
Prefix-vocabulary classes
[Π, (p1, p2, . . .), (f1, f2, . . .)](=)

• Π is a word over {∃,∀,∃∗,∀∗}, describing set of quantifier prefixes

• pm, fm ≤ ω indicate howmany relation and function symbols of
aritymmay occur

• presence or absence of = indicates whether the formulae may
contain equality

Example: [∃∗∀∃∗, (ω, 1), all]=

sentences ∃x1 . . .∃xm∀y∃z1 . . .∃znφ where φ is quantifier-free and
– contains at most one binary predicate, and no predicates of arity≥ 3,
– may contain any number of monadic predicates,
– may contain any number of function symbols of any arity,
– may contain equality.
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The complete classification: undecidable cases

A: Pure predicate logic (without functions, without =)

(1) [∀∃∀, (ω, 1), (0)] (Kahr 1962)

(2) [∀3∃, (ω, 1), (0)] (Surányi 1959)

(3) [∀∗∃, (0, 1), (0)] (Kalmár-Surányi 1950)

(4) [∀∃∀∗, (0, 1), (0)] (Denton 1963)

(5) [∀∃∀∃∗, (0, 1), (0)] (Gurevich 1966)

(6) [∀3∃∗, (0, 1), (0)] (Kalmár-Surányi 1947)

(7) [∀∃∗∀, (0, 1), (0)] (Kostyrko-Genenz 1964)

(8) [∃∗∀∃∀, (0, 1), (0)] (Surányi 1959)

(9) [∃∗∀3∃, (0, 1), (0)] (Surányi 1959)
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The complete classification: undecidable cases

B: Classes with functions or equality

(10) [∀, (0), (2)]= (Gurevich 1976)

(11) [∀, (0), (0, 1)]= (Gurevich 1976)

(12) [∀2, (0, 1), (1)] (Gurevich 1969)

(13) [∀2, (1), (0, 1)] (Gurevich 1969)

(14) [∀2∃, (ω, 1), (0)]= (Goldfarb 1984)

(15) [∃∗∀2∃, (0, 1), (0)]= (Goldfarb 1984)

(16) [∀2∃∗, (0, 1), (0)]= (Goldfarb 1984)
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The complete classification: decidable cases

(Exclude the trivial classes: finite prefix and finite relational vocabulary)

A: Classes with the finite model property

(1) [∃∗∀∗, all, (0)]= (Bernays, Schönfinkel 1928)

(2) [∃∗∀2∃∗, all, (0)] (Gödel 1932, Kalmár 1933, Schütte 1934)

(3) [all, (ω), (ω)] (Löb 1967, Gurevich 1969)

(4) [∃∗∀∃∗, all, all] (Gurevich 1973)

(5) [∃∗, all, all]= (Gurevich 1976)

B: Classes with infinity axioms

(6) [all, (ω), (1)]= (Rabin 1969)

(7) [∃∗∀∃∗, all, (1)]= (Shelah 1977)
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1 WITH COUNTING, C1

C
1: extension of FO

1 with counting quantifiers: 9m, 9�m, 9=m

meaning that there exists at most, at least, exactly m elements
satisfying some property.

9
�125x> ^ 9

=50x French(x) ^ 9
=36x German(x) ^ 9

=36x Spanish(x)

SATISFIABLE
9
=122x> ^ 9

=50x French(x) ^ 9
=36x German(x) ^ 9

=36x Spanish(x) ^
8x (French(x) _ German(x) _ Spanish(x)) ^
9
=38x (French(x) ^ ¬German(x)) ^

9
=18x (French(x) ^ Spanish(x)) ^

9
=21x (German(x) ^ Spanish(x)) ^

9
=10x (French(x) ^ German(x) ^ Spanish(x))

SATISFIABLE !
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STILL SATISFIABLE ???
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Lemma (Normal form for C1)
For every C

1 formula ' we can compute in polynomial time a formula
'0 of the form

'0 :=
m̂

i=1

9
./iCix'i(x),

satisfiable over the same domains as ', where:
I 1  m  |'|,
I each 'i is quantifier free,
I each ./i is any of the symbols , � or =, and
I the Ci are either one or occur as a quantifier subscript in '.

Proof: similarly to FO
1 we replace subformulas of the form

9
./Cx�(x) with �(x)-quantifier-free, by new predicate symbols

and add appropriate definitions.
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Theorem (FMP for C1)
Let ' be a formula in C

1. If ' is satisfiable, then it is satisfiable over a
domain of size at most 2|'|.

Proof.
By the normal form Lemma we may assume that ' has the form

' :=
m̂

i=1

9
�Cix ✓i ^

m0^

j=1

9
Djx �j.

Let A |= '. For all i (1  i  m) select distinct elements
ai,1, . . . , ai,Ci 2 A satisfying ✓i in A.
Let B = {ai,k | 1  i  m, 1  k  Ci}, and let B be the
restriction of A to B. Then B |= '.

