Complexity Theory

NP Completeness

Daniel Borchmann, Markus Krötzsch
Review
Computational Logic

2015-11-17

©(1)(0)

```
©(® 2015 Daniel Borchmann, Markus Krötrsch
```

NP Completeness

The Structure of NP
Idea: polynomial many-one reductions define an order on problems

Are NP Problems Hard?

NP-Hardness and NP-Completeness

Deterministic vs. Nondeterminsitic Time

Definition 8.1

- A language \mathcal{H} is NP-hard, if $\mathcal{L} \leq_{p} \mathcal{H}$ for every language $\mathcal{L} \in N P$.
- A language C is NP-complete, if C is NP-hard and $C \in \mathrm{NP}$.

NP-Completeness

- NP-complete problems are the hardest problems in NP.
- They constitute the maximal class $\left(w r t . \leq_{p}\right)$ of problems within NP.
- They are all equally difficult - an efficient solution to one would solve them all.

Theorem 8.2

If \mathcal{L} is NP-hard and $\mathcal{L} \leq_{p} \mathcal{L}^{\prime}$, then \mathcal{L}^{\prime} is NP-hard as well.

Theorem 8.3
$\mathrm{P} \subseteq \mathrm{NP}$, and also $\mathrm{P} \subseteq$ coNP.
(Clear since DTMs are a special case of NTMs)
It is not known to date if the converse is true or not

- Put differently: "If it is easy to check a candidate solution to a problem, is it also easy to find one?"
- Exaggerated: "Can creativity be automated?" (Wigderson, 2006)
- Unresolved since over 35 years of effort
- One of the major problems in computer science and math of our time
- 1,000,000 USD prize for resolving it ("Millenium Problem") (might not be much money at the time it is actually solved)

```
Complexity Theory Are NP Problems Hard?
```


Status of P vs. NP

- $\mathrm{P}=\mathrm{NP}$ could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
- Even if $N P \neq P$, it is unclear if NP problems require exponential time in a strict sense - many super-polynomial functions exist ...
- The problem might never be solved

Current status in research:

- Results of a poll among 152 experts [Gasarch 2012]:
- P = NP: 126 (83\%)
- P = NP: 12 (9\%)
- Don't know or don't care: 7 (4\%)
- Independent: 5 (3\%)
- And 1 person (0.6%) answered: "I don't want it to be equal."
- Experts have guessed wrongly in other major questions before
- Over 100 "proofs" show $\mathrm{P}=\mathrm{NP}$ to be true/false/both/neither: https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

How to show NP-completeness
To show that \mathcal{L} is NP-complete, we must show that every language in NP can be reduced to \mathcal{L} in polynomial time.

Alternative approach
Given an NP-complete language \mathcal{C}, we can show that another language \mathcal{L} is NP-complete just by showing that

- $C \leq_{p} \mathcal{L}$
- $\mathcal{L} \in \mathrm{NP}$

However: Is there any NP-complete problem at all?

©(O) 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-11-17
NP Completeness	Are NP Problems Hard?	

The First NP-Complete Problem

Is there any NP-complete problem at all?
Of course there is: the word problem for polynomial time NTMs!

```
Polrtime NTM
    Input: A polynomial p, a p-time bounded NTM \mathcal{M,}
        and an input word w.
Problem: Does }\mathcal{M}\mathrm{ accept w (in time p(|w|))?
```

Polytime NTM is NP-complete, but not very interesting:

- not most convenient to work with
- not of much interest outside of complexity theory

Are there more natural NP-complete problems?
Yes, thousands of them!

Theorem 8.4

Polytime NTM is NP-complete.
Proof.
See exercise.

©(〇) 2015 Daniel Borchmann, Markus Krötzsch NP Completeness
 Complexity Theory Are NP Problems Hard?

Further NP-Complete Problem?

The Cook-Levin Theorem

The Cook-Levin Theorem

Theorem 8.5 (Cook 1970, Levin 1973)
Sat is NP-complete.
Proof.

- Sat $\in \mathrm{NP}$

Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

- Sat is hard for NP

Proof by reduction from the word problem for NTMs.

Proving the Cook-Levin Theorem

Given:

- a polynomial p
- a p-time bounded 1 -tape NTM $\mathcal{M}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}\right)$
- a word w

Intended reduction
Define a propositional logic formula $\varphi_{p, \mathcal{M}, w}$ such that $\varphi_{p, \mathcal{M}, w}$ is satisfiable if and only if \mathcal{M} accepts w in time $p(|w|)$.

