Prefix-vocabulary classes

$[\Pi, (p_1, p_2, \ldots), (f_1, f_2, \ldots)]_{(=)}$

- Π is a word over $\{\exists, \forall, \exists^*, \forall^*\}$, describing set of quantifier prefixes
- $p_m, f_m \leq \omega$ indicate how many relation and function symbols of arity *m* may occur
- presence or absence of = indicates whether the formulae may contain equality

Example: $[\exists^* \forall \exists^*, (\omega, 1), all]_=$

sentences $\exists x_1 \dots \exists x_m \forall y \exists z_1 \dots \exists z_n \varphi$ where φ is quantifier-free and

- contains at most one binary predicate, and no predicates of arity \geq 3,
- may contain any number of monadic predicates,
- may contain any number of function symbols of any arity,
- may contain equality.

The complete classification: undecidable cases

A: Pure predicate logic (without functions, without =)

- (1) $[\forall \exists \forall, (\omega, 1), (0)]$ (Kahr 1962)
- (2) $[\forall^3 \exists, (\omega, 1), (0)]$ (Surányi 1959)
- (3) $[\forall^*\exists, (0, 1), (0)]$ (Kalmár-Surányi 1950)
- (4) $[\forall \exists \forall^*, (0, 1), (0)]$ (Denton 1963)
- (5) $[\forall \exists \forall \exists^*, (0, 1), (0)]$ (Gurevich 1966)
- (6) $[\forall^3 \exists^*, (0, 1), (0)]$ (Kalmár-Surányi 1947)
- (7) $[\forall \exists^* \forall, (0, 1), (0)]$
- (8) $[\exists^* \forall \exists \forall, (0, 1), (0)]$
- (Kostyrko-Genenz 1964)
- (Surányi 1959)
- (9) $[\exists^*\forall^3\exists, (0, 1), (0)]$ (Surányi 1959)

The complete classification: undecidable cases

B: Classes with functions or equality

- (10) $[\forall, (0), (2)]_{=}$ (Gurevich 1976)
- (11) $[\forall, (0), (0, 1)]_{=}$ (Gurevich 1976)
- (12) $[\forall^2, (0, 1), (1)]$ (Gurevich 1969)
- (13) $[\forall^2, (1), (0, 1)]$ (Gurevich 1969)
- (14) $[\forall^2 \exists, (\omega, 1), (0)]_{=}$ (Goldfarb 1984)
- (15) $[\exists^*\forall^2\exists, (0, 1), (0)]_{=}$ (Goldfarb 1984)
- (16) $[\forall^2 \exists^*, (0, 1), (0)]_=$ (Goldfarb 1984)

The complete classification: decidable cases

(Exclude the trivial classes: finite prefix and finite relational vocabulary) A: Classes with the finite model property

- (1) $[\exists^*\forall^*, all, (0)]_=$ (Bernays, Schönfinkel 1928)
- $[\exists^*\forall^2\exists^*, all, (0)]$ (2)(Gödel 1932, Kalmár 1933, Schütte 1934)
- Monadic Fragment (3) (Löb 1967, Gurevich 1969) $[all, (\omega), (\omega)]$
- (4) $[\exists^*\forall\exists^*, all, all]$ (Gurevich 1973)
- (5) $[\exists^*, all, all]_=$ (Gurevich 1976)
- **B:** Classes with infinity axioms
 - (6) $[all, (\omega), (1)]_{=}$ (Rabin 1969)
 - $[\exists^* \forall \exists^*, all, (1)]$ (Shelah 1977) (7)

\mathcal{FO}^1 with counting, \mathcal{C}^1

 C^1 : extension of \mathcal{FO}^1 with *counting quantifiers*: $\exists^{\leq m}, \exists^{\geq m}, \exists^{=m}$ meaning that there exists *at most, at least, exactly m* elements satisfying some property.

