Complexity Theory

Exercise 11: Randomized Computation 2

30 January 2018

Definition. A PTM \mathcal{M} has expected runtime $f: \mathbb{N} \to \mathbb{R}$ if, for any input w, the expectation $E[T_w]$ of the number T_w of steps taken by \mathcal{M} on input w is $T_w \leq f(|w|)$.

Definition. ZPP is the class of all languages for which there is a PTM \mathcal{M} that

- returns the correct answer whenever it halts,
- has expected runtime f for some polynomial function f.

Exercise 11.1. Consider the following alternative definition of ZPP:

"A language L is in ZPP iff there exists some polynomial time PTM \mathcal{M} that answers Accept (A), Reject (R), or Inconclusive (I), and:

- For all $w \in \mathbf{L}$, the \mathcal{M} always returns A or I.
- For all $w \notin \mathbf{L}$, the \mathcal{M} always returns R or I .
- For all $w \in \Sigma^*$, $Pr[\mathcal{M}(w) = I] < \frac{1}{2}$."

Show that this definition is equivalent to the definition above.

Exercise 11.2. Prove that $NP \subseteq PP$.

Exercise 11.3. Prove Theorem 23.7 (see slide 18 of lecture 23).

Definition. A language **L** is in RL if there is an $O(\log n)$ -space PTM \mathcal{M} such that:

- For all $w \in \mathbf{L}$, then $Pr[\mathcal{M}(w) = 1] \ge \frac{2}{3}$.
- For all $w \notin \mathbf{L}$, then $Pr[\mathcal{M}(w) = 1] = 0$.

Exercise 11.4. Let **UPATH** be the set of all tuples $\langle G, s, t \rangle$ with G an undirected, and s and t are two connected vertices in G. Show that **UPATH** \in RL.