
Evaluating the Generality of
Disjunctive Model Faithful Acyclicity

on OWL ontologies

Lukas Gerlach

Knowledge-Based Systems Group
Technische Universität Dresden, Germany

Abstract. The chase is a well-studied, sound and complete algorithm
that is used in different variants as a basis for reasoning tasks over (dis-
junctive) existential rules. Since termination of the chase is undecidable,
acyclicity notions, i.e. sufficient conditions for termination, like model
faithful acyclicity (MFA) for the skolem chase and restricted model faith-
ful acyclicity (RMFA) for the restricted chase are introduced. The re-
cently developed acyclicity notion disjunctive model faithful acyclicity
(DMFA) for the disjunctive skolem chase promises improvements for de-
tecting termination over existing notions like MFA in theory. We further
know that RMFA captures DFMA while RMFA itself is not sound for the
disjunctive skolem chase.
We evaluate the generality of DMFA in practice compared to MFA and
RMFA on rule sets that we obtain from real-world OWL ontologies in
the Oxford ontology repository (OXFD) and the dataset of the OWL
reasoner evaluation 2015 (ORE15). Our results show that DMFA achieves
practical improvements over MFA that narrow the gap towards RMFA.
Our findings motivate further research regarding the disjunctive skolem
chase in general and the development of sufficient conditions for non-
termination of the disjunctive skolem chase in particular.

Evaluation of the Generality of DMFA

We evaluate our previously defined notion of DMFA [4] on real-world OWL
ontologies. Recall that we are particularly interested in the disjunctive skolem
chase since, while terminating on less rule sets than the restricted chase, it
promises to be more efficiently implementable in practice, for example using
ASP solvers with lazy grounding. In general, this work can be considered an
extension to our theoretical results and we assume the reader to be familiar with
the definitions and results of [4] but we also point explicitly to important results
at some points.

We use the Oxford ontology repository (OXFD)1 containing 797 ontologies
and the dataset of the OWL Reasoner Evaluation 2015 (ORE15)2 [5,6], which
also contains some ontologies from OXFD and features 1920 ontologies in total.
1 OXFD - https://www.cs.ox.ac.uk/isg/ontologies/
2 ORE15 - https://zenodo.org/record/18578

https://www.cs.ox.ac.uk/isg/ontologies/
https://zenodo.org/record/18578


We perform the following steps for the evaluation:

1. Normalize the OWL ontologies.
2. Translate the normalized ontologies into sets of disjunctive existential rules.
3. Check if the obtained rules sets are MFA, DMFA, and RMFA, respectively.

The core part of our evaluation is the check itself (3). Since real-world datasets
featuring existential rules rarely exist, translated OWL ontologies promise to
produce results that are practically more relevant. Therefore, we use steps (1)
and (2) to obtain suitable disjunctive existential rule sets for the check in (3).
We tailor steps (1) and especially (2) towards this purpose to a large extent, e.g.
we ignore all ABox-axioms and also some other axioms already in the transla-
tion. In general, we treat classes and properties as unary predicates and binary
predicates, respectively.

Normalization and Translation into Disjunctive Existential Rules

We normalize the OWL ontologies using an existing tool.3 The normalizer drops
all axioms that do not carry logical meaning.4 That is, we remove all Declaration
axioms and Annotation axioms. Additionally, we drop all axioms featuring
Datatypes or DataProperties. The normalizer flattens all remaining axioms
such that we obtain only axioms of the form in Figure 1. By that we produce
a conservative extension of the original ontology; that is, every model of the
normalized ontology is also a model for the original ontology and every model
of the original ontology can be extended to a model of the normalized ontol-
ogy by providing suitable interpretations for the freshly introduced classes and
properties.

For the translation, we use our own implementation, which is based on the
Rulewerk library,5 which uses OWLAPI6 in turn. To be more precise, we use a
fork of Rulewerk7 where we add basic support for disjunctions in rules. However,
we do not add support for reasoning with disjunctive rules in Rulewerk. For
further implementation details, refer to the repository of the translation project.8

In the translation, we refine the normalized ontologies at first according to
the following steps. We remove all ABox-axioms since we do not need to consider
them for the DMFA-check. Additionally, we remove all tautological axioms, e.g.
axioms of the form ⊥ v A or A v >. Since DMFA does not support equality, we
omit all axioms of type (5) and (6). In later work, we may use an appropriate
axiomatization as suggested in [3] to be able to treat equality properly.

