krötzsch, 03 May 2022 Database Theory slide 14 of 20

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time (actually in LOGCFL).

Proof: Consider a BCQ q, a width-k hypertree decomposition 〈T, (Bn), (Gn)〉 of (the
hypergraph of) q, and a database instance I.

We first construct a modified BCQ q′, hypertree decomposition 〈T, (Bn), (G′n)〉 of q′, and
a database instance I′, such that I |= q iff I′ |= q′ and

⋃
G′n = Bn for all nodes n of T:

• For each node n and atom r(~x) ∈ Gn

• create a new relation r′ and let ~y be a list of all variables in ~x ∩ Bn

• replace r(~x) ∈ Gn by r′(~y) ∈ G′n
• define r′I

′

as the projection of rI to ~y

BCQ q′, hypertree decomposition 〈T, (Bn), (G′n)〉, and database instance I′ are of size
polynomial in the input.

Markus Krötzsch, 03 May 2022 Database Theory slide 14 of 20

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time (actually in LOGCFL).

Proof: We claim that I |= q iff I′ |= q′.

(⇒) Every match of q on I is also a match of q′ on I′ since

• each atom in q′ is just a restriction of an atom in q, and

• the corresponding relation in I′ is a projection of the corresponding relation in I

(⇐) Every match of q′ in I′ is also a match of q in I since

• For every atom r(~x) of q, there is a node n of T with ~x ⊆ Bn (observed before)

• so r(~x) is an atom of q′ as well

Markus Krötzsch, 03 May 2022 Database Theory slide 15 of 20

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time (actually in LOGCFL).

Proof: We claim that I |= q iff I′ |= q′.

(⇒) Every match of q on I is also a match of q′ on I′ since

• each atom in q′ is just a restriction of an atom in q, and

• the corresponding relation in I′ is a projection of the corresponding relation in I

(⇐) Every match of q′ in I′ is also a match of q in I since

• For every atom r(~x) of q, there is a node n of T with ~x ⊆ Bn (observed before)

• so r(~x) is an atom of q′ as well

Markus Krötzsch, 03 May 2022 Database Theory slide 15 of 20

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time (actually in LOGCFL).

Proof: We claim that I |= q iff I′ |= q′.

(⇒) Every match of q on I is also a match of q′ on I′ since

• each atom in q′ is just a restriction of an atom in q, and

• the corresponding relation in I′ is a projection of the corresponding relation in I

(⇐) Every match of q′ in I′ is also a match of q in I since

• For every atom r(~x) of q, there is a node n of T with ~x ⊆ Bn (observed before)

• so r(~x) is an atom of q′ as well

Markus Krötzsch, 03 May 2022 Database Theory slide 15 of 20

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time (actually in LOGCFL).

Proof: We now construct an acyclic BCQ q̄, database Ī, and join tree J of q̄, such that
I′ |= q′ iff Ī |= q̄.

• The tree structure of J is the same as T
• For each node n of T:

– we define a corresponding atom rn(~x) of q̄ with variables ~x = Bn,
– let rn(~x) be the atom at the node of J that corresponds to n, and
– define rĪn to be the natural join of the atoms in G′n over I′

Observations:
– The outcome is polynomial in size
– We find I′ |= q′ iff Ī |= q̄

The overall claim now follows by applying Yannakakis’ Algorithm to answer the
query. �

Markus Krötzsch, 03 May 2022 Database Theory slide 16 of 20

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time (actually in LOGCFL).

Proof: We now construct an acyclic BCQ q̄, database Ī, and join tree J of q̄, such that
I′ |= q′ iff Ī |= q̄.

• The tree structure of J is the same as T
• For each node n of T:

– we define a corresponding atom rn(~x) of q̄ with variables ~x = Bn,
– let rn(~x) be the atom at the node of J that corresponds to n, and
– define rĪn to be the natural join of the atoms in G′n over I′

Observations:
– The outcome is polynomial in size
– We find I′ |= q′ iff Ī |= q̄

The overall claim now follows by applying Yannakakis’ Algorithm to answer the
query. �

Markus Krötzsch, 03 May 2022 Database Theory slide 16 of 20

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time (actually in LOGCFL).