 $\exists^{\geq 125} x \top \land \exists^{=50} x \operatorname{French}(x) \land \exists^{=36} x \operatorname{German}(x) \land \exists^{=36} x \operatorname{Spanish}(x)$

SATISFIABLE

 $\exists^{=122}x \top \land \exists^{=50}x \operatorname{French}(x) \land \exists^{=36}x \operatorname{German}(x) \land \exists^{=36}x \operatorname{Spanish}(x) \land \\ \forall x (\operatorname{French}(x) \lor \operatorname{German}(x) \lor \operatorname{Spanish}(x)) \land \\ \exists^{=38}x (\operatorname{French}(x) \land \neg \operatorname{German}(x)) \land \\ \exists^{=18}x (\operatorname{French}(x) \land \operatorname{Spanish}(x)) \land \\ \exists^{=21}x (\operatorname{German}(x) \land \operatorname{Spanish}(x)) \land \\ \exists^{=10}x (\operatorname{French}(x) \land \operatorname{German}(x) \land \operatorname{Spanish}(x)) \end{cases}$ SATISFIABLE !

\mathcal{FO}^1 with counting, \mathcal{C}^1

 C^1 : extension of \mathcal{FO}^1 with *counting quantifiers*: $\exists^{\leq m}, \exists^{\geq m}, \exists^{=m}$ meaning that there exists *at most, at least, exactly m* elements satisfying some property.

 $\exists^{\geq 125} x \top \land \exists^{=50} x \operatorname{French}(x) \land \exists^{=36} x \operatorname{German}(x) \land \exists^{=36} x \operatorname{Spanish}(x) \land \\ \forall x (\operatorname{French}(x) \lor \operatorname{German}(x) \lor \operatorname{Spanish}(x)) \\ \mathsf{NOT} \operatorname{SATISFIABLE}$

 $\exists^{=122}x \top \land \exists^{=50}x \operatorname{French}(x) \land \exists^{=36}x \operatorname{German}(x) \land \exists^{=36}x \operatorname{Spanish}(x) \land \\ \forall x (\operatorname{French}(x) \lor \operatorname{German}(x) \lor \operatorname{Spanish}(x)) \land \\ \exists^{=38}x (\operatorname{French}(x) \land \neg \operatorname{German}(x)) \land \\ \exists^{=18}x (\operatorname{French}(x) \land \operatorname{Spanish}(x)) \land \\ \exists^{=21}x (\operatorname{German}(x) \land \operatorname{Spanish}(x)) \land \\ \exists^{=10}x (\operatorname{French}(x) \land \operatorname{German}(x) \land \operatorname{Spanish}(x)) \\ \exists^{=10}x (\operatorname{French}(x) \land \operatorname{German}(x) \land \operatorname{Spanish}(x)) \\ \end{bmatrix}$

\mathcal{FO}^1 with counting, \mathcal{C}^1

 C^1 : extension of \mathcal{FO}^1 with *counting quantifiers*: $\exists^{\leq m}, \exists^{\geq m}, \exists^{=m}$ meaning that there exists *at most, at least, exactly m* elements satisfying some property.

 $\exists^{\geq 125} x \top \land \exists^{=50} x \operatorname{French}(x) \land \exists^{=36} x \operatorname{German}(x) \land \exists^{=36} x \operatorname{Spanish}(x) \land \\ \forall x (\operatorname{French}(x) \lor \operatorname{German}(x) \lor \operatorname{Spanish}(x)) \\ \operatorname{NOT} \mathsf{SATISFIABLE}$

 $\exists^{=122}x \top \land \exists^{=50}x \operatorname{French}(x) \land \exists^{=36}x \operatorname{German}(x) \land \exists^{=36}x \operatorname{Spanish}(x) \land \\ \forall x (\operatorname{French}(x) \lor \operatorname{German}(x) \lor \operatorname{Spanish}(x)) \land \\ \exists^{=38}x (\operatorname{French}(x) \land \neg \operatorname{German}(x)) \land \\ \exists^{=18}x (\operatorname{French}(x) \land \operatorname{Spanish}(x)) \land \\ \exists^{=21}x (\operatorname{German}(x) \land \operatorname{Spanish}(x)) \land \\ \exists^{=10}x (\operatorname{French}(x) \land \operatorname{German}(x) \land \operatorname{Spanish}(x)) \end{cases}$

\mathcal{FO}^1 with counting, \mathcal{C}^1

 C^1 : extension of \mathcal{FO}^1 with *counting quantifiers*: $\exists^{\leq m}, \exists^{\geq m}, \exists^{=m}$ meaning that there exists *at most, at least, exactly m* elements satisfying some property.