3 Ontology Normalizer - https://github.com/dcarralma/OntologyNormalizer
4 Axiom Overview - https://www.w3.org/TR/owl2-syntax/#Axioms
5 Rulewerk - https://github.com/knowsys/rulewerk
6 OWLAPI - https://github.com/owlcs/owlapi
7 Rulewerk Fork - https://github.com/monsterkrampe/rulewerk/tree/feature/
disjunctions-in-rules

8 Translation - https://gitlab.com/m0nstR/owl-to-disjunctive-existential-
rules-converter

2

https://github.com/dcarralma/OntologyNormalizer
https://www.w3.org/TR/owl2-syntax/#Axioms
https://github.com/knowsys/rulewerk
https://github.com/owlcs/owlapi
https://github.com/monsterkrampe/rulewerk/tree/feature/disjunctions-in-rules
https://github.com/monsterkrampe/rulewerk/tree/feature/disjunctions-in-rules
https://gitlab.com/m0nstR/owl-to-disjunctive-existential-rules-converter
https://gitlab.com/m0nstR/owl-to-disjunctive-existential-rules-converter


A1 u · · · uAn v B A1(x) ∧ · · · ∧An(x)→ B(x) (1)
A v B1 t · · · tBn′ A(x)→ B1(x) ∨ · · · ∨Bn′(x) (2)
A v ∀R.B A(x) ∧R(x, y)→ B(y) (3)
A v ≥mR.B (see Example 1) (4)
A v ≤m′R.B (requires equality; dropped) (5)
A v { a1, . . . , al } (requires equality; dropped) (6)
R1 ◦ · · · ◦Rk v S R1(x1, x2) ∧ · · · ∧Rk(xk, xk+1)→ S(x1, xk+1) (7)
R u S v ⊥ R(x, y) ∧ S(x, y)→ ⊥ (8)
A v ∃R.Self A(x)→ R(x, x) (9)
∃R.Self v A R(x, x)→ A(x) (10)

Here, A,A1, . . . , An, B,B1, . . . , Bn′ are classes, R,R1, . . . , Rk, S are (inverse) proper-
ties, a1, . . . , al are individuals, and m,m′ are integers ≥ 0.

Fig. 1. Normal Form and corresponding Disjunctive Existential Rules

We also ensure that each predicate only occurs with a single arity in the
translated rule set by adding appropriate suffixes to class names and property
names in the implementation but we do not take this into account here for
brevity. This is necessary, since OWL Full allows to reuse the same name for a
class and a predicate within an ontology.

We translate all remaining axioms into existential rules one by one as pre-
sented in Figure 1. Ideas like this have also been applied to similar normal forms
[2]. The handling for axioms of type (4) is a little more involved and we illustrate
it using the following example.

Example 1. For A v ≥3R.B, we derive the following rules:

R1(x, y)→ R(x, y)

A(x)→ ∃z1.(R1(x, z1) ∧B(z1)) R2(x, y)→ R(x, y)

A(x)→ ∃z2.(R2(x, z2) ∧B(z2)) R3(x, y)→ R(x, y)

A(x)→ ∃z3.(R3(x, z3) ∧B(z3)) R1(x, y) ∧R2(x, y)→ ⊥
R(x, y)→ R1(x, y) ∨R2(x, y) ∨R3(x, y) R2(x, y) ∧R3(x, y)→ ⊥

R1(x, y) ∧R3(x, y)→ ⊥

Here, R1, R2, and R3 are fresh predicates that, intuitively speaking, form a
partitioning of R. The necessity of the rule R(x, y) → R1(x, y) ∨ R2(x, y) ∨
R3(x, y) can be object to discussion. If another translated axiom also derives
facts for R, then the rule ensures that this is also reflected in R1, R2, or R3,
respectively. Though, omitting this rule does not seem to cause issues for our
matter. It is only for the special case m = 1 that this would make a difference
namely considering termination of the restricted chase. But for m = 1, we can
simplify the translation using a single rule A(x) → ∃z.R(x, z) ∧ B(z) anyway.
Still, to keep faithful to the intuition, we include the rule in the translation. N

3



Beside the axioms in Figure 1, the normalized ontologies may also contain
SWRL rules and we usually ignore such ontologies. However, if an ontology only
contains SWRL rules that are essentially Datalog rules containing only class and
property atoms, then we translate these rules in the obvious way. Also note that
only few of the ontologies that we consider contain SWRL rules at all.

