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Abstract. Argumentation can be understood as a dynamic reasoning process,
i.e. it is in particular useful to know the effects additional information causes
with respect to a certain semantics. Accordingly, one can identify the information
which does not contribute to the results no matter which changes are performed.
In other words, we are interested in so-called kernels of frameworks, where two
frameworks with the same kernel are then “immune” to all kind of newly added
information in the sense that they always produce an equal outcome. The con-
cept of strong equivalence for argumentation frameworks captures this intuition
and has been analyzed for several semantics which are all based on the concept
of admissibility. Other important semantics have been neglected so far. To close
this gap, we give strong equivalence results with respect to naive, stage and cf2
extensions, and we compare the new results with the already existing ones. Fur-
thermore, we analyze strong equivalence for symmetric frameworks and discuss
local equivalence, a certain relaxation of strong equivalence.

1 Introduction

The field of abstract argumentation became increasingly popular within the last decades
and is nowadays identified as an important tool in various applications as inconsistency
handling (see e.g. [2]) and decision support (see e.g. [1]). One of the key features ab-
stract argumentation provides is a clear separation between logical content and non-
classical reasoning (which is solely done over abstract entities, the arguments A, and a
certain relationship R between those entities; forming so-called argumentation frame-
works (AFs) of the form (A,R)). For abstract argumentation, many semantics have
been proposed to evaluate such frameworks including Dung’s famous original seman-
tics [8], but also other semantics like the cf2 semantics [4] or the stage semantics [13]
received attention lately. The aim of argumentation semantics is to select possible sub-
sets of acceptable arguments (the so-called extensions) from a given argumentation
framework. Since the relation in such frameworks indicates possible conflicts between
adjacent arguments, one basic requirement for an argumentation semantics is to yield
sets which are conflict-free, i.e., arguments which attack each other never appear jointly
in an extension. To get more adequate semantics, conflict-freeness is then augmented
by further requirements. One such requirement is admissibility (a set S of arguments
is admissible in some framework (A,R) if, S is conflict-free and, for each (b, a) ∈ R
with a ∈ S, there is a c ∈ S, such that (c, b) ∈ R) but also other requirements have
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been used (maximality, or graph properties as covers or components). Properties of and
relations between these semantics are nowadays a central research issue, see e.g. [3].

One such property is the notion of strong equivalence [12]. In a nutshell, strong
equivalence between two AFs holds iff they behave the same under any further addition
of arguments and/or attacks. In particular, this allows for identifying redundant patterns
in AFs. As an example, consider the stable semantics (a set S of arguments is called
stable in an AF F if S is conflict-free in F and each argument from F not contained
in S is attacked by some argument from S). Here an attack (a, b) is redundant when-
ever a is self-attacking. This can be seen as follows; in case b is in a stable extension,
removing (a, b) cannot change the extension (a cannot be in any stable extension due
to (a, a), thus there is no change in terms of conflict-free sets); in case b is not in some
stable extension S, then it is attacked by some c ∈ S. However, c 6= a since a is self-
attacking; thus b remains attacked, even when the attack (a, b) is dropped. In fact, the AF
F = ({a, b}, {(a, a), (a, b)}) is strongly equivalent to the AF G = ({a, b}, {(a, a)}).
In general, two AFs are strongly equivalent wrt. stable semantics, if their only syntac-
tical difference is due to such redundant attacks as outlined above. More formally, this
concept can be captured via so-called kernels (as suggested in [12]): The stable kernel
of an AF F = (A,R) is given by the framework (A,R∗) where R∗ stems from R
by removing all attacks (a, b) such that a 6= b and (a, a) is in R. Then, F and G are
strongly equivalent (wrt. stable semantics) iff F and G have the same such kernel.

In [12], such results have been given for several semantics, namely: stable, grounded,
complete, admissible, preferred (all these are due to Dung [8]), ideal [9], and semi-
stable [5]. Four different kernels were identified to characterize strong equivalence
between these semantics. Interestingly, it turned out that strong equivalence wrt. ad-
missible, preferred, semi-stable and ideal semantics is exactly the same concept, while
stable, complete, and grounded semantics require distinct kernels. We complement here
the picture by analyzing strong equivalence in terms of naive, stage, and cf2 semantics.

Strong equivalence not only gives an additional property to investigate the differ-
ences between argumentation semantics but also has some interesting applications.
First, suppose we have modelled a negotiation between two agents via argumentation
frameworks. Here, strong equivalence allows to characterize situations where the two
agents have an equivalent view of the world which is moreover robust to additional
information. Second, we believe that the identification of redundant attacks is impor-
tant in choosing an appropriate semantics. Caminada and Amgoud outlined in [6] that
the interplay between how a framework is built and which semantics is used to evalu-
ate the framework is crucial in order to obtain useful results when the (claims of the)
arguments selected by the chosen semantics are collected together. Knowledge about
redundant attacks (wrt. a particular semantics) might help to identify unsuitable such
combinations.