Note

On input w of length $n:=|w|$, every computation path of \mathcal{M} is of length $\leq p(n)$ and uses $\leq p(n)$ tape cells.

Idea
Use logic to describe a run of \mathcal{M} on input w by a formula.
©(©) 2015 Daniel Borchmann, Markus Krötzsch
Complexity Theory The Cook-Levin Theorem

Proving Cook-Levin: Encoding Configurations

Use propositional variables for describing configurations:
Q_{q} for each $q \in Q$ means " \mathcal{M} is in state $q \in Q$ "
P_{i} for each $0 \leq i \leq p(n)$ means "the head is at Position i "
$S_{a, i}$ for each $a \in \Gamma$ and $0 \leq i \leq p(n)$ means "tape cell i contains Symbol a "
Represent configuration ($q, p, a_{0} \ldots a_{p(n)}$)
by assigning truth values to variables from the set

$$
\bar{C}:=\left\{Q_{q}, P_{i}, S_{a, i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \leq i<p(n)\right\}
$$

using the truth assignment β defined as
$\beta\left(Q_{s}\right):=\left\{\begin{array}{ll}1 & s=q \\ 0 & s \neq q\end{array} \quad \beta\left(P_{i}\right):=\left\{\begin{array}{ll}1 & i=p \\ 0 & i \neq p\end{array} \quad \beta\left(S_{a, i}\right):= \begin{cases}1 & a=a_{i} \\ 0 & a \neq a_{i}\end{cases}\right.\right.$

Proving Cook-Levin: Validating Configurations

We define a formula $\operatorname{Conf}(\bar{C})$ for a set of configuration variables

$$
\bar{C}=\left\{Q_{q}, P_{i}, S_{a, i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \leq i<p(n)\right\}
$$

as follows:

$$
\begin{array}{cc}
\operatorname{Conf}(\bar{C}):= & \text { "the assignment is a valid configuration": } \\
\bigvee_{q \in Q}\left(Q_{q} \wedge \bigwedge_{q^{\prime} \neq q} \neg Q_{q^{\prime}}\right) & \text { "TM in exactly one state } q \in Q \text { " } \\
\wedge \bigvee_{p \leq p(n)}\left(P_{p} \wedge \bigwedge_{p^{\prime} \neq p} \neg P_{p^{\prime}}\right) \quad \text { "head in exactly one position } p \leq p(n) \text { " } \\
\wedge \bigwedge_{1 \leq i \leq p(n)} \bigvee_{a \in \Gamma}\left(S_{a, i} \wedge \bigwedge_{b \neq a \in \Gamma} \neg S_{b, i}\right) \quad \text { "exactly one } a \in \Gamma \text { in each cell" }
\end{array}
$$

Proving Cook-Levin: Validating Configurations

For an assignment β defined on variables in \bar{C} define

$$
\operatorname{conf}(\bar{C}, \beta):=\left\{\begin{array}{l}
\quad \beta\left(Q_{q}\right)=1, \\
\left(q, p, w_{0} \ldots w_{p(n)}\right) \mid \\
\beta\left(P_{p}\right)=1, \\
\\
\beta\left(S_{w_{i}, i}\right)=1 \text { for all } 0 \leq i \leq p(n)
\end{array}\right\}
$$

Note: β may be defined on other variables besides those in \bar{C}.
Lemma 8.6
If β satisfies $\operatorname{Conf}(\bar{C})$ then $|\operatorname{conf}(\bar{C}, \beta)|=1$.
We can therefore write $\operatorname{conf}(\bar{C}, \beta)=(q, p, w)$ to simplify notation.
Observations:

- $\operatorname{conf}(\bar{C}, \beta)$ is a potential configuration of \mathcal{M}, but it may not be reachable from the start configuration of \mathcal{M} on input w.
- Conversely, every configuration ($q, p, w_{1} \ldots w_{p(n)}$) induces a satisfying assignment β or which $\operatorname{conf}(\bar{C}, \beta)=\left(q, p, w_{1} \ldots w_{p(n)}\right)$.

| @(O) 2015 Daniel Borchmann, Markus Krötzsch | Complexity Theory |
| ---: | :--- | :--- |
| NP Completeness | The Cook-Levin Theorem |