Corollary
SAT(C1) is in NEXPTIME.

WARNING B. 4--3%2^-2

Goal : NI
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COMPLEXITY OF C
1

Our aim is to prove

Theorem
SAT(C1) is NP-complete.
We cannot improve the bound on the size of minimal models:
the formula 9

�nxPx has only models of exponential size with
respect to |'|.

Definition
A 1-type of an element a in a model A is the conjunction of all
literals satisfied by a.

Idea: with each normal form ' we associate a system of linear
inequalities E' describing constraints on the number of distinct
1-types realized in some model of '.

37
tp.la) - { B. 123

tp?fa)=B(x)^RCx)nGGd
c- { B. 12,6} !B,R , - G
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SYSTEMS OF INEQUALITIES - EXAMPLE

' := 9
=122x> ^ 9

=50x French(x) ^9=36x German(x) ^ 9
=36x Spanish(x) ^

8x (French(x) _ German(x) _ Spanish(x)) ^

9
=38x (French(x) ^ ¬German(x)) ^

9
=18x (French(x) ^ Spanish(x)) ^

9
=21x (German(x) ^ Spanish(x)) ^

9
=10x (French(x) ^ German(x) ^ Spanish(x))

Denote the 1-types over the signature French,German, Spanish
by t;, tF, tG, tS, tFG, tFS, tGS, tFGS (the letters in the subscript
indicate the positive subformulas of the type). E' contains:

x; + xF + xG + xS + xFG + xFS + xGS + xFGS = 122
xF + xFG + xFS + xFGS = 50

x; = 0
xF + xFS = 38
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E' FOR OUR EXAMPLE

x; + xF + xG + xS + xFG + xFS + xGS + xFGS = 122
xF + xFG + xFS + xFGS = 50

x; = 0
xF + xFS = 38

xG + xFG + xGS + xFGS = 36
xS + xFS + xGS + xFGS = 36

xFS + xFGS = 18
xGS + xFGS = 21

xFGS = 10

Lemma: E' has a non-negative integer solution iff ' has a
model.
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SYSTEMS OF INEQUALITIES - FORMALIZED

' :=
m̂

i=1

9
./Cix ✓i

Let � = {P1, . . . ,Pl}. A 1-type (over �) is any of the formulas:

±P1x ^ . . . ^±Plx

Let A be a finite �-structure and t1, . . . , tL be an enumeration of
all 1-types, L = 2l. We characterize A by the sequence of natural
numbers (↵1, . . . ,↵L) where aj =| {a 2 A : A |= ti(a)} |.
The system E' contains for each conjunct 9./iCix ✓i the
inequality:

ci,1x1 + . . .+ ci,LxL ./i Ci,

where ci,j = 1 if the 1-type tj entails ✓i and ci,j = 0, otherwise.

&
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COMPLEXITY OF C
1

Lemma (Reduction property)
E' has a non-negative integer solution iff ' has a model. Moreover,
every solution of E' characterizes some model of '.

The problem integer programming is as follows:
I given: a system E of linear equations and inequalities

check whether E has a solution over N.

Theorem (Borosh and Treybig 1976)
Integer programming is in NPTIME.

E' has m inequalities and L = 2l variables. Recall m, l  |'|.

' :=
m̂

i=1

9
./Cix ✓i

tell 1⇒,
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OPTIMAL COMPLEXITY FOR C
1

' :=
Vm

i=1 9
./Cix ✓i; E' : m inequalities, L = 2l variables.

Lemma (linear algebra)
If E' has a solution over N, then E' has a solution over N with at
most m log(L + 1) non-zero entries.

Corollary
SAT(C1)2 NP.

Proof.
Let C = max{Ci : 1  i  m}. If (↵1, . . . ,↵L) is a solution of E',
then so is (�1, . . . ,�L), where �j = min(↵j,C).
The linear algebra Lemma allows one to first guess a
polynomial number of non-zero variables and write down the
system E' only over these variables; since Integer Programming
is in NPTIME, solutions of such systems can be guessed and
verified in time bounded by a polynomial function of |'|.

a
polynomial in Ipl
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REDUCTION TO INTEGER PROGRAMMING

Idea: Depending on the logic:
identify (finitely many types of) building blocks of a
potential model and connecting conditions for them,
describe them in a succinct way by a set of (in)equalities.

Advantages:
I Useful for solving simultaneously SAT and FINSAT.

We look for solutions over N (FINSAT) or over N [ {1}

(SAT), e.g.
x + 1 = x

has a solution x = 1.
I Gives better (optimal) complexity bounds.

We will see more about this approach later in the course.

C
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FOZ : Two - variable fragment of FO

x
, y NE xp - complete

relational symbols of arity £2 FMI
no constants

Exponential
model property

Def . Normal forms for 5-02
( Scott ) n

y = V-x-vyynAV-xfyyicx.us)
T in ¥Éfer -freequantifier

[ see
computable

in
PTime
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