

THEORETISCHE INFORMATIK UND LOGIK

23. Vorlesung: Gödels 1. Unvollständigkeitssatz

Markus Krötzsch Lehrstuhl Wissensbasierte Systeme

TU Dresden, 9. Juli 2018

Der 1. Gödelsche Unvollständigkeitssatz

Was Gödel in 1931 zeigte war grob gesagt folgendes:

Satz: Jedes konsistente formale System, in dem eine gewisse Menge elementarer Arithmetik dargestellt werden kann, ist unvollständig in Bezug auf die Beweisbarkeit von Sätzen der elementaren Arithmetik:

Es gibt solche Sätze, die weder bewiesen noch widerlegt werden können.

Um das zu verstehen müssen wir einiges klären:

- Was ist ein formales System?
- Was ist konsistent?
- Was ist "eine gewisse Menge elementarer Arithmetik"?
- Was genau bedeutet unvollständig hier?

Kurt Gödel

Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 2 von 27

Formale Systeme

Ein formales System ist ganz allgemein ein Beweissystem, bestehend aus:

- Einer Sprache, in der Aussagen formuliert werden können
- Einer Menge von Axiomen, d.h. als wahr vorgegebener Aussagen
- Einem effektiven Verfahren mit dem man aus gegebenen Aussagen neue Schlüsse ableiten kann

Beweisbare Sätze heißen Theoreme des formalen Systems

Anmerkung: Auch die Axiome sind Theoreme, wenn auch mit sehr kurzen Beweisen

Beispiel: Die Prädikatenlogik liefert formale Systeme:

- Sprache: Die Sprache der prädikatenlogischen Sätze
- Axiome: Eine gegebene Theorie, z.B. die Theorie der kommutativen Monoide
- Ableitungsverfahren: Resolutionskalkül

Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 3 von 27 Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 4 von 27

Formale Systeme: Wichtige Eigenschaften

Formale Systeme können viele Formen haben – zum Beispiel beinhalten sie auch jedes System, in dem mathematische Beweise formal geführt werden können (z.B. ZFC: Mengenlehre nach Zermelo-Fraenkel mit Auswahlaxiom).

Die Details sind relativ egal, aber wir wollen doch ein paar Anforderungen stellen:

Grundeigenschaft Formaler Systeme: Die Menge der Theoreme eines formalen Systems ist rekursiv aufzählbar (semi-entscheidbar).

Negation: Für jeden Satz S gibt es in der Sprache eines formalen Systems auch einen negierten Satz $\neg S$, so dass gilt:

- S ist genau dann ein Theorem, wenn $\neg \neg S$ ein Theorem ist.
- Wenn S und $\neg S$ Theoreme sind, dann sind alle Sätze Theoreme.

Markus Krötzsch, 9. Juli 2018

Theoretische Informatik und Logik

Folie 5 von 27

Verwechslungsgefahr

Achtung! Es gibt zwei Arten von Vollständigkeit:

- Negationsvollständigkeit: die syntaktische Eigenschaft, dass jeder Satz bewiesen oder widerlegt werden kann
- Semantische Vollständigkeit: die semantische Eigenschaft, dass jede Tautologie bewiesen werden kann

Gödels Vollständigkeitssatz bezieht sich auf die zweite Art von Vollständigkeit, Gödels Unvollständigkeitssätze auf die erste!

Eigenschaften formaler Systeme

Syntaktische Eigenschaften:

- Konsistenz: Ein formales System ist konsistent, wenn es keinen Satz S gibt, so dass S und ¬S beweisbar sind.
- Vollständigkeit: Ein formales System ist (negations-)vollständig, wenn für jeden Satz S entweder S oder ¬S beweisbar sind.