The main contributions and organization of the paper are as follows. In Section 2,
we give the necessary background. The main results are then contained in Section 3,
where characterizations for strong equivalence wrt. naive, stage, and cf2 semantics are
provided. As our results show, cf2 semantics are the most sensitive ones in the sense
that there are no redundant attacks at all (this is not the case for the other semantics
which have been considered so far). In Section 4, we relate our new results to known
results from [12] and draw a full picture how the different semantics behave in terms of



strong equivalence. Finally, we also provide some results concerning local equivalence,
a relaxation of strong equivalence proposed in [12], and symmetric frameworks [7].

2 Background

We first introduce the concept of abstract argumentation frameworks and the semantics
we are mainly interested here.

Definition 1. An argumentation framework (AF ) is a pair F = (A,R), where A is a
finite set of arguments and R ⊆ A × A. The pair (a, b) ∈ R means that a attacks b. A
set S ⊆ A of arguments defeats b (in F ), if there is an a ∈ S, such that (a, b) ∈ R.

For an AF F = (B,S) we use A(F ) to refer to B and R(F ) to refer to S. When
clear from the context, we often write a ∈ F (instead of a ∈ A(F )) and (a, b) ∈ F
(instead of (a, b) ∈ R(F )). For two AFs F and G, we define the union F ∪ G =
(A(F ) ∪ A(G), R(F ) ∪ R(G)) and F |S = ((A(F ) ∩ S), R(F ) ∩ (S × S)) as the
sub-framework of F wrt S; furthermore, we also use F − S as a shorthand for F |A\S .

A semantics σ assigns to each AF F a collection of sets of arguments. The following
concepts underly such semantics.

Definition 2. Let F = (A,R) be an AF. A set S of arguments is

– conflict-free (in F ), i.e. S ∈ cf (F ), if S ⊆ A and there are no a, b ∈ S, such that
(a, b) ∈ R.

– maximal conflict-free (in F ), i.e. S ∈ mcf (F ), if S ∈ cf (F ) and for each T ∈
cf (F ), S 6⊂ T . For the empty AF F0 = (∅, ∅), let mcf (F0) = {∅}.

– a stable extension (of F ), i.e. S ∈ stable(F ), if S ∈ cf (F ) and each a ∈ A \ S is
defeated by S in F .

– a stage extension (of F ), i.e. S ∈ stage(F ), if S ∈ cf (F ) and there is no T ∈
cf (F ) with T+

R ⊃ S
+
R , where S+

R = S ∪ {b | ∃a ∈ S, such that (a, b) ∈ R}.

When talking about semantics, one uses the terms stable, and respectively, stage
semantics, as expected. For maximal conflict-free sets, the name naive semantics is
also common; we thus use naive(F ) instead of mcf (F ).

We note that each stable extension is also a stage extension, and in case stable(F ) 6=
∅ then stable(F ) = stage(F ). This is due to the fact that for a stable extension S of
(A,R), S+

R = A holds. In general, we have the following relations for each AF F :

stable(F ) ⊆ stage(F ) ⊆ naive(F ) ⊆ cf (F ) (1)

We continue with the cf2 semantics [4] and use the characterization from [10].
We need some further terminology. By SCCs(F ), we denote the set of strongly con-
nected components of an AF F = (A,R) which identify the maximal strongly con-
nected1 subgraphs of F ; SCCs(F ) is thus a partition ofA. Moreover, we define [[F ]] =⋃
C∈SCCs(F) F |C . Let B a set of arguments, and a, b ∈ A. We say that b is reachable

1 A directed graph is called strongly connected if there is a path from each vertex in the graph
to every other vertex of the graph.



in F from a modulo B, in symbols a ⇒B
F b, if there exists a path from a to b in F |B ,

i.e. there exists a sequence c1, . . . , cn (n > 1) of arguments such that c1 = a, cn = b,
and (ci, ci+1) ∈ R∩ (B×B), for all i with 1 ≤ i < n. Finally, for an AF F = (A,R),
D ⊆ A, and a set S of arguments, let

∆F,S(D) = {a ∈ A | ∃b ∈ S : b 6= a, (b, a) ∈ R, a 6⇒A\D
F b}.

and ∆F,S be the least fixed-point of ∆F,S(∅).