Proof: We now construct an acyclic BCQ q̄, database Ī, and join tree J of q̄, such that
I′ |= q′ iff Ī |= q̄.

• The tree structure of J is the same as T
• For each node n of T:

– we define a corresponding atom rn(~x) of q̄ with variables ~x = Bn,
– let rn(~x) be the atom at the node of J that corresponds to n, and
– define rĪn to be the natural join of the atoms in G′n over I′

Observations:
– The outcome is polynomial in size
– We find I′ |= q′ iff Ī |= q̄

The overall claim now follows by applying Yannakakis’ Algorithm to answer the
query. �

Markus Krötzsch, 03 May 2022 Database Theory slide 16 of 20

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time (actually in LOGCFL).

Proof: We now construct an acyclic BCQ q̄, database Ī, and join tree J of q̄, such that
I′ |= q′ iff Ī |= q̄.

• The tree structure of J is the same as T
• For each node n of T:

– we define a corresponding atom rn(~x) of q̄ with variables ~x = Bn,
– let rn(~x) be the atom at the node of J that corresponds to n, and
– define rĪn to be the natural join of the atoms in G′n over I′

Observations:
– The outcome is polynomial in size
– We find I′ |= q′ iff Ī |= q̄

The overall claim now follows by applying Yannakakis’ Algorithm to answer the
query. �

Markus Krötzsch, 03 May 2022 Database Theory slide 16 of 20

Hypertree Width: Results

• Relationships of hypergraph tree-likeness measures:
generalised hypertree width ≤ hypertree width ≤ query width
(both inequalities might be < in some cases)

• Acyclic graphs have hypertree width 1

• Deciding “query width < k?” is NP-complete

• Deciding “generalised hypertree width < 4?” is NP-complete

• Deciding “hypertree width < k?” is polynomial (LOGCFL)

• Hypertree decompositions can be computed in polynomial time if k is fixed

Theorem 8.9: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time, and is complete for LOGCFL.

. . . but the degree of the polynomial time bound is greater than k

Markus Krötzsch, 03 May 2022 Database Theory slide 17 of 20

Hypertree Width: Results

• Relationships of hypergraph tree-likeness measures:
generalised hypertree width ≤ hypertree width ≤ query width
(both inequalities might be < in some cases)

• Acyclic graphs have hypertree width 1

• Deciding “query width < k?” is NP-complete

• Deciding “generalised hypertree width < 4?” is NP-complete

• Deciding “hypertree width < k?” is polynomial (LOGCFL)

• Hypertree decompositions can be computed in polynomial time if k is fixed

Theorem 8.9: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time, and is complete for LOGCFL.

. . . but the degree of the polynomial time bound is greater than k

Markus Krötzsch, 03 May 2022 Database Theory slide 17 of 20

Hypertree Width: Results

• Relationships of hypergraph tree-likeness measures:
generalised hypertree width ≤ hypertree width ≤ query width
(both inequalities might be < in some cases)

• Acyclic graphs have hypertree width 1

• Deciding “query width < k?” is NP-complete

• Deciding “generalised hypertree width < 4?” is NP-complete

• Deciding “hypertree width < k?” is polynomial (LOGCFL)

• Hypertree decompositions can be computed in polynomial time if k is fixed

Theorem 8.9: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time, and is complete for LOGCFL.

. . . but the degree of the polynomial time bound is greater than k

Markus Krötzsch, 03 May 2022 Database Theory slide 17 of 20

Hypertree Width: Results

• Relationships of hypergraph tree-likeness measures:
generalised hypertree width ≤ hypertree width ≤ query width
(both inequalities might be < in some cases)

• Acyclic graphs have hypertree width 1

• Deciding “query width < k?” is NP-complete

• Deciding “generalised hypertree width < 4?” is NP-complete

• Deciding “hypertree width < k?” is polynomial (LOGCFL)

• Hypertree decompositions can be computed in polynomial time if k is fixed

Theorem 8.9: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time, and is complete for LOGCFL.