Wenn man z.B. in Prädikatenlogik arbeitet, dann kann man Mengen von Sätzen eine Semantik (Modelltheorie) geben und weitere Eigenschaften fordern:

Semantische Eigenschaften:

- Korrektheit: Ein formales System ist korrekt, wenn jeder beweisbare Satz auch semantisch wahr (tautologisch) ist.
- Vollständigkeit: Ein formales System ist (semantisch) vollständig, wenn jeder semantisch wahre Satz beweisbar ist.

Markus Krötzsch, 9. Juli 2018

Theoretische Informatik und Logik

Folie 6 von 27

Beispiele

Beispiel: Angenommen ein Satz F kann in einem formalen System S bewiesen werden und wir wissen, dass S konsistent ist. Folgt daraus, dass F semantisch wahr ist?

Beispiel: Aus der Logik bekannte Zusammenhänge gelten auch hier:

- Ein Satz F ist genau dann in $\mathcal S$ beweisbar wenn $\mathcal S$ bei Hinzunahme des Axioms $\neg F$ inkonsistent wird.
- Weder F noch $\neg F$ sind in S beweisbar gdw. S sowohl bei Hinzunahme von F als auch bei Hinzunahme von $\neg F$ konsistent ist

Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 7 von 27 Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 8 von 27

Eine gewisse Menge Arithmetik

Satz: Jedes konsistente formale System, in dem eine gewisse Menge elementarer Arithmetik dargestellt werden kann, ist unvollständig in Bezug auf die Beweisbarkeit von Sätzen der elementaren Arithmetik:

Es gibt solche Sätze, die weder bewiesen noch widerlegt werden können.

Was ist mit "eine gewisse Menge elementarer Arithmetik" gemeint?

- Das System sollte Sätze über Beziehungen von konkreten natürlichen Zahlen ausdrücken können
- Dabei sollten die elementaren Operationen +, und × sowie die Relation = unterstützt werden
- Das System sollte bezüglich der gängigen Semantik dieser arithmetischen Ausdrucksmittel korrekt sein

Oft kommt man mit noch weniger aus, aber diese Eigenschaften reichen in der Regel

Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 9 von 27

Gödels Beweis des 1. Satzes

Arithmetik in Prädikatenlogik

Man kann die benötigte Menge von Arithmetik durch eine prädikatenlogische Theorie axiomatisieren:

- Konstante 0
- Funktionssymbole s (unär, "Nachfolger"), + und × (binär, infix)
- Prädikatssymbol ≈ (binär, infix)

Darstellung natürlicher Zahlen als Nachfolger von 0:

$$0 = 0, s(0) = 1, s(s(0)) = 2, ...$$

Sätze zur Axiomatisierung der Grundrechenarten:

- $\forall x. \neg (s(x) \approx 0)$
- $\forall x.(x + \mathbf{0} \approx x)$
- $\forall x, y.(x + s(y) \approx s(x + y))$
- $\forall x.(x \times 0 \approx 0)$
- $\forall x, y.(x \times s(y) \approx (x \times y) + x$
- . . . (mit obigem kann man schon einiges ausrechnen, aber es gibt noch mehr zu sagen, z.B. eine komplette Gleichheitstheorie)

Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 10 von 27

Idee

Wie kann man zeigen, dass irgendein Satz weder beweisbar noch widerlegbar ist?

Ein einfaches Szenario:

- Annahme: Sie glauben nur Dinge, die wirklich wahr sind, und was Sie glauben ist konsistent.
- Behauptung: Es gibt wahre Sätze, die sie nicht glauben.
- Beweis: "Ich mache jetzt eine wahre Behauptung, die Sie mir nicht glauben" ist eine Behauptung, die Sie nicht glauben können:
 - Wenn Sie sie glauben, dann muss sie wahr sein, d.h. Sie glauben sie nicht das wäre inkonsistent

Also glauben Sie sie nicht. Dann ist die Behauptung wahr.