Proposition 1. The cf2 extensions of an AF F can be characterized as follows:
cf2 (F ) = {S | S ∈ cf (F ) ∩mcf ([[F −∆F,S ]])}.

Similar to relation (1), we have the following picture in terms of cf2 extensions:

stable(F ) ⊆ cf2 (F ) ⊆ naive(F ) ⊆ cf (F ) (2)

However, there is no particular relation between stage and cf2 extensions as shown
by the following example.

Example 1. Consider the following AFs F (on the left side) and G (on the right side):

Here {a, c} is the only stage extension of F (it is also stable). Concerning the cf2
semantics, note that F is built from a single SCC . Thus, the cf2 extensions are given
by the maximal conflict-free sets of F , which are {a, c} and {a, d}. Thus, we have
stage(F ) ⊂ cf2 (F ).

On the other side the framework G is such that cf2 (G) ⊂ stage(G). G consists of
two SCCs namely C1 = {a} and C2 = {b, c}. The maximal conflict-free sets of G are
E1 = {a} and E2 = {b}. In order to check whether they are also cf2 extensions of G,
we compute ∆G,E1 = {b} and indeed E1 ∈ mcf (G − {b}), whereas ∆G,E2 = ∅ and
E2 6∈ mcf (G′), where G′ = [[G − ∅]] = ({a, b, c}, {(b, c), (c, b)}). Thus, cf2 (G) =
{E1}. On the other hand, stage(G) = {E1, E2} is easily verified. ♦

Furthermore, it is easy to show that there is no particular relation between naive,
stage, stable, and cf2 semantics in terms of standard equivalence, which means that two
frameworks possess the same extensions under a semantics. For more details we refer
to an extended version [11] of this paper which contains some explanatory examples.

3 Characterizations for Strong Equivalence

In this section, we will provide characterizations for strong equivalence wrt. naive,
stage, and cf2 semantics. The definition is as follows.

Definition 3. Two AFs F andG are strongly equivalent to each other wrt. a semantics
σ, in symbols F ≡σs G, iff for each AF H , σ(F ∪H) = σ(G ∪H).

By definition we have that F ≡σs G implies σ(F ) = σ(G), but the other direction
is not true in general. This indeed reflects the nonmonotonic nature of most of the
argumentation semantics.



Example 2. Consider the following AFs F and G.

For all semantics σ ∈ {stable, stage, cf2}, we have σ(F ) = σ(G) = {{a, b}}.
Whereas, if we add the AF H = ({a, b}, {(a, b)}), we observe stable(F ∪ H) =
stage(F ∪H) = cf2 (F ∪H) = {{a}} but stable(G ∪H) = ∅ and stage(G ∪H) =
cf2 (G ∪H) = {{a}, {b}}. As an example for the naive semantics let us have a look at
the frameworks T = ({a}, ∅) andU = ({a, b}, {(b, b)}) with naive(T ) = naive(U) =
{{a}}. By adding the AF V = ({b}, ∅) we get naive(T ∪ V ) = {{a, b}} 6= {{a}} =
naive(U ∪ V ). ♦

We next provide a few technical lemmas which will be useful later.

Lemma 1. Let F and H be AFs and S be a set of arguments. Then, S ∈ cf (F ∪H) if
and only if, jointly (S ∩A(F )) ∈ cf (F ) and (S ∩A(H)) ∈ cf (H).

Proof. The only-if direction is clear. Thus suppose S /∈ cf (F ∪H). Then, there exist
a, b ∈ S, such that (a, b) ∈ F ∪ H . By our definition of “∪”, then (a, b) ∈ F or
(a, b) ∈ H . But then (S ∩A(F )) /∈ cf (F ) or (S ∩A(H)) /∈ cf (H) follows. �

Lemma 2. For any AFs F and G with A(F ) 6= A(G), there exists an AF H such that
A(H) ⊆ A(F ) ∪A(G) and σ(F ∪H) 6= σ(G ∪H), for σ ∈ {naive, stage, cf2}.

Proof. In case σ(F ) 6= σ(G), we just consider H = (∅, ∅) and get σ(F ∪ H) 6=
σ(G ∪H). Thus assume σ(F ) = σ(G) and let wlog. a ∈ A(F ) \ A(G). Thus for all
E ∈ σ(F ), a 6∈ E. Consider the frameworkH = ({a}, ∅). Then, for allE′ ∈ σ(G∪H),
we have a ∈ E′. On the other hand, F ∪H = F and also σ(F ∪H) = σ(F ). Hence,
a is not contained in any E ∈ σ(F ∪H), and we obtain F 6≡σs G. �

Lemma 3. For any AFs F and G such that (a, a) ∈ R(F ) \R(G) or (a, a) ∈ R(G) \
R(F ), there exists an AF H such that A(H) ⊆ A(F ) ∪ A(G) and σ(F ∪ H) 6=
σ(G ∪H), for σ ∈ {naive, stage, cf2}.