In some rules we use ⊥ to indicate inconsistencies. Also, ⊥ and > may oc-
cur in normalized axioms that are not tautological. In practice, we represent
⊥ and > by the special predicates OWLNothing and bottomObjectProperty
or OWLThing and topObjectProperty, respectively, in spirit of the correspond-
ing OWL axioms. Still, for our matter these are just plain unary and binary
predicates. We also treat these predicates like any other predicate, i.e. with-
out special semantic meaning. Since we remove tautological axioms, we can be
sure that no fact is ever derived from OWLNothing or bottomObjectProperty.
We axiomatize the semantics of > using auxiliary rules. For each non-special
unary predicate P or binary predicate R, we add the rule P (x)→ OWLThing(x)
or R(x, y) → OWLThing(x) ∧ OWLThing(y), respectively. Additionally, we add a
single rule OWLThing(x) ∧ OWLThing(y)→ topObjectProperty(x, y).

Altogether, the translation already gives good hints where to expect differ-
ences for MFA, DMFA, and RMFA in the actual evaluation. The only axioms that
introduce existential rules are those of type (4). For RMFA these may be blocked
but for DMFA (and MFA) this is never the case. Furthermore, only axioms of
type (2) and (4) introduce disjunctive rules and especially we never obtain rules
that contain both disjunctions and existentially quantified variables. In particu-
lar, the disjunctive rules for (4) do not influence DMFA. Broadly speaking, this
is because their head predicates only occur in other auxiliary rules in (4) and
they do not lead to the derivation of new facts in this case. Therefore it does not
matter if they are blocked in the DMFA-check. Hence, only rules for the axioms
of type (2) may impact DMFA in comparison to MFA since blocking for these
rules may prevent other rules from being applied later on.

Implementation of the DMFA-Check

The general outline of the DMFA implementation9 is presented in Algorithm 1.
As for the translation, the implementation is based on Rulewerk, which allows us
to parse the rule sets obtained from the translation step and also offers bindings
to VLog, which we use for Datalog reasoning. In essence, for a given rule set
R, we compute DMFA(R) (see Definition 50 in [4]) step by step starting on the
critical instance of R and checking for cyclic terms in each iteration.

To perform the DMFA-check, we alternate between the computation of the
Datalog closure of the current fact set in newFactsFromVlogDatalogClosure and
the application of all triggers for non-Datalog rules that are active and not
blocked w.r.t. the latest Datalog closure result in newFactsFromUnblockedNon-
DatalogRules. Note that the latter function does not apply rules exhaustively.
Both functions keep track of already computed facts internally such that we
9 DMFA-Implementation https://gitlab.com/m0nstR/dmfa-checker

4

https://gitlab.com/m0nstR/dmfa-checker


Algorithm 1: dmfaCheck
Input: Ruleset R
Output: Is R DMFA?

1 ∆F := criticalInstance(R)
2 vlogReasoner := VlogReasoner(R) // uses VLog bindings of Rulewerk
3 exisReasoner := ExistentialReasoner(R)
4 while ∆F 6= ∅ do

// keeps track of already computed facts internally
5 ∆F := ∆F ∪ vlogReasoner.newFactsFromVlogDatalogClosure(∆F )

// non-exhaustive application
// keeps track of already computed facts internally

6 ∆F := exisReasoner.newFactsFromUnblockedNonDatalogRules(∆F )
7 if hasCyclicTerm(∆F ) then
8 return False
9 end

10 end
11 return True

only need to pass newly derived facts to them. For newFactsFromUnblockedNon-
DatalogRules, we achieve a semi-naive implementation such that each possible
application is done at most once. Note that this does not necessarily prevent the
recomputation of some existing facts but we filter existing facts before returning
the result.

For the Datalog closure in VLog, a similar approach does not seem to be
feasible since the VLog bindings do not offer to reuse reasoning results if the
underlying facts change. Inside newFactsFromVlogDatalogClosure, we pass only
the initial facts and facts that are obtained from non-Datalog rules to VLog. By
that, facts from Datalog rules are recomputed in each iteration but in practice
this seems to be faster in some cases than passing already computed Datalog
facts to VLog. From the VLog bindings, we then only query the facts that feature
predicates that also occur in non-Datalog rules. We keep track of these resulting
facts internally and filter existing ones out before returning the Datalog closure.