 $\exists^{\geq 125} x \top \land \exists^{=50} x \operatorname{French}(x) \land \exists^{=36} x \operatorname{German}(x) \land \exists^{=36} x \operatorname{Spanish}(x) \land \\ \forall x (\operatorname{French}(x) \lor \operatorname{German}(x) \lor \operatorname{Spanish}(x)) \\ \operatorname{NOT} \mathsf{SATISFIABLE}$

$$\exists^{=122}x \top \land \exists^{=50}x \operatorname{French}(x) \land \exists^{=36}x \operatorname{German}(x) \land \exists^{=36}x \operatorname{Spanish}(x) \land \\ \forall x (\operatorname{French}(x) \lor \operatorname{German}(x) \lor \operatorname{Spanish}(x)) \land \\ \exists^{=38}x (\operatorname{French}(x) \land \neg \operatorname{German}(x)) \land \\ \exists^{=18}x (\operatorname{French}(x) \land \operatorname{Spanish}(x)) \land \\ \exists^{=21}x (\operatorname{German}(x) \land \operatorname{Spanish}(x)) \land \\ \exists^{=10}x (\operatorname{French}(x) \land \operatorname{German}(x) \land \operatorname{Spanish}(x)) \end{cases}$$

STILL SATISFIABLE ???

Introduction and Outline Bac	ckground \mathcal{FO}^1	\mathcal{FO}^1 with counting	Conclusion
00000 00	0000 0000	00000000	00

Lemma (Normal form for C^1)

For every C^1 formula φ we can compute in polynomial time a formula φ' of the form

$$\varphi' := \bigwedge_{i=1}^m \exists^{\bowtie_i C_i} x \varphi_i(x),$$

satisfiable over the same domains as φ , where:

- ► $1 \le m \le |\varphi|$,
- each φ_i is quantifier free,
- each \bowtie_i is any of the symbols \leq , \geq or =, and
- *the* C_i *are either one or occur as a quantifier subscript in* φ *.*

Proof: similarly to \mathcal{FO}^1 we replace subformulas of the form $\exists \bowtie^C x \chi(x)$ with $\chi(x)$ -quantifier-free, by new predicate symbols and add appropriate definitions.

Introduction and Outline	Background	\mathcal{FO}^1	\mathcal{FO}^1 with counting	Conclusion
00000	0000	0000	0000000	00

Theorem (FMP for C^1)

Let φ be a formula in C^1 . If φ is satisfiable, then it is satisfiable over a WARNING! $\varphi = \exists x^{2^n}$ domain of size at most $2^{|\varphi|}$.

Proof.

By the normal form Lemma we may assume that $\overline{\varphi}$ has the form

$$\varphi := \bigwedge_{i=1}^m \exists^{\geq C_i} x \ \theta_i \quad \wedge \quad \bigwedge_{j=1}^{m'} \exists^{\leq D_j} x \ \chi_j$$

NP

し マ 4 雪 マ 4 画 マ 4 画 マ 4 回

Let $\mathfrak{A} \models \varphi$. For all $i \ (1 \le i \le m)$ select distinct elements $a_{i,1}, \ldots, a_{i,C_i} \in A$ satisfying θ_i in \mathfrak{A} . Let $B = \{a_{i,k} \mid 1 \le i \le m, 1 \le k \le C_i\}$, and let \mathfrak{B} be the restriction of \mathfrak{A} to *B*. Then $\mathfrak{B} \models \varphi$.

Corollary Goal : $SAT(\mathcal{C}^1)$ is in NEXPTIME.

Complexity of \mathcal{C}^1

Our aim is to prove

Theorem $SAT(C^1)$ is NP-complete. $H^{H}(a) = \{B, R\}$

We cannot improve the bound on the size of minimal models: the formula $\exists^{\geq n} x P x$ has only models of exponential size with respect to $|\varphi|$.