Proof. Let (a, a) ∈ R(F ) \ R(G) and consider the AF H = (A, {(a, b), (b, b) | a 6=
b ∈ A}) with A = A(F ) ∪ A(G). Then σ(G ∪ H) = {a} while σ(F ∪ H) = {∅}
for all considered semantics σ ∈ {naive, stage, cf2}. For example, in case σ = cf2
we obtain ∆G∪H,E = {b | b ∈ A \ {a}}. Moreover, {a} is conflict-free in G ∪ H
and {a} ∈ mcf (G′), where G′ = (G ∪ H) − ∆G∪H,E = ({a}, ∅). On the other
hand, cf2 (F ∪H) = {∅} since all arguments in F ∪H are self-attacking. The case for
(a, a) ∈ R(G) \R(F ) is similar. �

3.1 Strong Equivalence wrt. Naive Semantics

We start with the naive semantics. As we will see, strong equivalence is only a marginally
more restricted concept than standard equivalence, namely in case the two compared
AFs are not given over the same arguments.



Theorem 1. The following statements are equivalent: (1)F ≡naive
s G; (2) naive(F ) =

naive(G) and A(F ) = A(G); (3) cf (F ) = cf (G) and A(F ) = A(G).

Proof. (1) implies (2): basically by the definition of strong equivalence and Lemma 2.
(2) implies (3): Assume naive(F ) = naive(G) but cf (F ) 6= cf (G). Wlog. let

S ∈ cf (F ) \ cf (G). Then, there exists a set S′ ⊇ S such that S′ ∈ naive(F ) and
by assumption then S′ ∈ naive(G). However, as S 6∈ cf (G) there exists an attack
(a, b) ∈ R(G), such that a, b ∈ S. But as S ⊆ S′, we have S′ 6∈ cf (G) as well; a
contradiction to S′ ∈ naive(G).

(3) implies (1): Suppose F 6≡naive
s G, i.e. there exists a framework H such that

naive(F∪H) 6= naive(G∪H). Wlog. let now S ∈ naive(F∪H)\naive(G∪H). From
Lemma 1 one can show that (S ∩ A(F )) ∈ naive(F ) and (S ∩ A(H)) ∈ naive(H),
as well as (S ∩ A(G) 6∈ naive(G). Let us assume S′ = S ∩ A(F ) = S ∩ A(G),
otherwise we are done yielding A(F ) 6= A(G). If S′ /∈ cf (G) we are also done (since
S′ ∈ cf (F ) follows from S′ ∈ naive(F )); otherwise, there exists an S′′ ⊃ S′, such that
S′′ ∈ cf (G). But S′′ /∈ cf (F ), since S′ ∈ naive(F ). Again we obtain cf (F ) 6= cf (G)
which concludes the proof. �

3.2 Strong Equivalence wrt. Stage Semantics

In order to characterize strong equivalence wrt. stage semantics, we define a certain
kernel which removes attacks being redundant for the stage semantics.2

Example 3. Consider the frameworks F and G:

They only differ in the attacks outgoing from the argument a which is self-attacking
and yield the same single stage extension, namely {c}, for both frameworks. We can
now add, for instance, H = ({a, c}, {(c, a)}) and the stage extensions for F ∪H and
G ∪ H still remain the same. In fact, no matter how H looks like, stage(F ∪ H) =
stage(G ∪H) will hold. ♦

The following kernel reflects the intuition given in the previous example.

Definition 4. For an AF F = (A,R), define F sk = (A,Rsk ) where

Rsk = R \ {(a, b) | a 6= b, (a, a) ∈ R}.

Theorem 2. For any AFs F and G, F ≡stage
s G iff F sk = Gsk .

Proof. Only-if: Suppose F sk 6= Gsk , we show F 6≡stage
s G. From Lemma 2 and

Lemma 3 we know that in case the arguments or the self-loops are not equal in both
frameworks, F ≡stage

s G does not hold. We thus assume that A = A(F ) = A(G) and
(a, a) ∈ F iff (a, a) ∈ G, for each a ∈ A. Let thus wlog. (a, b) ∈ F sk \ Gsk . We can

2 As it turns out, we require here exactly the same concept of a kernel as already used in [12]
to characterize strong equivalence wrt. stable semantics. We will come back to this point in
Section 4.



conclude (a, b) ∈ F and (a, a) /∈ F , thus (a, a) /∈ G and (a, b) /∈ G. Let c be a fresh
argument and take

H = {A ∪ {c}, {(b, b)} ∪ {(c, d) | d ∈ A} ∪ {(a, d) | d ∈ A ∪ {c} \ {b}}).