Theoretically, VLog also supports existential rules without disjunctions but it
uses nulls instead of functional terms. We could derive function names from the
nulls in VLog but the blocked check that is used in the DMFA-check also relies
heavily on the structure of the functional terms, which we cannot obtain from
VLog directly. Therefore, we implement the existential reasoning part ourselves
in newFactsFromUnblockedNonDatalogRules.

We can also implement a check for RMFA instead of DMFA by altering the
blocked check. Broadly speaking, we only need to replace a ⊆-check by a |=-
check. This is also not too hard to do in practice. For the theoretical definitions,
refer to Definitions 47 and 59 in [4], respectively, as well as [1].

We also want to note that we vary from the formal definition a bit in the
implementation of the blocked check since it needs to run fairly frequently during
the DMFA/RMFA-check. For existential rules that contain disjunctions, we have

5



to run the blocked check for every individual substitution. If we check RMFA
instead of DMFA, we even need to do this for non-disjunctive existential rules. For
DMFA, non-disjunctive rules cannot be blocked. To simplify the blocked check for
a trigger 〈ρ, θ〉, we check if we already have sk(Hk

ρ )θ ⊆ F or F |= ∃~zk.Hk
ρ (~xk, ~zk),

respectively, where F is the set of facts that have been derived up until this point
in the DMFA/RMFA-check and Hk

ρ denotes the k-th disjunct in the head of ρ. If
this is not the case, then the trigger 〈ρ, θ〉 cannot be blocked. Without going too
much into detail here, this follows from a similar argument as for the proof of
Theorem 49 in [4] for both DMFA and RMFA. Intuitively, for a trigger 〈ρ, θ〉, the
set of facts F that have been derived up until this point in the DMFA/RMFA-
check subsumes the set of facts that is required to derive the terms in the body
of ρ with θ applied. If sk(Hk

ρ )θ ⊆ F or F |= ∃~zk.Hk
ρ (~xk, ~zk) is already false

for F , then the corresponding check will also be false for the subsumed fact set
used in the blocked check. Otherwise, we perform the blocked check as formally
described for DMFA [4] or RMFA [1], respectively.

Note that for the Datalog closure in the blocked check, we do not use the
VLog implementation but our own Datalog reasoner implementation, which is
just a special case of the one that we already use for the existential rule reasoning
except that we apply rules in the Datalog closure exhaustively. Since the fact
sets are rather small in the blocked check, the overhead of calling VLog seems to
be bigger for some rule sets than the arguably less performant implementation
of ours.

Apart from computing Datalog closures, VLog also allows for checking MFA
and RMFA directly but it has no support for disjunctions. We can still use
the method of replacing disjunctions by conjunctions to run the native VLog
checks on the rule sets. Since MFA is not defined for disjunctive existential rules,
we would need to do this replacement anyway. This way of checking MFA for
disjunctive existential rules is sound according to Proposition 37 in [4]. For RMFA
however, this replacement may yield unsound results as shown in the following
example.

Example 2. Consider the rule set R that consists of the following rules:

P (x, y)→ ∃z.P (y, z)
P (x, y)→ P (y, x) ∨ P (x, x)

We have that R is not terminating w.r.t. the restricted chase, e.g. for the fact set
{P (a, b) } if we prioritize applications of the first rule. If we replace disjunctions
by conjunctions, the second rule becomes a Datalog rule so it is prioritized over
the first one by definition [1] and the modified rule set is terminating. This
also reflects in the RMFA check since the blocked check takes Datalog rules into
account. Hence, the modified rule set is RMFA although the original rule set is
not terminating w.r.t. the restricted chase. N

Evaluation Results

After normalizing and translating OXFD and ORE15, we obtain 789 and 1888
rule sets according to Figure 2, respectively, that we can run our actual checks