Proving Cook-Levin: Start and End

Defined so far:

- $\operatorname{Conf}(\bar{C}): \bar{C}$ describes a potential configuration
- $\operatorname{Next}\left(\bar{C}, \bar{C}^{\prime}\right): \operatorname{conf}(\bar{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}\left(\bar{C}^{\prime}, \beta\right)$

Start configuration: Let $w=w_{0} \cdots w_{n-1} \in \Sigma^{*}$ be the input word

$$
\operatorname{START}_{\mathcal{M}, w}(\bar{C}):=\operatorname{CoNF}(\bar{C}) \wedge Q_{q_{0}} \wedge P_{0} \wedge \bigwedge_{i=0}^{n-1} S_{w_{i}, i} \wedge \bigwedge_{i=n}^{p(n)} S_{\square, i}
$$

Then an assignment β satisfies $\operatorname{StaRT}_{\mathcal{M}, w}(\bar{C})$ if and only if \bar{C} represents the start configuration of \mathcal{M} on input w.

Accepting stop configuration:

$$
\operatorname{Acc-\operatorname {ConF}(\overline {C}):=\operatorname {ConF}(\overline {C})\wedge Q_{q_{\text {accept}}}}
$$

Then an assignment β satisfies $\operatorname{Acc-Conf}(\bar{C})$ if and only if \bar{C} represents an accepting configuration of \mathcal{M}.

Proving Cook-Levin: Adding Time

Since \mathcal{M} is p-time bounded, each run may contain up to $p(n)$ steps \leadsto we need one set of configuration variables for each

Propositional variables
$Q_{q, t}$ for all $q \in Q, 0 \leq t \leq p(n)$ means "at time t, \mathcal{M} is in state $q \in Q$ "
$P_{i, t}$ for all $0 \leq i, t \leq p(n)$ means "at time t, the head is at position i "
$S_{a, i, t}$ for all $a \in \Sigma \dot{U}\{\square\}$ and $0 \leq i, t \leq p(n)$ means
"at time t, tape cell i contains symbol a "
Notation
$\bar{C}_{t}:=\left\{Q_{q, t}, P_{i, t}, S_{a, i, t} \mid \quad q \in Q, 0 \leq i \leq p(n), \quad a \in \Gamma\right\}$

Proving Cook-Levin: The Formula

Given:

- a polynomial p
- a p-time bounded 1-tape NTM $\mathcal{M}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}\right)$
- a word w

We define the formula $\varphi_{p, \mathcal{M}, w}$ as follows:

$$
\varphi_{p, \mathcal{M}, w}:=\operatorname{START}_{\mathcal{M}, w}\left(\bar{C}_{0}\right) \wedge \bigvee_{0 \leq t \leq p(n)}\left(\operatorname{Acc-ConF}\left(\bar{C}_{t}\right) \wedge \bigwedge_{0 \leq i<t} \operatorname{Next}\left(\bar{C}_{i}, \bar{C}_{i+1}\right)\right)
$$

" C_{0} encodes the start configuration" and for some polynomial time t : " \mathcal{M} accepts after t steps" and " $\bar{C}_{0}, \ldots, \bar{C}_{t}$ encode a comp. path"

Lemma 8.8
$\varphi_{p, \mathcal{M}, w}$ is satisfiable if and only if \mathcal{M} accepts w in time $p(|w|)$.
Note that an accepting or rejecting stop configuration has no successor.

The Cook-Levin Theorem

Theorem 8.5 (Cook 1970, Levin 1973)
S_{At} is NP-complete.

Proof.

- Sat \in NP

Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

- Sat is hard for NP

Proof by reduction from the word problem for NTMs.

Towards More NP-Complete Problems

Starting with Sat, one can readily show more problems \mathcal{P} to be NP-complete, each time performing two steps:
(1) Show that $\mathcal{P} \in \mathrm{NP}$
(2) Find a known NP-complete problem \mathcal{P}^{\prime} and reduce $\mathcal{P}^{\prime} \leq_{p} \mathcal{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

$$
\begin{array}{rll}
& \leq_{p} \text { Clique } & \leq_{p} \text { Independent Set } \\
\text { Sat } & \leq_{p} \text { 3-Sat } & \leq_{p} \text { Dir. Hamiltonian Path } \\
& \leq_{p} \text { Subset Sum } & \leq_{p} \text { Knapsack }
\end{array}
$$

NP-Completeness of Clique

Theorem 8.9
Clique is NP-complete.
Clique: Given G, k, does G contain a clique of order $\geq k$?