Then, {a} is a stage extension of F ∪H (it attacks all other arguments) but not ofG∪H
(b is not attacked by {a});

For the if-direction, suppose F sk = Gsk . Let us first show that F sk = Gsk implies
cf (F ∪ H) = cf (G ∪ H), for each AF H . Towards a contradiction, let T ∈ cf (F ∪
H) \ cf (G∪H). Since F sk = Gsk , we know A(F ) = A(G). Thus there exist a, b ∈ T
(not necessarily a 6= b) such that (a, b) ∈ G ∪H or (b, a) ∈ G ∪H . On the other hand
(a, b) /∈ F ∪H and (b, a) /∈ F ∪H hold since a, b ∈ T and T ∈ cf (F ∪H). Thus, in
particular, (a, b) /∈ F and (b, a) /∈ F as well as (a, b) /∈ H and (b, a) /∈ H; the latter
implies (a, b) ∈ G or (b, a) ∈ G. Suppose (a, b) ∈ G (the other case is symmetric). If
(a, a) ∈ G then (a, a) ∈ Gsk , but (a, a) /∈ F sk (since a ∈ T and thus (a, a) /∈ F ). If
(a, a) /∈ G, (a, b) ∈ Gsk but (a, b) /∈ F sk (since (a, b) /∈ F ). In either case F sk 6= Gsk ,
a contradiction.

We next show that F sk = Gsk implies (F ∪ H)sk = (G ∪ H)sk for any AF H .
Thus, let (a, b) ∈ (F ∪H)sk , and assume F sk = Gsk ; we show (a, b) ∈ (G ∪H)sk .
Since, (a, b) ∈ (F ∪H)sk we know that (a, a) 6∈ F ∪H and therefore, (a, a) 6∈ F sk ,
(a, a) 6∈ Gsk and (a, a) 6∈ Hsk . Hence, we have either (a, b) ∈ F sk or (a, b) ∈ Hsk . In
the latter case, (a, b) ∈ (G ∪H)sk follows because (a, a) 6∈ Gsk and (a, a) 6∈ Hsk . In
case (a, b) ∈ F sk , we get by the assumption F sk = Gsk , that (a, b) ∈ Gsk and since
(a, a) 6∈ Hsk it follows that (a, b) ∈ (G ∪H)sk .

Finally we show that for any frameworks K and L such that Ksk = Lsk , and
any S ∈ cf (K) ∩ cf (L), S+

R(K) = S+
R(L). This follows from the fact that for each

s ∈ S, (s, s) is neither contained in K nor in L. But then each attack (s, b) ∈ K is
also in Ksk , and likewise, each attack (s, b) ∈ L is also in Lsk . Now since Ksk = Lsk ,
S+
R(K) = S+

R(L) is obvious.
We thus have shown that, given F sk = Gsk , the following relations hold for each

AF H: cf (F ∪H) = cf (G∪H); (F ∪H)sk = (G∪H)sk ; and S+
R(F∪H) = S+

R(G∪H)

holds for each S ∈ cf (F ∪H) = cf (G ∪H) (taking K = F ∪H and L = G ∪H).
Thus, stage(F ∪H) = stage(G ∪H), for each AF H . Consequently, F ≡stage

s G. �

3.3 Strong Equivalence wrt. cf2 Semantics

Finally, we turn our attention to cf2 semantics. Interestingly, it turns out that for this
semantics there are no redundant attacks at all. In fact, even in the case where an at-
tack links two self-attacking arguments, this attack might play a role by glueing two
components together. Having no redundant attacks means that strong equivalence has
to coincide with syntactic equality. We now show this result formally.

Theorem 3. For any AFs F and G, F ≡cf2
s G iff F = G.

Proof. We only have to show the only-if direction, since F = G obviously implies
F ≡cf2

s G. Thus, suppose F 6= G, we show that F 6≡cf2
s G.

From Lemma 2 and Lemma 3 we know that in case the arguments or the self-loops



Fig. 1. F ∪H Fig. 2. G ∪H

are not equal in both frameworks, F ≡cf2
s G does not hold. We thus assume that A =

A(F ) = A(G) and (a, a) ∈ R(F ) iff (a, a) ∈ R(G), for each a ∈ A. Let us thus
suppose wlog. an attack (a, b) ∈ R(F ) \R(G) and consider the AF

H = (A ∪ {d, x, y, z},
{(a, a), (b, b), (b, x), (x, a), (a, y), (y, z), (z, a), (d, c) | c ∈ A \ {a, b}}).