. . . but the degree of the polynomial time bound is greater than k

Markus Krötzsch, 03 May 2022 Database Theory slide 17 of 20

Hypertree Width: Results

• Relationships of hypergraph tree-likeness measures:
generalised hypertree width ≤ hypertree width ≤ query width
(both inequalities might be < in some cases)

• Acyclic graphs have hypertree width 1

• Deciding “query width < k?” is NP-complete

• Deciding “generalised hypertree width < 4?” is NP-complete

• Deciding “hypertree width < k?” is polynomial (LOGCFL)

• Hypertree decompositions can be computed in polynomial time if k is fixed

Theorem 8.9: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time, and is complete for LOGCFL.

. . . but the degree of the polynomial time bound is greater than k

Markus Krötzsch, 03 May 2022 Database Theory slide 17 of 20

Hypertree Width: Results

• Relationships of hypergraph tree-likeness measures:
generalised hypertree width ≤ hypertree width ≤ query width
(both inequalities might be < in some cases)

• Acyclic graphs have hypertree width 1

• Deciding “query width < k?” is NP-complete

• Deciding “generalised hypertree width < 4?” is NP-complete

• Deciding “hypertree width < k?” is polynomial (LOGCFL)

• Hypertree decompositions can be computed in polynomial time if k is fixed

Theorem 8.9: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time, and is complete for LOGCFL.

. . . but the degree of the polynomial time bound is greater than k

Markus Krötzsch, 03 May 2022 Database Theory slide 17 of 20

Hypertree Width: Results

• Relationships of hypergraph tree-likeness measures:
generalised hypertree width ≤ hypertree width ≤ query width
(both inequalities might be < in some cases)

• Acyclic graphs have hypertree width 1

• Deciding “query width < k?” is NP-complete

• Deciding “generalised hypertree width < 4?” is NP-complete

• Deciding “hypertree width < k?” is polynomial (LOGCFL)

• Hypertree decompositions can be computed in polynomial time if k is fixed

Theorem 8.9: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time, and is complete for LOGCFL.

. . . but the degree of the polynomial time bound is greater than k

Markus Krötzsch, 03 May 2022 Database Theory slide 17 of 20

Hypertree Width via Games

There is also a game characterisation of (generalised) hypertree width.

The Marshals-and-Robber Game

• The game is played on a hypergraph

• There are k marshals, each controlling one hyperedge, and one robber located at a
vertex

• Otherwise similar to cops-and-robber game

• Special condition: Marshals must shrink the space that is left for the robber in
every turn!

Hypertree width ≤ k if and only if k marshals have a winning strategy
{ hypergraph is acyclic iff 1 marshal has a winning strategy

Markus Krötzsch, 03 May 2022 Database Theory slide 18 of 20

Hypertree Width via Logic

There is also a logical characterisation of hypertree width.

Loosely k-Guarded Logic

• Fragment of FO with ∃ and ∧

• Special form for all ∃ subexpressions:

∃x1, . . . , xn.(G1 ∧ . . . ∧ Gk ∧ ϕ)

where Gi are atoms (“guards”) and every variable xj from x1, . . . , xn co-occurs with
any free variable of ϕ in one Gi.

A query has hypertree width ≤ k if and only if it can be expressed as a loosely k-guarded
formula

{ tree queries correspond to loosely 1-guarded formulae
(“loosely 1-guarded” logic is better known as guarded logic and widely studied)

Markus Krötzsch, 03 May 2022 Database Theory slide 19 of 20

Summary and Outlook

Besides tree queries, there are other important classes of CQs that can be answered in
polynomial time:

• Bounded treewidth queries

• Bounded hypertree width queries

General idea: decompose the query in a tree structure

Other possible characterisations via games and logic

Open questions:

• What else is there besides query answering? { optimisation

• Measure expressivity rather than just complexity

Markus Krötzsch, 03 May 2022 Database Theory slide 20 of 20

