TU Dresden, Fakultät Informatik David Carral, Markus Krötzsch

Complexity Theory **Exercise 9: Alternation** 9 January 2018

Exercise 9.1. Describe a polynomial-time ATM solving **EXACT INDEPENDENT SET**:

Input: Given a graph *G* and some number *k*.

Question: Does there exists a maximal independent set in G of size exactly k?

Find a level of the polynomial hierarchy where this problem is contained in.

Exercise 9.2. Consider the Japanese game *go-moku* that is played by two players X and O on a 19x19 board. Players alternately place markers on the board, and the first one to have five of its markers in a row, column, or diagonal wins.

Consider the generalised version of go-moku on an $n \times n$ board. Say that a *position* of go-moku is a placement of markers on such a board as it could occur during the game. Define

GM = { $\langle B \rangle \mid B$ is a position of go-moku where X has a winning strategy}.

Describe a polynomial-time ATM solving **GM**.

Exercise 9.3. Show that AEXPTIME = EXPSPACE.

Exercise 9.4. Show the following result: If there is any k such that $\Sigma_k^{\mathrm{P}} = \Sigma_{k+1}^{\mathrm{P}}$ then $\Sigma_j^{\mathrm{P}} = \prod_{i=1}^{\mathrm{P}} \sum_{k=1}^{\mathrm{P}} \sum_{k=$

Exercise 9.5. Show that $PH \subseteq PSPACE$.