Then, there exists a set E = {d, x, z}, such that E ∈ cf2 (F ∪H) but E 6∈ cf2 (G∪H);
see also Figures 1 and 2 for illustration. To show thatE ∈ cf2 (F ∪H), we first compute
∆F∪H,E = {c | c ∈ A \ {a, b}}. Thus, in the instance [[(F ∪ H) − ∆F∪H,E ]] we
have two SCCs left, namely C1 = {d} and C2 = {a, b, x, y, z}. Furthermore, all
attacks between the arguments of C2 are preserved, and we obtain thatE ∈ mcf ([[(F ∪
H) − ∆F∪H,E ]]), and as it is also conflict-free we have that E ∈ cf2 (F ∪ H) as
well. On the other hand, we obtain ∆G∪H,E = {a} ∪ {c | c ∈ A \ {a, b}}, and the
instance G′ = [[(G ∪ H) − ∆G∪H,E ]] consists of five SCCs , namely C1 = {d},
C2 = {b}, C3 = {x}, C4 = {y} and C5 = {z}, with b being self-attacking. Thus, the
set E′ = {d, x, y, z} ⊃ E is conflict-free in G′. Therefore, we obtain E 6∈ mcf (G′),
and hence, E 6∈ cf2 (G ∪H). F 6≡cf2

s G follows. �

In other words, the proof of Theorem 3 shows that no matter which AFs F 6= G are
given, we can always construct a frameworkH such that cf2 (F ∪H) 6= cf2 (G∪H). In
particular, we can always add new arguments and attacks such that the missing attack
in one of the original frameworks leads to different SCCs(F ) in the modified ones
and therefore to different cf2 extensions, when suitably augmenting the two AFs under
comparison.

4 Relation between Different Semantics w.r.t. Strong Equivalence

In this section, we first compare our new results to known ones from [12] in order to get
a complete picture about the difference between the most important semantics in terms
of strong equivalence and redundant attacks. Then, we restrict ourselves to symmetric
AFs [7]. Finally, we provide some preliminary results about local equivalence [12], a
relaxation of strong equivalence, where no new arguments are allowed to be raised.

4.1 Comparing Semantics wrt. Strong Equivalence

Together with the results from [12], we now know how to characterize strong equiv-
alence for the following semantics of abstract argumentation: admissible, preferred,



Fig. 3. Full picture of implication in terms of strong equivalence.

complete, grounded, stable, semi-stable, ideal, stage, naive, and cf2 . Let us briefly,
rephrase the results from [12]. First of all, it turns out the concept of the kernel we used
for stage semantics (see Definition 4) exactly matches the kernel for stable semantics in
[12]. We thus get:

Corollary 1. For any AFs F and G, F ≡stable
s G holds iff F ≡stage

s G holds.

Three more kernels for AFs F = (A,R) have been found in [12]:

– F ck = (A,R \ {(a, b) | a 6= b, (a, a) ∈ R, (b, b) ∈ R});
– F ak = (A,R \ {(a, b) | a 6= b, (a, a) ∈ R, {(b, a), (b, b)} ∩R 6= ∅});
– F gk = (A,R \ {(a, b) | a 6= b, (b, b) ∈ R, {(a, a), (b, a)} ∩R 6= ∅}).

As in Theorem 2, these kernels characterize strong equivalence in the sense that,
for instance, F and G are strongly equivalent wrt. complete semantics, in symbols
F ≡comp

s G, if F ck = Gck . Similarly, strong equivalence between F and G wrt.
grounded semantics (F ≡ground

s G) holds, if F gk = Ggk . Moreover, F ak = Gak char-
acterizes not only strong equivalence wrt. admissible sets (F ≡adm

s G), but also wrt.
preferred, semi-stable, and ideal semantics.

Inspecting the respective kernels provides the following picture, for any AFs F , G:

F = G⇒ F ck = Gck ⇒ F ak = Gak ⇒ F sk = Gsk ; F ck = Gck ⇒ F gk = Ggk

and thus strong equivalence wrt. cf2 semantics implies strong equivalence wrt. com-
plete semantics, etc.

To complete the picture, we also note the following observation:

Lemma 4. If F sk = Gsk (resp. F gk = Ggk ), then cf (F ) = cf (G).