Proof.

- Clique \in NP

Take the vertex set of a clique of order k as a certificate.

- Clique is NP-hard

We show Sat \leq_{p} Clique
To every CNF-formula φ assign G_{φ}, k_{φ} such that φ satisfiable $\Longleftrightarrow G_{\varphi}$ contains clique of order k_{φ}

To every CNF-formula φ assign G_{φ}, k_{φ} such that
φ satisfiable if and only if G_{φ} contains clique of order k_{φ}
Given $\varphi=C_{1} \wedge \cdots \wedge C_{k}$:

- Set $k_{\varphi}:=k$
- For each clause C_{j} and literal $L \in C_{j}$ add a vertex $v_{L, j}$
- Add edge $\left\{u_{L, j}, v_{K, i}\right\}$ if $i \neq j$ and $L \wedge K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Example 8.10
$(X \vee Y \vee \neg Z) \wedge(X \vee \neg Y) \wedge(\neg X \vee Z)$
See blackboard.

Sat \leq_{p} Clique

To every CNF-formula φ assign G_{φ}, k_{φ} such that φ satisfiable if and only if G_{φ} contains clique of order k_{φ}

Given $\varphi=C_{1} \wedge \cdots \wedge C_{k}$:

- Set $k_{\varphi}:=k$
- For each clause C_{j} and literal $L \in C_{j}$ add a vertex $v_{L, j}$
- Add edge $\left\{u_{L, j}, v_{K, i}\right\}$ if $i \neq j$ and $L \wedge K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Correctness:
G_{φ} has clique of order k iff φ is satisfiable.

Complexity:

The reduction is clearly computable in polynomial time.

NP-Completeness of Independent Set

Independent Set

Input: An undirected graph G and a natural number k
Problem: Does G contain k vertices that share no edges (independent set)?

Theorem 8.11
Independent Set is NP-complete.
Proof.
Hardness by reduction Clique \leq_{p} Independent Set:

- Given $G:=(V, E)$ construct $\bar{G}:=(V,\{\{u, v\} \mid\{u, v\} \notin E$ and $u \neq v\})$
- A set $X \subseteq V$ induces a clique in G iff X induces an ind. set in \bar{G}.
- Reduction: G has a clique of order k iff \bar{G} has an ind. set of order k.

©®® 2015 Daniel Eorchmann, Markus Kiotrsch	Complexty Theory	2015-11-17 \#29	©®® 2015 Daniel Bocrchmann, Makkus Kïrzsch		Complexity Theory	2015-11-17 \#30
NP Completeness	3-Sat, Hamilitonian Path and Subseitsum			NP Compleieness	3-Sat, Hamilonian Path and Subselsum	
Towards More NP-Complete	roblems		NP-Completeness of	3-SAT		

Starting with Sat, one can readily show more problems \mathcal{P} to be NP-complete, each time performing two steps:
(1) Show that $\mathcal{P} \in N P$
(2) Find a known NP-complete problem \mathscr{P}^{\prime} and reduce $\mathcal{P}^{\prime} \leq_{p} \mathcal{P}$

Thousands of problem have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)

In this course:

$$
\begin{array}{rlrl}
& \leq_{p} \text { Clique } & & \leq_{p} \text { Independent Set } \\
\text { Sat } & \leq_{p} \text { 3-Sat } & & \leq_{p} \text { Dir. Hamlitonian Path } \\
& \leq_{p} \text { Subset Sum } & \leq_{p} \text { Knapsack }
\end{array}
$$

NP-Completeness of 3-Sat

3-Sat: Satisfiability of formulae in CNF with ≤ 3 literals per clause
Theorem 8.12
3-Sat is NP-complete.
Proof.
Hardness by reduction Sat $\leq_{p} 3$-Sat:

- Given: φ in CNF
- Construct φ^{\prime} by replacing clauses $C_{i}=\left(L_{1} \vee \cdots \vee L_{k}\right)$ with $k>3$ by

$$
C_{i}^{\prime}:=\left(L_{1} \vee Y_{1}\right) \wedge\left(\neg Y_{1} \vee L_{2} \vee Y_{2}\right) \wedge \ldots \wedge\left(\neg Y_{k-1} \vee L_{k}\right)
$$

Here, the Y_{j} are fresh variables for each clause.