6



initially after
Normalization

after
Translation

at least one
∃-rule and ∨-rule

all checks
finished

OXFD 797 791 789 137 103

ORE15 1920 1910 1888 613 514

Fig. 2. Number of Datasets

on. A minority of the ontologies was not successfully normalized or translated
due to parsing errors, unsupported SWRL rules or resource limitations. For the
evaluation, we are mainly interested in rule sets that contain disjunctions, since
we know that MFA and DMFA exactly coincide for rule sets without disjunctions
according to Proposition 57 in [4]. Additionally, we omit rule sets that do not
feature existentially quantified variables since those rule sets are trivially MFA,
DMFA, and RMFA. For each rule set we run the checks for MFA, DMFA, and
RMFA one after the other with timeouts for each individual check. For example,
if the check for MFA reaches its timeout or if an error occurs, e.g. if the program
ran out of memory, the later checks for DMFA and RMFA are skipped. We take
this shortcut here since our goal is to evaluate the generality of DMFA and not
the performance of our implementation in the first place. Therefore, we only
take those rule sets into account for which all checks produce a result. By that,
we obtain results for 103 and 514 rule sets for OXFD and ORE15, respectively.
The majority of unsuccessful checks happen for large rule sets with more than
1000 rules with existentially quantified variables. For very few rule sets, parsing
errors occurred which are fixable by hand but we decided against this to make it
easier to reproduce the results. For an overview of the number of datasets after
each step, refer to Figure 2.

Before going into the main results of the evaluation, we want to briefly discuss
the non-disjunctive rule sets as well. We know that RMFA is more general on
(non-disjunctive) rule sets than MFA/DMFA. As a sanity check for the correctness
of our implementation, we also run checks on some of the non-disjunctive rule
sets. By that for OXFD, we find that out of 508 rule sets that we checked, 47 rule
sets are not MFA/DMFA and 7 of these are RMFA. For ORE15, we find that out
of 579 rule sets that we checked, 47 rule sets are not MFA/DMFA and 8 of these
are RMFA. This is worthwhile to keep in mind as a magnitude when looking at
the main evaluation results in the following.

For the main part of the evaluation that takes only the disjunctive rule sets
into account, the numbers of rule sets that are MFA, DMFA, and RMFA, respec-
tively, can be found in Figures 3 and 4. The results are grouped by the number
of rules with disjunctions (columns) and the number of rules with existentially
quantified variables (rows). Each cell contains the number of rule set that are
MFA, DMFA, and RMFA in that order separated by slashes as well as the total
number of rule sets that fit in this cell in parentheses. For example in Figure 3,
the top-left cell states that of the 15 rule sets with 1-9 rules with disjunctions and
1-9 rules with existentially quantified variables, 14 rule sets where MFA, DMFA,

7



#∃

#∨
1-9 10-19 20+

1-9 14 / 14 / 14 (15) 3 / 4 / 4 (4) 0 / 0 / 0 (0)

10-99 2 / 2 / 3 (13) 3 / 9 / 9 (11) 2 / 2 / 2 (12)

100-999 0 / 2 / 2 (7) 3 / 3 / 3 (3) 2 / 2 / 3 (32)

1000+ 1 / 1 / 1 (1) 0 / 0 / 0 (0) 1 / 1 / 1 (5)

31 / 40 / 42 (103)

Fig. 3. OXFD Evaluation Results #MFA/#DMFA/#RMFA (#total)

and RMFA, respectively. We also marked the cells with the biggest difference
of MFA and DMFA in bold. Below the table, we sum up the results from the
individual cells.

For OXFD, we see in Figure 3 that DMFA marks exactly 9 more rule sets as
terminating than MFA. Also, RMFA only marks 2 more rule sets as terminating
than DMFA. To go more into detail, 6 of the rule sets that are DMFA but not MFA
result from BioPAX10 ontologies and the 3 others result from OBO foundry11

ontologies. We have to note here that the rule sets obtained from the BioPAX
ontologies are very similar or to a large extent even identical except for fresh
class names introduced during the normalization. In the original dataset, the
ontologies only seem to differ in the used ABox-axioms, which are removed during
the normalization and translation. Hence, we essentially count the same rule set
multiple times so we have to be careful in generalizing our findings here. However,
the use of multiple instances of the BioPAX ontologies in OXFD may also hint
towards the practical importance of these particular ontologies.

For ORE15 in Figure 4, the difference between MFA and DMFA and between
DMFA and RMFA is 18 each, so DMFA is right in the middle between MFA and
RMFA in this case. In total, we can see that the vast majority of rule sets is
not even RMFA in this dataset. Similar to OXFD, 11 of the 18 rule sets that are
DMFA but not MFA are again BioPAX ontologies of which some are essentially
identical for the same reasons as for OXFD. Also note that some of the BioPAX
ontologies from OXFD reoccur in ORE15. As for OXFD, we have to be careful in
generalizing our results here. However, since the ORE15 dataset is bigger and the
rule sets that are not MFA but DMFA are more diverse, the numbers for ORE15
seem to give a better reflection of the overall generality of DMFA.