Definition

$t_{P_i}^{\hat{H}}(\alpha) = B(x) \wedge R(x) \wedge {}^{\eta}G(x)$

A 1-type of an element *a* in a model \mathfrak{A} is the conjunction of all literals satisfied by *a*. $\mathcal{L} = \{ B, R, C \}$

Idea: with each normal form φ we associate a system of linear inequalities \mathcal{E}_{φ} describing constraints on the number of distinct 1-types realized in some model of φ .

Systems of inequalities - Example

 $\varphi := \exists^{=122}x \top \land \exists^{=50}x \operatorname{French}(x) \land \exists^{=36}x \operatorname{German}(x) \land \exists^{=36}x \operatorname{Spanish}(x) \land \\ \forall x (\operatorname{French}(x) \lor \operatorname{German}(x) \lor \operatorname{Spanish}(x)) \land \\ \exists^{=38}x (\operatorname{French}(x) \land \neg \operatorname{German}(x)) \land \\ \exists^{=18}x (\operatorname{French}(x) \land \operatorname{Spanish}(x)) \land \\ \exists^{=21}x (\operatorname{German}(x) \land \operatorname{Spanish}(x)) \land \\ \exists^{=10}x (\operatorname{French}(x) \land \operatorname{German}(x) \land \operatorname{Spanish}(x)) \end{cases}$

Denote the 1-types over the signature French, German, Spanish by $t_{\emptyset}, t_F, t_G, t_S, t_{FG}, t_{FS}, t_{GS}, t_{FGS}$ (the letters in the subscript indicate the positive subformulas of the type). \mathcal{E}_{φ} contains:

 $x_{\emptyset} + x_F + x_G + x_S + x_{FG} + x_{FS} + x_{GS} + x_{FGS} = 122$ $x_F + x_{FG} + x_{FS} + x_{FGS} = 50$ $x_{\emptyset} = 0$ $x_F + x_{FS} = 38$

Systems of inequalities - Example

 $\varphi := \exists^{=122}x \top \land \exists^{=50}x \operatorname{French}(x) \land \exists^{=36}x \operatorname{German}(x) \land \exists^{=36}x \operatorname{Spanish}(x) \land \\ \forall x (\operatorname{French}(x) \lor \operatorname{German}(x) \lor \operatorname{Spanish}(x)) \land \\ \exists^{=38}x (\operatorname{French}(x) \land \neg \operatorname{German}(x)) \land \\ \exists^{=18}x (\operatorname{French}(x) \land \operatorname{Spanish}(x)) \land \\ \exists^{=21}x (\operatorname{German}(x) \land \operatorname{Spanish}(x)) \land \\ \exists^{=10}x (\operatorname{French}(x) \land \operatorname{German}(x) \land \operatorname{Spanish}(x)) \end{cases}$

$$x_{\emptyset} + x_F + x_G + x_S + x_{FG} + x_{FS} + x_{GS} + x_{FGS} = 122$$

$$x_F + x_{FG} + x_{FS} + x_{FGS} = 50$$

$$x_{\emptyset} = 0$$

$$x_F + x_{FS} = 38$$

Introduction and OutlineBackground \mathcal{FO}^1 \mathcal{FO}^1 with counting
0000Conclusion0000000000000000000

Systems of inequalities - Example

 $\varphi := \exists^{=122}x \top \land \exists^{=50}x \operatorname{French}(x) \land \exists^{=36}x \operatorname{German}(x) \land \exists^{=36}x \operatorname{Spanish}(x) \land \\ \forall x (\operatorname{French}(x) \lor \operatorname{German}(x) \lor \operatorname{Spanish}(x)) \land \\ \exists^{=38}x (\operatorname{French}(x) \land \neg \operatorname{German}(x)) \land \\ \exists^{=18}x (\operatorname{French}(x) \land \operatorname{Spanish}(x)) \land \\ \exists^{=21}x (\operatorname{German}(x) \land \operatorname{Spanish}(x)) \land \\ \exists^{=10}x (\operatorname{French}(x) \land \operatorname{German}(x) \land \operatorname{Spanish}(x)) \end{cases}$