Behauptungen dieser Form nennt man Gödelsätze

Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 11 von 27 Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 12 von 27

Gödelsätze formal machen

Natürliche Sprache eignet sich nicht für stichhaltige Argumente, da sie keine klar definierte mathematische Interpretation hat (z.B. kann ich sagen "Dieser Satz ist eine Lüge")

Gödels Beweis (vereinfacht) für formale Systeme:

- Annahme: Das gegebene System ist korrekt und konsistent.
- Behauptung: Es gibt wahre Sätze, die nicht beweisbar sind.
- Beweis: Gödel definiert eine mathematische Formel F, welche ausdrückt:

"F ist wahr genau dann wenn F nicht beweisbar ist."

- Wenn F beweisbar wäre, dann ist es wahr und also nicht beweisbar Widerspruch
- Also ist F nicht beweisbar, und damit wahr

Markus Krötzsch, 9. Juli 2018

Theoretische Informatik und Logik

Folie 13 von 27

Quotes und Quines

Eine verwandte Form von Selbstbezüglichkeit ist auch in der Informatik bekannt:

Ein Quine ist ein Programm, das bei einer leeren Eingabe seinen eigenen Quellcode ausgibt.

Auch hier denkt man vielleicht zuerst, dass dies nicht möglich wäre, weil das Programm dazu seinen eigenen Code enthalten müsste – eine unendliche Rekursion . . .

Es ist aber gar nicht so schwer:

Beispiel: Gib den folgenden Satz zweimal aus, beim zweiten mal in Anführungszeichen: "Gib den folgenden Satz zweimal aus, beim zweiten mal in Anführungszeichen: "

Gödels Zahlen

"F ist wahr genau dann wenn F nicht beweisbar ist."

Die Herausforderung ist, solche Gödelsätze zu definieren: Offenbar kann man F nicht als Teilausdruck in F verwenden!

Gödel definiert daher nummerische Bezeichner für Formeln – sogenannte Gödelzahlen – und kodiert seine Sätze anders:

 $_{m}F$ ist wahr genau dann wenn $_{m}$ in der Menge der Gödelzahlen nicht beweisbarer Sätze vorkommt."

wobei m die Gödelzahl für F ist.

Man muss dafür eine Menge technischer Ergebnisse zeigen, z.B.

- Ein solcher Satz F, welcher seine eigene Gödelzahl verwendet, existiert überhaupt
- Die Menge der Gödelzahlen nicht beweisbarer Sätze ist arithmetisch darstellbar

Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 14 von 27

Gödels 1. Satz berechnungstheoretisch zeigen

Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 15 von 27 Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 16 von 27

Unentscheidbarkeit und Unvollständigkeit

Wir wissen:

Die Theoreme formaler Systeme sind rekursiv aufzählbar, d.h. semi-entscheidbar

 Speziell gilt das auch für die Theoreme, die sich auf arithmetische Aussagen beziehen

Es gibt Mengen (Sprachen), die nicht semi-entscheidbar sind

• Zum Beispiel das Nicht-Halteproblem von Turingmaschinen

→ Falls man Instanzen des Wortproblems einer nicht-semientscheidbaren Sprache auf die Wahrheit arithmetischer Sätze reduzieren könnte, dann würde daraus schon Unvollständigkeit folgen

Markus Krötzsch, 9. Juli 2018

Theoretische Informatik und Logik

Folie 17 von 27

Eine erste Beweisidee

Mögliche Strategie zum Beweis von Gödels 1. Satz:

- Definiere eine Gödel-Nummerierung für alle Wörter die eine Turingmaschine kodieren
- Finde arithmetische Ausdrücke auf diesen Zahlen, mit denen man konkrete syntaktische Eigenschaften der kodierten TM testen kann
- Finde arithmetische Formeln, die ausdrücken, dass die kodierte TM auf dem leeren Wort hält

→ Programmiere eine universelle TM in Arithmetik

(Machbar, aber aufwändig!)