In the bigger picture, for increasing numbers of disjunctive rules and rules
with existentially quantified variables, we can see that much fewer rule sets
are marked as terminating even for more sophisticated acyclicity notions like
RMFA. This trend is most significant for an increased number of rules with
existentially quantified variables. Compared to the non-disjunctive rule sets, we

10 BioPAX - http://www.biopax.org/
11 OBO Foundry - http://www.obofoundry.org/

8

http://www.biopax.org/
http://www.obofoundry.org/


#∃

#∨
1-9 10-19 20+

1-9 32 / 32 / 33 (40) 4 / 4 / 4 (4) 4 / 4 / 4 (10)

10-99 33 / 36 / 41 (82) 8 / 20 / 28 (55) 2 / 3 / 4 (25)

100-999 3 / 4 / 4 (182) 1 / 2 / 3 (17) 1 / 1 / 3 (73)

1000+ 1 / 1 / 1 (7) 0 / 0 / 0 (6) 0 / 0 / 0 (13)

89 / 107 / 125 (514)

Fig. 4. ORE15 Evaluation Results #MFA/#DMFA/#RMFA (#total)

also see that the percentage of rule sets that are MFA, DMFA, or RMFA is
significantly smaller for the disjunctive part. One may expect that an increased
number of disjunctions increases the difference between MFA and DMFA since
more rules can potentially be blocked. We can observe this for some cells but we
cannot see a significant trend here. Still, it would be interesting to see if such a
trend manifests in bigger datasets.

Beside the numbers that we see in the evaluation, we also want to investigate
the structure of specific rule sets that are not MFA but DMFA or not DMFA but
RMFA, respectively. For rule sets that are not MFA but DMFA, we pick one of the
BioPAX ontologies from OXFD as an example and present a slightly simplified
version of the structure that produces a cycle in the following example.

Example 3. Consider the following rules:

Evidence(x)→ ∃z.ConfidenceProp(x, z)
ConfidenceProp(x, y)→ Confidence(y)

Confidence(x)→ Xref(x)
Xref(x)→ Evidence(x) ∨ Confidence(x)

Evidence(x) ∧ Confidence(x)→ OWLNothing(x)

It seems like Evidence and Confidence are supposed to form a partitioning of
Xref. Looking at the original ontology12 this is not quite true but it suffices as
an intuition. Every Evidence is connected to a Confidence, which should itself
not be an Evidence according to the intuition. For DMFA this works since the
forth rule is blocked in this case and will not derive Evidence for the existing
Confidence. For MFA however, every Confidence is also an Evidence which leads
to a cycle. N

We can expect similar behavior for similar structures in other rule sets as well.
However, the case that two members of a disjoint union are connected by an
existential rule may be less common.
12 http://krr-nas.cs.ox.ac.uk/ontologies/UID/00007.owl

9

http://krr-nas.cs.ox.ac.uk/ontologies/UID/00007.owl


For rule sets that are not DMFA but RMFA, we also have a concrete example13
that we want to discuss in the following.

Example 4. Consider the following rules:

Sibling(x)→ ∃z.hasSibling(z, x) ∧ Person(z)
Person(x) ∧ hasSibling(x, y)→ Sibling(y)

Sibling(x)→ Person(x)
hasSibling(x, y)→ hasSibling(y, x)

The intuitive meaning of the rules from top to bottom is as follows. For every
Sibling s there is a Person that has s as its sibling. If a Person has a sibling
s′ then s′ is indeed a Sibling. Additionally, every Sibling is also a Person. Note
that the first three rules so far do not introduce cycles. Only with the forth rule,
stating the symmetry of the hasSibling relation, every Person introduced by the
first rule is now turned into a Sibling by the second rule. This does not only lead
to the fact that this rule set is not DMFA but it is even non-terminating w.r.t.
the disjunctive skolem chase. On the other hand, the restricted chase is “smart”
enough not to introduce a new Person in rule one once the symmetry is satisfied
and RMFA also catches this. N

It is a valuable insight that RMFA cannot benefit from the disjunctions in
Example 4. Instead, the generality of RMFA comes solely from the existential
rules here. We also see that the rule set from Example 4 is non-terminating w.r.t.
the disjunctive skolem chase and we think that this is likely also the case for
many of the other rule sets that are not DMFA but RMFA because the structures
that may introduce cycles seem to be rather limited by the translation. It could
be interesting to investigate other methods of translation and how they affect
termination of different chase variants as well as acyclicity notions.