Proof. If F sk = Gsk then A = A(F ) = A(G) and for each a ∈ A, (a, a) ∈ R(F ) iff
(a, a) ∈ R(G). Let S ∈ cf (F ), i.e. for each a, b ∈ S, we have (a, b) /∈ R(F ). Then,
(a, b) /∈ R(F sk ) and by assumption (a, b) /∈ R(Gsk ). Now since a ∈ S, we know that
(a, a) /∈ R(F ) and thus (a, a) /∈ R(G). Then, (a, b) /∈ R(Gsk ) implies (a, b) /∈ R(G).
Since this is the case for any a, b ∈ S, S ∈ cf (G) follows. The converse direction as
well as showing that F gk = Ggk implies cf (F ) = cf (G) is by similar arguments. �

We thus obtain that for any AFs F and G, F ≡σs G implies F ≡naive
s G (for σ ∈

{stable, stage, ground}). Together with our previous observation, a complete picture
of implications in terms of strong equivalence wrt. to the different semantics can now
be drawn, see Figure 3.

We also observe the following result in case of self-loop free AFs.

Corollary 2. Strong equivalence between self-loop free AFs F and G wrt. admissi-
ble, preferred, complete, grounded, stable, semi-stable, ideal, stage, and cf2 semantics
holds, if and only if F = G.



For naive semantics, there are situations where F ≡naive
s G holds although F and

G are different self-loop free AFs. As a simple example consider F = ({a, b}, {(a, b)})
and G = ({a, b}, {(b, a)}). This is due to the fact that naive semantics do not take the
orientation of attacks into account. This motivates to compare semantics wrt. strong
equivalence for symmetric frameworks.

4.2 Strong Equivalence and Symmetric Frameworks

Symmetric frameworks have been studied in [7] and are defined as AFs (A,R) whereR
is symmetric, non-empty, and irreflexive. Let us start with a more relaxed such notion.
We call an AF (A,R) weakly symmetric if R is symmetric (but not necessarily non-
empty or irreflexive).

Strong equivalence between weakly symmetric AFs is defined analogously as in
Definition 3, i.e. weakly symmetric AFs F and G are strongly equivalent wrt. a seman-
tics σ iff σ(F ∪H) = σ(G∪H), for any AFH . Note that we do not restrict here thatH
is symmetric as well. We will come back to this issue later. When dealing with weakly
symmetric AFs, we have two main observations.

First, one can show that for any weakly symmetric AF F , it holds that F sk = F ak .
This leads to the following result.

Corollary 3. Strong equivalence between weakly symmetric AFs F and G wrt. admis-
sible, preferred, semi-stable, ideal, stable, and stage semantics coincides.

Second, we can now give a suitable realization for the concept of a kernel also in
terms of naive semantics.

Definition 5. For an AF F = (A,R), define Fnk = (A,Rnk ) where

Rnk = R \ {(a, b) | a 6= b, (a, a) ∈ R or (b, b) ∈ R}.

Theorem 4. For any weakly symmetric AFs F and G, F ≡naive
s G iff Fnk = Gnk .

This leads to four different kernels for strong equivalence between weakly symmet-
ric AFs (below, we simplified the kernel F gk , which is possible in this case).

– F ck = (A,R \ {(a, b) | a 6= b, (a, a) ∈ R, (b, b) ∈ R});
– F sk = (A,R \ {(a, b) | a 6= b, (a, a) ∈ R});
– F gk = (A,R \ {(a, b) | a 6= b, (b, b) ∈ R});
– Fnk = (A,R \ {(a, b) | a 6= b, (a, a) ∈ R or (b, b) ∈ R}).

We note that for the cf2 semantics, strong equivalence between weakly symmetric
AFs still requires F = G (basically, this follows from the fact that all steps in the proof
of Theorem 3 can be restricted to such frameworks).

Finally, let us consider the case where the test for strong equivalence requires that
also the augmented AF is symmetric.

Definition 6. Two AFs F and G are symmetric (strong) equivalent to each other
wrt. a semantics σ, iff for each symmetric AF H , σ(F ∪H) = σ(G ∪H).

Theorem 5. Symmetric strong equivalence between symmetric AFs F and G wrt. ad-
missible (resp., preferred, complete, grounded, stable, semi-stable, ideal, stage, naive,
and cf2 ) semantics holds, if and only if Fnk = Gnk .



4.3 Local Equivalence

In [12], the following relaxation of strong equivalence has also been investigated.

Definition 7. AFs F and G are locally (strong) equivalent wrt. a semantics σ, in
symbols F ≡σl G, if for each AFH withA(H) ⊆ A(F )∪A(G), σ(F∪H) = σ(G∪H).