Zahlen vs. Sprachen

Berechnungstheorie handelt von Sprachen, d.h. Mengen von Wörtern

Es ist leicht möglich, jedem Wort eine natürliche Zahl zuzuordnen – man spricht von einer Gödelzahl für das Wort

(dies ist möglich, da die Menge aller Wörter abzählbar ist, siehe Formale Systeme WS 2017/2018; natürlich gibt es viele mögliche Zuordnungen).

Wir folgern:

- Es gibt eine Eins-zu-eins-Beziehung zwischen formalen Sprachen (über einem gegebenen Alphabet) und Mengen natürlicher Zahlen
- Wir können also von der Entscheidbarkeit/Unentscheidbarkeit einer Menge natürlicher Zahlen sprechen
- Es gibt unentscheidbare Mengen natürlicher Zahlen, z.B. die Menge der Zahlen, welche ein Wort enummieren, das eine Turingmaschine kodiert, welche auf der leeren Eingabe hält

Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 18 von 27

Ein schweres arithmetisches Problem

Die Aufgabe wird viel einfacher, wenn man ein unentscheidbares Problem verwendet, welches sich schon auf arithmetische Aussagen bezieht.

Eine Diophantische Gleichung ist ein arithmetischer Ausdruck der Form $D[x_1,\ldots,x_n]=0$, wobei $D[x_1,\ldots,x_n]$ ein Funktionsterm über den Symbolen $x_1,\ldots,x_n,0,s,+,-,\times$ ist. Eine Lösung der Gleichung ist eine Liste von natürlichen Zahlen z_1,\ldots,z_n , für welche die Gleichung stimmt.

Beispiele für diophantische Gleichungen:

- y = 3x + 5, d.h. $3 \times x y + 5 = 0$ (unendlich viele Lösungen)
- $x^2 + y^2 = -1$, d.h. $x \times x + y \times y + 1 = 0$ (keine Lösung)
- $x^2 = 2y^4 1$ (genau zwei Lösungen: x = y = 1 und x = 239 & y = 13)
- $(x+1)^2 + (y+1)^2 = (z+1)^2$ (unendlich viele Lösungen; vgl. Phytagoreische Tripel)
- $(x+1)^4 + (y+1)^4 = (z+1)^4$ (keine Lösung; Fermatsche Vermutung)

Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 19 von 27 Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 20 von 27

Hilberts Zehntes und MRDP

Hilberts 10. Problem: Man finde ein Verfahren um zu ermitteln, ob eine gegebene diophantische Gleichung lösbar ist.

Wir wissen heute, dass dies unentscheidbar ist:

- Jede diophantische Gleichung $D[x_1, \ldots, x_n, y] = 0$ definiert eine Menge natürlicher Zahlen $\{k \mid D[x_1, \ldots, x_n, k] = 0 \text{ ist lösbar}\}$
- Eine so definierte Menge heißt diophantische Menge
- Alle diophantischen Mengen sind rekursiv aufzählbar: teste systematisch alle möglichen Belegungen von D[x1,...,xn,y] = 0 und gib bei jeder gefundenen Lösung den Wert von y aus

Satz (Matiyasevich/Robinson/Davis/Putnam): Jede rekursiv aufzählbare Menge natürlicher Zahlen ist diophantisch.

Intuitiv: diophantische Gleichungen sind Turing-mächtig!

Markus Krötzsch, 9. Juli 2018

Theoretische Informatik und Logik

Folie 21 von 27

Beweis von Gödels 1. Unvollständigkeitssatz

Sei S ein formales System, welches das folgende erfüllt:

- (1) S ist konsistent
- (2) Jede wahre Aussage der Form $D[z_1, \ldots, z_n] = 0$ für eine beliebige diophantische Gleichung und konkrete Zahlenwerte z_1, \ldots, z_n ist beweisbar (einfach durch Ausrechnen des Wertes)
- (3) Sätze der Form $\exists x_1, \dots, x_n.D[x_1, \dots, x_n] = 0$ sind darstellbar und alle beweisbaren Sätze dieser Form sind korrekt