- Claim: φ is satisfiable iff φ^{\prime} is satisfiable.

Example

Let $\varphi:=\left(X_{1} \vee X_{2} \vee \neg X_{3} \vee X_{4}\right) \quad \wedge \quad\left(\neg X_{4} \vee \neg X_{2} \vee X_{5} \vee \neg X_{1}\right)$
Then $\varphi^{\prime}:=\left(X_{1} \vee Y_{1}\right) \wedge$

$$
\begin{aligned}
& \left(\neg Y_{1} \vee X_{2} \vee Y_{2}\right) \wedge \\
& \left(\neg Y_{2} \vee \neg X_{3} \vee Y_{3}\right) \wedge \\
& \left(\neg Y_{3} \vee X_{4}\right) \wedge \\
& \left(\neg X_{4} \vee Z_{1}\right) \wedge \\
& \left(\neg Z_{1} \vee \neg X_{2} \vee Z_{2}\right) \wedge \\
& \left(\neg Z_{2} \vee X_{5} \vee Z_{3}\right) \wedge \\
& \left(\neg Z_{3} \vee \neg X_{1}\right)
\end{aligned}
$$

Proving NP-Completeness of 3-Sat

" \Rightarrow " Given $\varphi:=\bigwedge_{i=1}^{m} C_{i}$ with clauses C_{i}, show that if φ is satisfiable then φ^{\prime} is satisfiable

For a satisfying assignment β for φ, define an assignment β^{\prime} for φ^{\prime} :
For each $C:=\left(L_{1} \vee \cdots \vee L_{k}\right)$, with $k>3$, in φ there is

$$
\begin{gathered}
C^{\prime}=\left(L_{1} \vee Y_{1}\right) \wedge\left(\neg Y_{1} \vee L_{2} \vee Y_{2}\right) \wedge \ldots \wedge\left(\neg Y_{k-1} \vee L_{k}\right) \text { in } \varphi^{\prime} \\
\text { As } \beta \text { satisfies } \varphi \text {, there is } i \leq k \text { s.th. } \beta\left(L_{i}\right)=1 \text { i.e. } \begin{array}{l}
\beta(X)=1 \text { if } L_{i}=X \\
\beta(X)=0 \text { if } L_{i}=\neg X
\end{array}
\end{gathered}
$$

$$
\beta^{\prime}\left(Y_{j}\right)=1 \quad \text { for } j<i
$$

$$
\text { Set } \beta^{\prime}\left(Y_{j}\right)=0 \quad \text { for } j \geq i
$$

$$
\beta^{\prime}(X)=\beta(X) \quad \text { for all variables in } \varphi
$$

This is a satisfying asignment for φ^{\prime}

Proving NP-Completeness of 3-SAT

" \Leftarrow " Show that if φ^{\prime} is satisfiable then so is φ
Suppose β is a satisfying assignment for $\varphi^{\prime}-\operatorname{then} \beta$ satisfies φ :
Let $C:=\left(L_{1} \vee \cdots \vee L_{k}\right)$ be a clause of φ
(1) If $k \leq 3$ then C is a clause of φ
(2) If $k>3$ then

$$
C^{\prime}=\left(L_{1} \vee Y_{1}\right) \wedge\left(\neg Y_{1} \vee L_{2} \vee Y_{2}\right) \wedge \ldots \wedge\left(\neg Y_{k-1} \vee L_{k}\right) \text { in } \varphi^{\prime}
$$

β must satisfy at least one $L_{i}, 1 \leq i \leq k$
Case (2) follows since, if $\beta\left(L_{i}\right)=0$ for all $i \leq k$ then C^{\prime} can be reduced to

$$
\begin{aligned}
C^{\prime} & =\left(Y_{1}\right) \wedge\left(\neg Y_{1} \vee Y_{2}\right) \wedge \ldots \wedge\left(\neg Y_{k-1}\right) \\
& \equiv Y_{1} \wedge\left(Y_{1} \rightarrow Y_{2}\right) \wedge \ldots \wedge\left(Y_{k-2} \rightarrow Y_{k-1}\right) \wedge \neg Y_{k-1}
\end{aligned}
$$

which is not satisfiable.

