Complexity Theory Exercise 2: Time Complexity, PTime, and NP

Exercise 2.1. A language $\mathbf{L} \in \mathbf{P}$ is complete for \mathbf{P} under polynomial-time reductions if $\mathbf{L}' \leq_p \mathbf{L}$ for every $\mathbf{L}' \in \mathbf{P}$. Show that every language in \mathbf{P} except \emptyset and Σ^* is complete for \mathbf{P} under polynomial-time reductions.

Exercise 2.2. Show that P is closed under concatenation and star.

Exercise 2.3. An undirected graph G = (V, E) is *connected* iff for every two nodes $x, y \in V$ there exist edges $e_0, e_1, \ldots, e_n \in E$ with (1) $x \in e_0$, (2) $y \in e_n$, and (3) $e_{i-1} \cap e_i \neq \emptyset$ ($0 < i \leq n$).

CONNECTED := { $\langle G \rangle | G$ is a connected undirected graph}

Show that **CONNECTED** is in P.

Exercise 2.4. Let $G_i = (V_i, E_i)$ (i = 1, 2) be directed graphs, i. e., $E \subseteq V \times V$.

A bijective function $\iota : V_1 \to V_2$ is called a graph isomorphism between G_1 and G_2 if $(v_1, v_2) \in E_1$ iff $(\iota(v_1), \iota(v_2)) \in E_2$. G_1 and G_2 are said to be isomorphic iff there is a graph isomorphism between G_1 and G_2 .

Iso := { $\langle G, H \rangle \mid G$ and H are isomorphic}

A non-empty relation $R \subseteq V_1 \times V_2$ is called a *graph bisimulation* between G_1 and G_2 iff for every $(v_1, v_2) \in R$,

1. if $(v_1, w_1) \in E_1$, then there is a node $w_2 \in V_2$ with $(v_2, w_2) \in E_2$ and $(w_1, w_2) \in R$, and

2. if $(v_2, w_2) \in E_2$, then there is a node $w_1 \in V_1$ with $(v_1, w_1) \in E_1$ and $(w_1, w_2) \in R$.

 G_1 and G_2 are said to be *bisimilar* iff there is a graph bisimulation between G_1 and G_2 .

BISIMILARITY := { $\langle G, H \rangle \mid G$ and H are bisimilar}

Show that **Iso** and **BISIMILARITY** are in NP.

Exercise 2.5. We recall some definitions.

- Given some language L. $L \in CONP$ if and only if $\overline{L} \in NP$.
- L is CONP-hard if and only if $L' \leq_p L$ for every $L' \in CONP$.
- L is coNP-complete if and only if $L \in \text{coNP}$ and L is coNP-hard.

Show that if any CONP-complete problem is in NP, then NP = CONP.

Exercise 2.6. If G is an undirected graph, a *vertex cover* of G is a subset of the nodes where every edge of G touches one of those nodes. The vertex cover problem asks whether a graph contains a vertex cover of a specified size.

VERTEX-COVER = { $\langle G, k \rangle | G$ is an undirected graph that has a *k*-node vertex cover}

Show that **VERTEX-COVER** is NP-complete.

Try to find a reduction from 3-Sat **Hiut:**