In words, the considered augmentations of the compared frameworks must not in-
troduce new arguments. Obviously, for any AFs F andG, we have that F ≡σs G implies
F ≡σl G for all semantics σ. The other direction does not hold in general, but for naive
semantics, it is clear by Theorem 1 that F ≡naive

s G if and only if F ≡naive
l G (sim-

ilarly, Theorem 5 implies such a collapse for the other semantics in case of symmetric
AFs). For stage semantics, strong and local equivalence are different concepts.

Example 4. Consider the frameworks F and G:

By Theorem 2,F 6≡stage
s G since addingH = ({a, c}, {(a, c), (c, a)}) yields stage(F∪

H) = {{a}} and stage(G ∪H) = {{a}, {c}}. However, F ≡stage
l G still holds, since

no matter which AF H over arguments {a, b} we add to F and G, F ∪H and G ∪H
have the same stage extensions, viz. {a} in case (a, a) /∈ R(H) or ∅ otherwise. ♦

As the example shows, in order to get a counterexample for strong equivalence we
require a new argument, in case all existing arguments except a are self-attacking.

Theorem 6. Let an AF F = (A,R) be called a-spoiled (a ∈ A) if for each b ∈ A
different to a, (b, b) ∈ R. We have that for any AFs F andG, F ≡stage

l G iff F ≡stage
s G

or both F and G are a-spoiled and A(F ) = A(G).

Proof. If-direction: F ≡stage
s G implies F ≡stage

l G. Thus, let F and G be a-spoiled
AFs withA(F ) = A(G). Then, for anyH withA(H) ⊆ A, stage(F∪H) = stage(G∪
H) = {{a}} in case (a, a) /∈ R(H); otherwise stage(F ∪H) = stage(G∪H) = {∅}.

Only-if direction: For A(F ) 6= A(G), F 6≡stage
l G by Lemma 2. So suppose A =

A(F ) = A(G), F 6≡stage
s G, and F andG are not both a-spoiled for some a ∈ A. Since

F 6≡stage
s G, F sk 6= Gsk . Thus, let (a, b) be contained in either R(F sk ) or R(Gsk ). In

case a = b, we use Lemma 3 and obtain F 6≡stage
l G. Thus in what follows, we assume

(e, e) ∈ R(F ) iff (e, e) ∈ R(G), for each argument e. Suppose now a 6= b and wlog.
let (a, b) ∈ R(F sk ) \ R(Gsk ). By definition (a, a) /∈ R(F ) and by above assumption
(a, a) /∈ R(G). Thus (a, b) /∈ R(G), by definition of the kernel. Since F and G are not
both a-spoiled there exists a c ∈ A (a 6= c) such that (c, c) /∈ R(F ) ∩ R(G). Since we
assumed that F andG possess the same self loops, we even have (c, c) /∈ R(F )∪R(G).
Now, takeH = {A, {(b, b)}∪{(c, d) | d ∈ A\{a}}∪{(a, d) | d ∈ A\{b}}). This AF
is similar as the one as used in the proof of Theorem 2, but now c is not a new argument.
However, we again obtain {a} ∈ stage(F ∪H) \ stage(G ∪H). �

Interestingly, this characterization differs from the one given in [12] for local equiv-
alence wrt. stable semantics (recall that for strong equivalence, stable and stage se-
mantics yield the same characterization). AFs F = ({a, b}, {(b, b), (b, a)}) and G =
({b}, {(b, b)}) are such an example for F ≡stable

l G and F 6≡stage
l G.



Local equivalence wrt. cf2 semantics is more cumbersome, and we leave a full
characterization for further work.

5 Conclusion

In this work, we provided characterizations for strong equivalence wrt. stage, naive,
and cf2 semantics, completing the analyses initiated in [12]. Strong equivalence gives a
handle to identify redundant attacks. For instance, our results show that an attack (a, b)
can be removed from an AF, whenever (a, a) is present in that AF, without changing
the stage extensions (no matter how the entire AF looks like). Such redundant attacks
exist for all semantics (at least when self-loops are present), except for cf2 semantics,
which follows from our main result, that F ≡cf2

s G holds, if and only if, F = G. In
other words, each attack plays a role for the cf2 semantics. This result also strengthens
observations by Baroni et al. [4], who claim that cf2 semantics treats self-loops in a
more sensitive way than other semantics. Besides our results for strong equivalence, we
also analyzed some variants, namely local and symmetric strong equivalence. Future
work includes the investigation of other notions of strong equivalence, which are based,
for instance on the set of credulously resp. skeptically accepted arguments, see [12].
Acknowledgments. The authors want to thank the anonymous referees for their valuable
comments.
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