Wegen (1) und (2) gilt: $\mathcal S$ beweist nur wahre Sätze der Form

$$\neg \exists x_1, \dots, x_n. D[x_1, \dots, x_n] = 0$$

Aber: S kann nicht alle wahren Sätze dieser Form beweisen:

- Die Menge aller beweisbaren Sätze dieser Form ist semi-entscheidbar
- Die Menge aller wahren Sätze dieser Form ist nicht semi-entscheidbar

Mit (3) gilt: Es gibt Sätze F der Form $\exists x_1, \dots, x_n.D[x_1, \dots, x_n] = 0$, so dass weder F noch $\neg F$ bewiesen wird.

Konsequenzen

Wir folgern:

- Hilberts 10. Problem ist wirklich unentscheidbar:
 - Wäre es entscheidbar, dann könnte man jede diophantische Menge entscheiden (Kontrollfrage: Wie?)
 - Wir wissen aber bereits, dass es rekursiv aufzählbare Mengen natürlicher Zahlen gibt, die nicht entscheidbar sind
- Nicht-Lösbarkeit diophantischer Gleichungen ist nicht semi-entscheidbar:
 - Lösbarkeit ist bereits semi-entscheidbar
 - Wenn Nicht-Lösbarkeit auch semi-entscheidbar wäre, dann wäre beides entscheidbar

Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 22 von 27

Der 1. Gödelsche Unvollständigkeitssatz

Satz (Gödel, 1931): Jedes konsistente formale System, in dem eine gewisse Menge elementarer Arithmetik dargestellt werden kann, ist unvollständig in Bezug auf die Beweisbarkeit von Sätzen der elementaren Arithmetik.

Relevante Begriffe:

- Formales System: Ein implementierbares Verfahren, mit dem man Theoreme endlich beweisen kann
- Konsistent: Man kann niemals eine Aussage und ihr Gegenteil beweisen.
- Gewisse Menge Arithmetik: Kodierung konkreter natürlicher Zahlen und deren korrekte Addition, Subtraktion, Multiplikation und Vergleich
- Unvollständig: Es gibt Sätze, die weder bewiesen noch widerlegt werden können

Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 23 von 27 Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 24 von 27

Beispiele

Beispiel: Natürliche Zahlen und einfache Rechenregeln können mit einer prädikatenlogischen Theorie definiert werden. Mit Resolution kann man daraus korrekte neue Schlüsse ziehen. Laut Gödels erstem Satz kann man auf diese Art aber niemals alle wahren Aussagen der Arithmetik beweisen, außer wenn die Theorie widersprüchlich ist.

Keine prädikatenlogische Theorie kann die elementare Arithmetik vollständig beschreiben.

Beispiel: Die moderne Mathematik basiert auf der Mengenlehre von Zermelo-Fraenkel unter Hinzunahme des Auswahlaxioms. Dieses formale System heißt ZFC. Es ist klar definiert, was ein korrekter mathematischer Beweis in ZFC ist. Laut Gödels erstem Satz gibt es also wahre Aussagen über elementare Arithmetik, die nicht in ZFC bewiesen werden können.

Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 25 von 27

Bildrechte

Folie 2: Fotografie um 1926, gemeinfrei

Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 27 von 27

Zusammenfassung und Ausblick

Formale Systeme, die elementare Rechnungen auf natürlichen Zahlen ausführen können sind entweder inkonsistent oder (negations-)unvollständig

Diese Unvollständigkeit hat damit zu tun, dass nicht alle Mengen natürlicher Zahlen Turing-erkennbar sind

Was erwartet uns als nächstes?

- Gödels zweiter Unvollständigkeitssatz, Zusammenfassung und Ausblick
- 2. Repetitorium
- Probeklausur

Markus Krötzsch, 9. Juli 2018 Theoretische Informatik und Logik Folie 26 von 27