$$x_{\emptyset} + x_{F} + x_{G} + x_{S} + x_{FG} + x_{FS} + x_{GS} + x_{FGS} = 122$$

$$x_{F} + x_{FG} + x_{FS} + x_{FGS} = 50$$

$$x_{\emptyset} = 0$$

$$x_{F} + x_{FS} = 38$$

$$x_{F} + x_{FS} = 38$$

Systems of inequalities - Example

 $\varphi := \exists^{=122}x \top \land \exists^{=50}x \operatorname{French}(x) \land \exists^{=36}x \operatorname{German}(x) \land \exists^{=36}x \operatorname{Spanish}(x) \land \\ \forall x (\operatorname{French}(x) \lor \operatorname{German}(x) \lor \operatorname{Spanish}(x)) \land \\ \exists^{=38}x (\operatorname{French}(x) \land \neg \operatorname{German}(x)) \land \\ \exists^{=18}x (\operatorname{French}(x) \land \operatorname{Spanish}(x)) \land \\ \exists^{=21}x (\operatorname{German}(x) \land \operatorname{Spanish}(x)) \land \\ \exists^{=10}x (\operatorname{French}(x) \land \operatorname{German}(x) \land \operatorname{Spanish}(x)) \end{cases}$

$$x_{\emptyset} + x_{F} + x_{G} + x_{S} + x_{FG} + x_{FS} + x_{GS} + x_{FGS} = 122$$

$$x_{F} + x_{FG} + x_{FS} + x_{FGS} = 50$$

$$x_{\emptyset} = 0$$

$$x_{F} + x_{FS} = 38$$

$$x_{F} + x_{FS} = 38$$

Systems of inequalities - Example

 $\varphi := \exists^{=122} x \top \land \exists^{=50} x \operatorname{French}(x) \land \exists^{=36} x \operatorname{German}(x) \land \exists^{=36} x \operatorname{Spanish}(x) \land \forall x (\operatorname{French}(x) \lor \operatorname{German}(x) \lor \operatorname{Spanish}(x)) \land \exists^{=38} x (\operatorname{French}(x) \land \neg \operatorname{German}(x)) \land \exists^{=18} x (\operatorname{French}(x) \land \operatorname{Spanish}(x)) \land \exists^{=21} x (\operatorname{German}(x) \land \operatorname{Spanish}(x)) \land \exists^{=10} x (\operatorname{French}(x) \land \operatorname{German}(x) \land \operatorname{Spanish}(x)))$

$$x_{\emptyset} + x_{F} + x_{G} + x_{S} + x_{FG} + x_{FS} + x_{GS} + x_{FGS} = 122$$

$$x_{F} + x_{FG} + x_{FS} + x_{FGS} = 50$$

$$x_{\emptyset} = 0$$

$$x_{F} + x_{FS} = 38$$

$$x_{F} + x_{FS} = 38$$

Introduction and Outline	Background 0000	\mathcal{FO}^1 0000	\mathcal{FO}^1 with counting 000000000	Conclusion 00
\mathcal{E}_{arphi} for our ex	XAMPLE			

$$x_{\emptyset} + x_F + x_G + x_S + x_{FG} + x_{FS} + x_{GS} + x_{FGS} = 122$$

$$x_F + x_{FG} + x_{FS} + x_{FGS} = 50$$

$$x_{\emptyset} = 0$$

$$x_F + x_{FS} = 38$$

$$x_G + x_{FG} + x_{GS} + x_{FGS} = 36$$

$$x_S + x_{FS} + x_{GS} + x_{FGS} = 36$$

$$x_{FS} + x_{FGS} = 18$$

$$x_{GS} + x_{FGS} = 21$$

$$x_{FGS} = 10$$

Lemma: \mathcal{E}_{φ} has a non-negative integer solution iff φ has a model.