Conclusion

The evaluation results for OXFD and ORE15 show that DMFA can improve upon
MFA on rule sets featuring disjunctions not only in theory but also in practice.
For these rule sets, we achieve to narrow the gap between MFA and RMFA. Still,
we do not know how tight DMFA really is for the disjunctive skolem chase. We
know that DMFA cannot surpass its upper bound RMFA but RMFA itself is not
sound for the disjunctive skolem chase so it may mark rule sets as terminating
that in fact do not terminate w.r.t. the disjunctive skolem chase. On the other
hand, note that there also exist rule sets that are not RMFA but terminate w.r.t.
the disjunctive skolem chase. However, for rule sets with a higher number of dis-
junctive and existential rules, we see that only very few of them are in fact RMFA,
which still suggests that a significate number of these are non-terminating. Our
concrete observations in Example 4 strengthen this conjecture by showing that
we encounter rule sets in the given datasets that are RMFA but do in fact not
13 http://krr-nas.cs.ox.ac.uk/ontologies/UID/00114.owl

10

http://krr-nas.cs.ox.ac.uk/ontologies/UID/00114.owl


terminate w.r.t. the disjunctive skolem chase. Still, we cannot be sure about this
without evaluating sufficient conditions for non-termination.

Since we can hope for efficient implementations of the disjunctive skolem
chase in practice, e.g. using ASP solvers with lazy grounding, our results further
motivate the usage of the disjunctive skolem chase in practice and encourage
research in this direction. Further research topics include a performance centric
evaluation of DMFA, e.g. by investigating the empirical validity of some of our
implementation decisions in more detail, as well as other translation methods
that may impact different acyclicity notions or even termination of some chase
variants. In particular, the influence of equality in the translation may be a good
starting point possibly by using an appropriate axiomatization for equality. Our
work especially motivates the investigation of cyclicity notions, i.e. sufficient
conditions for non-termination, for the disjunctive skolem chase. By that we can
hope to tighten the space for rule sets of which we do not know if they are
terminating w.r.t. the disjunctive skolem chase or not.

Acknowledgements

I want to thank Prof. Dr. Markus Krötzsch for the possibility of conducting the
evaluation of DMFA in the Knowledge-Based Systems Research Group at the TU
Dresden as a follow up project of the theoretical considerations. Special thanks to
both David Carral, Ph.D. and Prof. Dr. Markus Krötzsch for the supervision of
this project in general and for very helpful discussions and remarks in particular.

11



References

1. Carral, D., Dragoste, I., Krötzsch, M.: Restricted chase (non)termination for exis-
tential rules with disjunctions. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI 2017. pp. 922–928.
ijcai.org (2017)

2. Carral, D., Krötzsch, M.: Rewriting the description logic ALCHIQ to disjunctive
existential rules. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020. pp. 1777–1783. ijcai.org
(2020), scheduled for July 2020, Yokohama, Japan, postponed due to the Corona
pandemic.

3. Carral, D., Urbani, J.: Checking chase termination over ontologies of existential rules
with equality. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. pp.
2758–2765. AAAI Press (2020)

4. Gerlach, L.: Don’t repeat yourself: Termination of the skolem chase on disjunc-
tive existential rules (2020), (student thesis available at https://iccl.inf.tu-
dresden.de/web/Thema3509)

5. Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The OWL
reasoner evaluation (ORE) 2015 resources. In: Groth, P., Simperl, E., Gray, A.J.G.,
Sabou, M., Krötzsch, M., Lécué, F., Flöck, F., Gil, Y. (eds.) The Semantic Web -
ISWC 2016 - 15th International Semantic Web Conference, Kobe, Japan, October
17-21, 2016, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9982,
pp. 159–167 (2016)

6. Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The OWL
reasoner evaluation (ORE) 2015 competition report. J. Autom. Reason. 59(4), 455–
482 (2017)

12

https://iccl.inf.tu-dresden.de/web/Thema3509
https://iccl.inf.tu-dresden.de/web/Thema3509

	Evaluating the Generality ofDisjunctive Model Faithful Acyclicityon OWL ontologies