Introduction and Outline	Background	\mathcal{FO}^1	\mathcal{FO}^1 with counting	Conclusion
00000	0000	0000	000000000	00

Systems of inequalities - formalized

$$\varphi := \bigwedge_{i=1}^m \exists^{\bowtie C_i} x \ \theta_i$$

Let $\sigma = \{P_1, \ldots, P_l\}$. A 1-type (over σ) is any of the formulas:

$$\pm P_1 x \wedge \ldots \wedge \pm P_l x$$

Let \mathfrak{A} be a finite σ -structure and t_1, \ldots, t_L be an enumeration of all 1-types, $L = 2^l$. We characterize \mathfrak{A} by the sequence of natural numbers $(\alpha_1, \ldots, \alpha_L)$ where $a_j = |\{a \in A : \mathfrak{A} \models t_j(a)\}|$. The system \mathcal{E}_{φ} contains for each conjunct $\exists^{\bowtie_i C_i} x \theta_i$ the inequality:

$$c_{i,1}x_1+\ldots+c_{i,L}x_L\bowtie_i C_i,$$

where $c_{i,j} = 1$ if the 1-type t_j entails θ_i and $c_{i,j} = 0$, otherwise.

Introduction and Outline	Background 0000	\mathcal{FO}^1 0000	\mathcal{FO}^1 with counting 000000000	Conclusion 00
COMPLEXITY	OF \mathcal{C}^1			

Lemma (Reduction property)

 \mathcal{E}_{φ} has a non-negative integer solution iff φ has a model. Moreover, every solution of \mathcal{E}_{φ} characterizes some model of φ .

The problem *integer programming* is as follows:

► given: a system *E* of linear equations and inequalities check whether *E* has a solution over N.

Theorem (Borosh and Treybig 1976) *Integer programming is in* NPTIME.

 \mathcal{E}_{φ} has *m* inequalities and $L = 2^{l}$ variables. Recall $m, l \leq |\varphi|$.

Introduction and OutlineBackground \mathcal{FO}^1 \mathcal{FO}^1 with countingConclusion000000000000000000000000

Optimal Complexity for \mathcal{C}^1

 $\varphi := \bigwedge_{i=1}^{m} \exists \bowtie^{C_i} x \ \theta_i; \quad \mathcal{E}_{\varphi} : m \text{ inequalities, } L = 2^l \text{ variables.}$

Lemma (linear algebra)

If \mathcal{E}_{φ} has a solution over \mathbb{N} , then \mathcal{E}_{φ} has a solution over \mathbb{N} with at most $m \log(L+1)$ non-zero entries.

Corollary

$$SAT(C^1) \in NP.$$
 polynomial in $|\varphi|$

Proof.

Let $C = \max\{C_i : 1 \le i \le m\}$. If $(\alpha_1, \ldots, \alpha_L)$ is a solution of \mathcal{E}_{φ} , then so is $(\beta_1, \ldots, \beta_L)$, where $\beta_j = \min(\alpha_j, C)$. The linear algebra Lemma allows one to first guess a polynomial number of non-zero variables and write down the system \mathcal{E}_{φ} only over these variables; since Integer Programming is in NPTIME, solutions of such systems can be guessed and verified in time bounded by a polynomial function of $|\varphi|$. Introduction and Outline

0000

 \mathcal{FO}^1 0000 \mathcal{FO}^1 with counting

Conclusion

REDUCTION TO INTEGER PROGRAMMING

Advantages:

 Useful for solving *simultaneously* SAT and FINSAT.
 We look for solutions over N (FINSAT) or over N ∪ {∞} (SAT), e.g.

$$x + 1 = x$$

has a solution $x = \infty$.

• Gives better (optimal) complexity bounds.

We will see more about this approach later in the course.

FO²: Two - variable fragment of FO NExp - complete x, yrelational symbols of arity 52 MO constants FMP Exponential model property computable in PTime

 $\forall y (S(y) \subset \exists x (A(x) \land B(y))) \equiv$ $\forall y \left(S(y) \rightarrow \exists x A(x) \land B(y) \right) \land \left(\exists x A(x) \land B(y) \right) \rightarrow S(y) =$ $= (\forall x \exists y S(\mathbf{x}) \rightarrow A(\mathbf{y}) \wedge B(\mathbf{y})) \wedge (\forall y (\exists x A(x) \wedge B(y)) \rightarrow S(y))$ $\forall y \ 7(-n-) \lor S(y)$ $\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & &$